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The kinetic theory of scattering by a circular homogeneous isotropic plasma cyclinder is treated for plane
wave incidence parallel to the axis of the cylinder. The relativistic form of the Vlasov equation is inverted,
subject to the specular boundary condition, expressing the electronic distribution function in terms of the elec-
tric field intensity. After inverting Maxwell's equations and eliminating the distribution function, a set of
Fredholm integral equations of the second kind are obtained for the angular Fourier components of the electric
field. Since for low temperature the Neumann series converges, the low temperature solution is easily obtained.
The first order temperature corrections are thus derived for the reflection coefficients associated with the

Fourier components.

A significant amount of the analysis has been per-
formed on plasma scattering problems based upon the
linearized coupled Maxwell~Vlasov or Boltzman equa-
tions. However, these problems have been limited to
slab or half-space geometrics. The mathematical
methods employed have been based either on singular
integral equations,1—3 Fourier transforms4—6 or
series.? As such, these techniques were applicable be-
cause of the planar geometry involved.

Here, nonplanar geometry is considered, where the
kinetic theory of plane wave scattering by a plasma
circular cylinder is treated. The plasma will be taken
to be homogeneous and isotropic. The linearized pro-
blem will be considered, with frequency sufficiently
high such that the ion motions may be neglected.

The results in this paper will be mainly concerned
with the case of the incident polarization being paral-
lel to the axis of the cylinder. Although, with this sim-
plification only transverse waves are produced in the
plasma, it is important to investigate this case first,
before the more interesting and more difficult case

of the incident polarization perpendicular to axis is
considered, wherein both transverse and longitudinal
waves are induced in the plasma.

As a first step, the Boltzmann equation will be inver-
ted, subject to the specular boundary condition. Be-
cause of the mathematical procedure used, the rela-
tivistic form of the equation is employed, and a colli-
sion term (corresponding to complex frequency) is in-
cluded. The basic reasons for the use of the relati-
vistic form (even for low temperature) and a colli-
sion term is to insure convergence. The nonrelati-
vistic form could be employed; but the domain of the
velocity space will have to be compact. The relati-
vistic form insures this since it restricts the magni-

tude of the velocity to be less than the speed of light.
The technique employed here to invert the Boltzmann
equation is very general and is carried out initially
for arbitrary cylindrical geometries with smooth
boundaries.

The distribution function is then given an explicit
form for the case of polarization parallel to the axis
of a circular cylinder, from which, the current is ex-
pressed in terms of the electric field.

Maxwell's equations are inverted expressing E in
terms of the current. The process employed, involves
a Green's function closely associated with the corres-
ponding cold plasma or dielectric problem. Elimi-
nating the current from the two expressions, a set of
one~dimensional Fredholm integral equations, of the
second kind are obtained for the Fourier components
(in the angular variable) of the electric field in the
plasma. For the low temperature region, the integral
equations may be solved by the Neumann series.

Asymptotic results for low temperature are consi-
dered, and the asymptotic form of the first iterate to
the integral equations are computed, yielding the tem-
perature correction to the electric field on the sur-
face of the cylinder, from which the reflection coeffi-
cients may be computed.

The fundamental equations are Maxwell's equations
[time dependence exp(— iw?¢) suppressed]

V X E = iwpH, )
VX H=—iweyE +j 2)

where j, the current due to the collective motion of the
plasma, is related to the electronic perturbed distri-
bution function f, by
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j=——ecfﬁufdu. (3)
In the above equation, — e is the electronic charge,
u is the reduced velocity, and 8 is given by

B=(+ud)lsz, @)
In combination with the above equations we have the
relativistic Boltzmann equation (given by Clemmow
and Willson)8

(—iw + V)f + Beu-Vf — (e/mc)E-V,fy =0,  (5)
where the unperturbed distribution function f;, is given
by

f() = nFoo
_ exp[— A(1 + u2)1/2]
°7 [@n/MK, )]

The geometry of the problem under consideration will
be specified in terms of cylindrical polar coordinates
{(r, 6, z). The plasma will be contained in the circular

cylinder » = a, which is imbedded in free space, thus

f and j will vanish for » > a.

(6)

mc2
T RT

b

Radiation will be incident normally to the plasma cy-
linder, producing a scattered field in the domain

¥ > a,and an induced field in the plasma cylinder.
The quantities E, H, and f will thus be independent of
the z variable, and the problem reduces to two dimen-
sions as far as the spatial variables are concerned.

INTEGRATION OF THE BOLTZMANN EQUATION

The first step in the analysis will be to invert Eq. (5)
for » < a expressing f in terms of E such that the dis-
tribution function f satisfies the specular boundary
condition at » = ¢. This will be done for arbitrary
polarization of E. An explicit expression for f for the
case where E has only the z component (corresponding
to the polarization of the incident radiation being paral-
lel to the cylinder), will then be presented.

Set

g = neFy/u, pmc2,
a =W+ i)/Beu,,

where the velocity u is expressed in cylinder polar
coordinates (,, ¢,, u,) in velocity space, withu, =
u—u,%,. Equation (5) becomes

—daf +u, Vf=—u-Eg, (10)
which can be directly integrated by transiorming the
equation into a first order ordinary differential equa-
tion through the transformation of the variables (x, 9
to (¢, ) such that the £ axis lies along the direction
of the vector i, . The result is

fi(x,u) = etelf (x,,u) —gfol eiaty-E(x —u,t)dt, (11)

where

x =x, + 14,. (12)

For a fixed x and u, the point X, lies on the line pass-
ing through x in the direction of the vector —u,. The
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point x, will be specified by requiring it to lie on the
cylinder » = a, such that the direction of the vector

X — X, is given by u,, in which case [/ is positive.
Essentially x, is found by tracing back from the point
x, along the velocity ray u, to the surface. Thus the
unknown function f (x,, u) is the velocity distribution
at the point x; on the surface. This quantity will be
determined through successive applications of the
specular boundary condition, which at an arbitrary
point a on the surface is given by

f(@,u) = f(a,u¥,
uw*=u—2(@-u)n,
where n is the local unit outward normal to the sur-
face. The technique to be given here corresponds to
tracing back the reflected rays undergoing multiple

reflections and is applicable to smooth cylindrical
geometries of arbitrary cross section.

As a first step to determine f (x, u), the specular
boundary condition will be applied at the point X0

f(XO)u) :f(xOy ul)y

ul = u—2(ng-wn,. {13)

Then tracing back the rays (in the direction — ul)
from x,, to the point x! on the surface, the following
expression is obtained from Eq. (11) with appropriate
substitution:

f(Xg0) = f (%o, u") = ' *1f (x4, ul)

—gfoll ei“tul-E(xo ~uit) dt, (14)

where /; is the distance between points x,; and x,.

Similarly apply the specular boundary condition at the
point x4, as follows:

f(xlaul) :f(x; u2)9

uZz =ul —2@m-ul)ul,

where n is the local unit outward normal at x,. u! is
the reflected velocity vector corresponding to the in-
cident vector u? at x,;. Repeating the process of
tracing back along the ray (— u2) to the point x,, one
obtains

F(xg,u) = f(x;,0%) = €2 f(xy,07)
—gfolz etoty?. E(x, — ﬁft)dz‘,
where I, = |x; —X,].

The whole process is repeated for » reflections.
Thus one obtains the following set of equations:
at

S (®yg,u) = e f(x,,0") —g [ o' " E

x (X, —U,8)dt, (15)
f(x,,u") = f(x,,uml). (16)
Combining the resulting equations, we obtain
£, w) = (%, u)e < — g 33 e einmn
foves
x jolm ' E(x, —470d, (A7)
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where
Ly=4L+hL++1,, m=0, L, =0, m =0
18)
Since
real o = — (W/o)[(1 + u2 + u2)/u2]t/2,

it is seen that if v > 0, real o < 0, over the complete
domain of velocity variables {u,,u,). If the nonrela-
tivistic form of the Boltzmann equation was employed,
real o would vanish, unless a cutoff in the velocity
space v was required (i.e., integration restricted to a
compact domain in velocity space). The relativistic
form automatically ensures the cutoff with |v| < c.
Thus, for v > 0, it follows that # — o,

elttm-1 [tm gt ™. B
0

X (X, —0,t)dt.

&0

f(XO’u) ==& E

m=1

(19)

The summation can be expressed in terms of an infe-
gral along the multiply reflected rays. Set s as the
vector directed back along the rays, with magnitude
corresponding to the arc length along the rays from
xy. The above expression has the form

F(xg,u) = -»—guzfow eias E,(x, + s)ds (20)

for polarization parallel to the cylinder, and the form

f(xgu) = + g [7 el E(xg + 5)-ds (21)
for polarization perpendicular to the cylinder. This
result holds for cylinders of arbitrary smooth cross
section.

Returning to the ecase of polarization parallel to the
axis of a circular cylinder, Eq. (19) can be expressed
in a more explicit form. First, for a circular cylin-
der, the segments leave equal lengths, i.e.,

L=ly=1ly=+ =1L,
L = (m —1)L.

m

Because of symmetry, the integral on the segment
fromx, , tox,, given by

J et B, (1), 8(2,m))di

{where polar coordinates are employed), can be placed
in the form

L et B (r' (1), 20m — 1)y + a(2)dt,

where 2y is the angle subtended at the origin by the
line segment, and 6(¢) corresponds to the angular
position of the point in the segment (x,, x;). Employ-
ing a Fourier Series representation for E,, the re-
sulting expression can be summed over the index m
to give a closed form result. Changing the variable
of integration / to 7/, the final form for f(x,, u) is
given as follows:

L )
f(xg,u) = ‘zi% nxl?)o R, (ye nao[sin(aa siny — ny)|

>

(22)
where
cosye o’
Rn('y} =t ZuszA
("2 — a2 cos2y)1/2
X E (v, 8"VH(r' — alcosy[)dA’, (23)
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where the plus or minus sign is taken according as
siny is positive or negative. The function H is the
Heaviside step function. The angle y is given by

y=¢, — 6 — %, (24)
where 6, is the angular cordinate of x,. In expression
(23) ¢ is given by

¥ =+ a(r'2 — a2 cos?y)1/2 —y arccos [[a/7’) cosy],
(25)

the appropriate sign being taken according whether
siny is positive or negative. It can be shown that the
above series is uniformly convergent in ¢ and y.

The results can be summarized as follows: For pola-
rization parallel to the axis of the cylinder, the distri-
bution function has the form

—ig = R_{ e ™%
f(x,u) = % i D J 7?
47 n=-w sin{aa siny — ny)

+g [ etatyE,(x +4,t)dt, (26)
where 0

y=¢, = 0, — 2T, @)
and 6, is the angular coordinate of x,. To complete
the expression we need to determine / and ¢, in terms
of the coordinates (7, 6) of x and the angular coordi-
nate ¢, of u.

It can be shown from geometry that

sin(p, — 6,) = (r/a) sin(¢, — 6), (28)
cos(¢, — 6g) = — [1 — (v2/a2) sin2(¢, —0)|V/2,  (29)
I =v cos(¢p, — 6) + [a2 — 2 sin2(p, — 6)|1/2.

(30)

EXPRESSION FOR THE CURRENT

The current will be evaluated in terms of £ for the
case where the polarization is parallel to the axis. In
this case, we have

Jo=— ecfﬁuzfdu,

where f is given by Eq. (26). The current will be de-
composed into the parts

. > N .
Jo= 2 dy t i

PRt

(1)
The component 7' is given by

§' = (— e2n/m c)f(u?/uy)Fo’fOl e tal B (x + 4,1)dtdu .
(32)

Integrating with respect to the ¢, variable first, we
find that with the substitutions ¢, + 7=y, f = —R
2" =x + cosyR,and y' =y + sinyR,

b

Lrde [l et B+ 6, 0t
= — [, '*®/R)E,(x')da’, (33)

where R = |x —x’'| is the distance between the obser-
vation point x and the point X’ of integration. The in-
tegration is taken over the disc 0 = #’ < a. The com-
ponent j’ is thus given by
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§(x) = (e2n/mc) f M (R)E (x)dA, (34)
where

M(R) = 2f0°°f0°°u§ F} (e-i«®/R)du,du, (35)
and

R=|x—x"). (36)
The remaining components j, , given by the relation

. ie®n I w,FyR, (y)e"®" " dqu -

In = : :

*  4mmc’ u, sin(aa siny —ny)

can be reduced to 2 more symmetric form. The para-
meters 6, [,y are functions of ¢, and 6, and R, () is
given by Eq. (23). As a first step, the variable of in-
tegration ¢, will be replaced by {:

v sin(¢, — 0) = ¢,

7 cos(p, — 6) = +(r2 —2)1/2, (38)

where the plus and minus 51gns occur for the domains
i+ 6= = im+ 6and 37+ 6= ¢u§§7r+0 re~
spectively. The range of the variable ¢ is from - ¥ to
¥. From Eq. (27) and (29), it follows that

a siny = — a cos(p, — 6y) = (a2 — 12)1/2

90) =1, (39)

a cosy = a sin(¢, —
and I = +(72 —¢2)1/2 4 (a2 —(2)1/2,
where the appropriate sign chosen depends upon the
original domain of the ¢, variable as indicated above,

From Eq. (23), we have

R, (y) = 2u, ffA[cosz,b(r’ Ye o'/ (y'2 — (2)1/2]
x E,(v', 0)H(r'— |t|)dA’ (40)
with
w(r') = a(¥'2 —2)1/2 —y arccos(t/r'). (41)

If we employ Eq. (41) to define y/(7’) as a function of

v’, it follows that
Y(a) = aa siny — ny, (42)
ot al=n6—ny+n(p, —6—13m +al
=no + (@) = Y(7), (43)

where the sign is chosen according to the domain of
v, it follows that

. R e ingy +ial e mef R (_y) iy(a)
0  sin{oa siny — n-)/) (72 — 2)1/2
v
W o
siny (a)

and combining (37), (40), and the above results, we
have
j, = (te2n/nmc) fAEz(r" g')ein@-6pn(y, vV dA', (44)
where

’ ] el 2
M (r,v) = fo du,fo du,u, F,

t, cosy (¥) cosy (r")eiva
o Jr® —(2)172 (72 — (2)172 sin (a)

dt, (45)
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where ¢, = min(7,r’).

It can be shown that M”(7,7’) has a logarithmic type
singularity when 7 approaches #’, provided that nei-
ther » or 7’ equals a. If v = a,then M"(a,7’) has a
singularity of the type (a2 — r'2)1/2,

INTEGRAL EQUATION

The results of the preceding section where the cur-
rent is expressed in terms of the electric intensity,
may now be combined with Maxwell's equations to
yield an integral equation for E. Maxwell's equations
for polarization parallel to the axis of the cylinder re-
duce to

(V2 + k2)E, = — iwly j,, (46)
where j, vanishes for » > a. If E? is the incident
field, the above may be integrated directly to yield
E,(xy) =

EL(xo) —fwpo [ Hy (kRo)j(x)dA,  @T)

where R, = |x —x,| and H{"(kR ) is the Hankel func-
tion of order zero. Combining this with the following
result derived from the previous section

(ezn/mc)fA [M(R) + (i/7) J einto-67
XM ®(r,7')|E,(x')dA!,  (48)

J.(x) =

we obtain a set of coupled integral equations, from
which either E, or j, may be eliminated. Elimination
of j,, yields an integral equation for E,, whose kernel
is expandable in terms of a Fourier series in the 6
variable, thus reducing the problem to a set of inte-
gral equations of one variable. However the resulting
equations appear not to be amenable to solution or
asymptotic approximation. Instead of this approach,
we will use a modified technique, working directly
with the Fourier components of E,. Setting

E,(r,6 = 5

n==co

Eq. (47) reduces to
. 27
(zwu0/271)f0

where the operator L(7, k) is given by

Lir, k) = £ (d‘j,>+ <k2 ’f) (51)

An incident field of the form of plane wave excitation
will be taken

eino En(7), 49)

L(ry, HE" = — e "0 (X7 od8y,  (50)

i ikx 2 ing
E'(xg) =e ©°= 25 dJ,(krgle " (52)
n=-oco

By requiring that the tangential electric and magne-
tic field (i.e., partial derivative of £ with respect to
7) be continuous across 7 = a, one obtains the follow-
ing nonhomogeneous boundary condition for E™(7),
associated with the above incident field,

HW (ka)En(a) — HD (ka)E*' (@) = 2i/7a, (53)
where the prime indicates differentiation with res-
pect to the variable ».
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The system given by Egs. (50) and (53) will be inver-
ted after first modifying Eq. (50) as follows:

L(rg, ky) En = (kf — k2) 7 E*(v o) — (iwuo/2m)
x [2T e 5 (x)rodbo,  (54)

where
K = K e), (55)
PR [ o e L
eR) =1 R <A T2 Ky (7) sz> . (56)

In the above relation w, is the plasma frequency, and
K, is the modified Bessel function. When A — o, it
can be shown that

€) ~1 —[w3/w (w + iY)][1 — (5/20) + -+ . (B7)
Thus in the limit of zero temperature (A = ®), €Q\) is
the relative dielectric constant of the plasma medium.
Hence inversion of Eq. (54) with respect to operator
L(r, ky) will produce an integral equation which re-
presents a perturbation about the cold temperature
limit.

The following Green's function related to the opera-
tor L(7g, k1) and satisfying the homogeneous boundary
condition corresponding to Eq. (53) will be employed:

G(r,7ry) = zind, (kyr.) Z, (ky7),

Z, (k7)) = A, d, (kyr) + HD (ky7) (58)

HP(kya) HY (ka) — HY' (kya) HD (ka)
" d, (k@) HY (ka) — J) (k) HY (ka)

In the above, the notation 7, and 7, is used to indicate
7. = min(»,7 () and », = max(v,7,). Equation (54)
may now be inverted to yield

En(r) = 2i/1aC)d, (k) — [ G(r,7 )Rl )dry, (59)
C, = J, (kya)HW ka) — J. (kya)H (ka) (60)

R(ry) = (B — By E'(ry) — wu /27
x [2Te ™ j (%o dbo.  (61)

From Eqgs. (48) and (61) the integral term on the right-
hand side of Eq. (59) may be placed in the form

K6, rJR(ro)drg = [“r B (" )[Ny (v, 7")

+ Ny(r,7")dv’, (62)
where 2 ,
Ny(r,v') = (2ww%/c3)fo M (7, 7)
X Glr,rowodry, (63)
Ny(7,7') = (k3 — k2)G(7,7') — (iww?/c3)
x fo“joz“G(y,rO)McR)e‘i”‘rodgdro (64)

with R2 =72 + v'2 — 277’ cosC.

The Fredholm integral equation of the second kind is
thus obtained:

Ex(r) = @Qi/1aC,)J, (kyr) — [ 7/[N (7, 7')

+ Ny(7,v")Exv")dr’. (65)
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It can be shown that the kernel is bounded. Briefly,
this follows first of all from the requirement that, to
invert the differential equations, restrictions are
placed upon the parameters &, etc., such that the solu-
tion of the associated homogeneous equation with ope-
rator L(7, ky) and the homogeneous boundary condi-
tions is unique, in which case the Green's function
exists, and is bounded as well as being continuous
(i.e., the constant C, does not vanish). Secondly, the
functions M”(7,, ') and M (R) have integrable singu-
larities in their respective domains of integration in
the expressions given by Eqgs. (63) and (64).

We shall not be concerned here with obtaining esti-
mates of the eigenvalues or eigenfunctions of the in-
tegral equation, which would correspond to the natural
transverse plasma modes in a cylinder. For present
purposes, the solution to the integral equation obtained
by the Neumann series, which is valid if the norm of
the integral operator is less than unity, will be con-
sidered. Instead of making estimates on the norm,
use will be made of the fact (as shown in the next sec-
tion) that the kernel vanishes as A — . Hence in the
low temperature region, the iterative solution is va-
lid. Low temperatures corrections at least, to the
scattered or total field can be obtained by the itera-
tive procedure. The asymptotic behavior of the first
iterate, given by

En(r) = @i/1aC,){J,(kyr) — [ /[Ny + Ny]

X J,(ky7')dr'}  (66)

will be obtained in the next section.

Once the solutions have been found, the reflection co-
efficients associated with the scattered wave may be
computed. If the total field outside the cylinder is
given by

o0

E(r,6)= 2

n=-00

eind[J, (kr) + R, HD(k), (67)

the reflection coefficients R, may be obtained from
the solution for E*#) at » = a as follows:

R, = [E™a) — J,(ka)}/ H{D (ka). (68)

ASYMPTOTIC SOLUTION

To determine the asymptotic nature of the kernel of
the integral equation and the corresponding iterated
solution in the limit of zero temperature, i.e.,A = o,
we will consider integrals of the form
0 ’ _ .
M, (R) = f0°° du, [ du, Fyula-meiek, (69)

The asymptotic behavior for m = 0 is given in Appen-
dix A. In a similar manner it can be shown that when

A2 L lw + i/ea]R| <K 1,
the above integral has the asymptotic form

(1/6mMY/2-m/2 () + ju/¢)-mtm/3
X exp(— e—iﬂ/3t 2/3 __ zmTT/G),

where t = (w + iV)AY/2R/c.

This implies that the dominant contribution to inte-
grals containing the product of the function M,, and a

J. Math. Phys., Vol. 13, No. 10, Qctober 1972
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slowly varying function (with respect to A) will arise
from the neighborhood of the point R = 0. Because of
the factor A-™/2, the integrals containing M,, in the
integrand will be essentially of higher order in A than
those that contain M,,_,M,, _,, etc. To make use of
this, we will integrate the integrals containing M, in
the integrand repeatedly by parts to produce higher
order terms. The actual process of integration by
parts will be performed in a different manner for the
components Ny (7,7’) and Ny (#,7’) of the kernel.

The process of interation by parts for N, (7, 7’) will
be achieved through the following identity:
fA (eiaR/R)p(x,)dA = QRin/a)¢(x’) — G/ a)

X fs (ei*R/R)¢(x,)R " nds

+ (/@) [, et*R/RR -V pdA
for a function ¢ which is continuous in the domain A
with boundary S. In the above, X, is the variable of
integrable, x' is a fixed point, R = (x, —x')/R, and

n is the unit outward normal to the boundary S. By
applying the above repeatedly one obtains

f etlakR 2T
A

d(xg)dA ~ 2L o(x') — . v2g(x)
o o

; ia R A
et Rk fe— L @V as, (10
a SR ia OR

where higher-order terms are neglected. The above
result will be applied to the integral involved in the
expression for N(7,#’) given by Eq. (64), namely to

— iww%/cS)fG(r,VO)M(R)e-ingdA,

where the domain of integration with respect to the
variables (7, {) is the disc 0 = », = a. By setting
¢ = G(7,7y)e” ¢ and recalling expression (35) given
for M (R), application of (70) will yield the form

Nyo(7r,r") = N§ + N§ + N§,

where N5 represents a boundary (7, = a) type of con-
tribution, N§ represents a contribution from the
neighborhood of the point R = 0, and N§ represents a
contribution from the discontinuity in the derivatives
of G (arising from the boundary », = 7). It can be
shown that the leading terms of the appropriate ex-
pressions are given by

P | ,
N§ (r,7") = e al G(r,a)B;(a,7’)
L 0G(7,a)
+i{——— Byla,7) ), (1)
da
— zww%
N{(r,7") = 3 By (r,v"), (72)
where

- ing <r — 7’ cost

B (r,#') = [*" dt £ R )JM].(R)

(73)
with
R2 =72 + 9'2 — 2vy’ cosC.
The remaining term has a component which cancels

out the first term in the right-hand side of expression
(64) for N,(7,7’) and, thus, is given by
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NY(r,7") ~ (ww3/c3) 1k M;(0)G(7,7"). (74)

With the comments made initially about the asympto-
tic behavior of M; (R) and M, (R), etc., and from the
asymptotic relation

M3(0) ~ {w + in/clr3/m), (75)
it is seen that the component N, of the kernel tends to

Zero as A ~» ©,

Before investigating the asymptotic behavior of N,
the asymptotic behavior of the first iterate of the
solution of the integral equation for N, component of
the kernel will be obtained for » = a. We will need to
consider integrals of the form

fo  Nyla,v")d, (ky¥')r'dr’. (76)

First it can be shown from the Wronskian relation
for the Bessel functions that the combination Ng + Ng
at v = a, reduces to
Ni(a,v') + N§(@a,r’)
= — (ww3/c3)3miaZ (kya){By(a, ') , (k1 a)
+ iJ; (kya) Byla,v’).

Inserting this expression into (75), it is seen that the
following integrals

fo" Bi(a,r")d,(kyr''dr’, j=1,2,

have to be asymptotically evaluated. The technique
for doing so is similar in manner to the technique to
obtain the asymptotic behavior of N,(»,7r’). However,
in this case Eq. (69) has to be modified since the point
given by R = 0 lies on the circle v’ = a. The details
will not be given here; but it can be shown that

fo “ Byla, 7" ) (kg r'dr’ ~ 2iM,(0)d ,(kqa)
+ zTM5(0)d, (k1a),
L Bala, ), (kyr'yridr’ ~ 31M5 (00, by a);
hence, we have
S g + NI, (kyr Y 'dr’ ~ (ww}/cd)maz, (kya)
X [J, (k1 @)2M,(0).  (77)

The remaining integral involving N§ given by Eq. (74)
is evaluated by direct integration and yields
fo “NO(a,7")d, (kyrr'dr’ ~ (ww?/c3)5in?

X M5(0)Z,(k1a)1J 2 (B a)|[(kya)2 — n2]

+ a2[J, (k1 a)]2}. (78)

We will now return to a brief discussion of the asymp-
totic behavior of N, (7,7»") as A — « and, in more de-
tail, of the contribution of N; to the first iterate. Re-
call that N, is given by

Ni(r,7') = (2ww%/c3)f0aM"('ro,r’)G('r,ro)rodro,

where M” is given by expression (45). The integral
representation for M* contains the term expGy (a))/
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siny (a) in the integrand, which for v = 0 and |{| < a,
can be expanded in the convergent series

e @siny @)l = — 2 OZO) exp[i(@2m + 2)¢(a)].
m=0

With the expansion of the term cosy (#) cosy(7’) in
the integrand into exponential components, the domi-
nant contribution of the product is given by

eV @[cosy (r) cosy(r')/siny (a)] ~ expi[2y (a)
—Y(r) —y(r'),

since the exponent on the right-hand side contains the
quantity

af2(@® — 12)1/2 — (v2 — 2)1/2 _ ('2 —g2)1/2],

Referring back to the asymptotic analysis of integrals
given by Eq. (69) and ignoring for the present the
square root factors in the integral for M will be ex-
ponentially small except in the neighborhood of the
boundary » = a,%’ = a, and the dominant part of the in-
tegral arises from around |#| = @. Thus M” is essen-
tially a boundary type term. The asymptotic behavior
of N, can be obtained through integration by parts
with the variable 7, such that factors 1/« are intro-
duced in the integrand. As is seen from the previous
discussion, introduction of higher—order terms in o
produces higher-order terms in A-1/2,

The asymptotic behavior of the first iterate
S Nya, ') ey yradr (79)
where
Ni(a,7') = Quww2/c3) 3im Zn(kla)anM"(rO,r’)
X dJ, (kyv''dr’

will be considered in more detail. Substitute in the
integral representation for M”* and change the order
of integration. Expression (79) then becomes

(ww2/c3)inz, (kya) f: du, f: du,u2F|
x Jo. dtev@ P, (1)]2/siny(a), (80)

a
where P, (t) = “f“r cosy(r)/(r2 — t2)1/2 7 (k,¥)dr.
(81)
Next, the expression for P, (f) will be integrated by
parts twice using the relations

v cosy(r) _ 1d siny(r) L+ nt cosy(7)
(r2—12)1/2 g dr or (r2 —¢2)1/2’
. __cosy(r) omt . 1 d
siny (r) = a2 —1t2)1/2  qy2 i

X [(7'2 — t2)1/2 cosy |
to obtain
P,(t) ~ (1/a)J,(kya) siny(a) + (1/aa2)(a? — t2)1/2
cosy(a)d, (kia) + (nt/ad)d,(k,a) siny(a)
+ O(1/a3).

Squaring P, (¢), and retaining teams in o up to a3,
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we have
iy(a) ‘a2
a etvia [Pn(t)]z df ~ zaJn(kla)
@ simy(a) a?

aﬂ 1 a .
+—— Jy(kya@)d, (ka) + — [ die2¥@f(1).  (82)
2(13 az ~-a

It can be shown that the last term yields a contribu-
tion the order of @4 and hence neglected. Finally,
by inserting expression (82) into (80), the asymp-
totic behavior of the first iterate (79) is given by

(Ww2/c3)maz,kqa)d, f1a)—M,(0)d, (k,a)

+ $itM 5 (0)J, k1a)]. (83)

By combining this with Eqgs. (77) and (78), the follow-
ing is obtained:
a
fO [Ny(a,»’) + Nyla,7')| J, (ky7')¥'dr’
= zin2 (ww%/c3)M3 0)z, (7€1a)Q(a),

Q(a) = [aJ,’l(kla) + Jn(kla)]z

+ J2(ka)[(ky@)2 — n? — 1] (84)
From Eq. (66), the first-order temperature correc-
tions to the nth Fourier component of the field on the
field on the surface is given by

iﬂww% 7 (k,2)Q(@). (85
W%y a)).
M + i3 Tt )’( )

E*(q) = (J (kya) —

naC,

where the asymptotic form of M;(0) given by Eq. (75)
is employed. The reflection coefficients can now be
computed from (85) and (68).

It can be shown that expression (85) is equivalent to

En(a) = [2id,(kya)/7aC, (kya)] + O(82),
where

ky = ky(1+6),6=— w%w/z(w + iv)3a,

(86)

and C,(k,a) is obtained from Eq. (60) with %, re-
placed by k,. This is shown by expanding the above
expression out in a power series in 8. Thus as the
first temperature correction is concerned, the plasma
behaves like a dielectric with relative dielectric
constant € (A\)(1 + 8)2, where €()) is given by Eq. (56).

The reflection coefficients can now be computed
from (86) and (68).

FORMAL ASYMP TOTIC EXPANSION

For polarization parallel to the axis of the cylinder,
the technique employed in the previous section on the
asymptotic solution to the integral equation, suggests
a more formal but straightforward asymptotic ap-
proach. Namely the solution of the Boltzmann equa-
tion given by Eqgs. (11) and (19), can yield a formal
asymptotic series in inverse powers of «, by inte-
grating the integrals by parts a sufficient number of
times. The asymptotic properties of such a power
series when integrated with respect to the velocity
variables is made use of in the preceding section.

By integration by parts, we obtain
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fxu) ~ (g/ia) nZO (fa){(@,  V)"E(x)
+ ei@1v)r — (@, V)" |E, (%)
+ e N [(@2v)r — @1V ]E, (x;) + -+ .

For smooth convex shapes such as the circular cy-
linder, the contribution from the point x need only be
considered when x is sufficiently far from the boun-
dary. When x is close to the boundary, we need to
consider the contribution due to the point x, on the
boundary, corresponding to the point of the first re-
flected velocity ray. The contribution due to the other
points x,, ete., could be neglected. A simplification
occurs by noting that

ul =u, — 2(u, n)n,

where n is the unit outward normal to the surface at
X,. In this case

9

on’

Such a formal asymptotic expansion could be used at
least for polarization parallel to the axis, for a non-
homogeneous plasma (but uniform with respect to the
z variable). However, the case of the other polariza-
tion should be investigated first since longitudinal
waves will have to be taken into account, and such ex-
pansions as above will have to be modified. This
problem will be more difficult to handle since it is

a singular perturbation problem.

(@1°V) — (@,-v) = —2(d,n)

v

CONCLUSION

It has been shown, employing kinetic theory, that the
problem of scattering by a homogeneous circular
plasma cylinder for polarization parallel to the axis,
is reduced to a set of one-dimensional Fredholm in-
tegral equations of the second kind, for which the
Neumann series converges for low temperature. The
first-order temperature correction to the field on the
surface is computed, from which the reflection coef-
ficients may be obtained. The analysis could be ex-
tended to examine further the asymptotic approxima-
tions to the kernel and obtain estimates of the eigen-
values. However, of more importance would be to ex-
tend the analysis to the case of polarization perpen-
dicular to the axis, in which case both longitudinal

V. H. WESTON

and transverse waves are included in the plasma.
This problem should be reducible in a similar man-~
ner to two coupled integral equations.
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APPENDIX A

The asymptotic form of M (R) will be obtained for
A — «©, From Eqgs. (6), (7), and (35) we have

21K, WRM(R) = 22 [7 [ explicR ~ (1 + u?)1/2]
X uZ(l + u2)Y2du, du, . (A1)

Integrate by parts with respect to u, , and employ the
resulting expression for the modified Hankel function

(1 + u2)V/2K, (q(1 + u2)/2) = [explig(t + u2)1/2]du,
to reduce (Al) to

21K, (W) RM (R) = A2 [[7 (1 + u2)1/2
X Ki[q( +uf)1/2)/q du,,

where
g =X —if(w + iv)/cu,|R. (A2)
For A > 1, the above expression becomes
A5/2gX reo (1 + y2)1/2
RM(R) ~
(R) 27 fo q3/2
x exp[—q(1 + u2)1/2]du. (A3)

Saddle-~point techniques may be employed to evaluate
the integral when |w + iv|R > ¢Al/2. The saddle
point occurs at u, lying in the fourth quadrant, where

ug = —iflw + iv)/cAlR;

when |u,| < 1, the saddle-point approximation to
(A3} becomes

where ¢ = (w + iV)AL/2R/c.
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Lagrangian Density for Perfect Fluids in General Relativity
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A previously discussed variational principle for a perfect fluid in general relativity was restricted to irrota-
tional, isentropic motions of the fluid. It is proven that these restrictions can be dropped, and the original
variational principle can be generalized to general motions of the perfect fluid. The form of the basic Lagran-
gian density is unchanged by these generalizations. An Eulerian fluid description is used throughout, As a
by-product of our variational principle, the 4-velocity is required to have the generalized Clebsch form.

1. INTRODUCTION

In general relativity one often uses a perfect fluid
energy-momentum tensor to represent the sources

of the gravitational field. The derivation of the equa-
tions of motion from a variational principle is com-
plicated in this case by the constraint equations satis-
fied by the fluid variables. Several variational for-
mulations have been discussed in the literature.1—4
In a presentation we gave some time ago3 we con-
structed a Lagrangian and formulated a variational
principle for isentropic (constant entropy) motion

of a perfect fluid in general relativity. In the present
paper we show that our original variational principle
describes only irrotational, isentropic motions of a
perfect fluid and we generalize the variational prin-
ciple so that it describes general motions of a per-
fect fluid. Our generalization does not change the
form of the basic Lagrangian density, but adds further
constraint equations which must be satisfied

2. THE ORIGINAL VARIATIONAL PRINCIPLE

Let p be the rest density, Ut the Eulerian 4-velocity,
€ the rest, specific internal energy, and s the rest,
specific entropy associated with the fluid.® In gen-
eral, a perfect fluid has two thermodynamic degrees
of freedom which we choose to be p and s. In the
isentropic case, s is a constant, and all thermodyna-
mic variables can be written in terms of p. The basic
Lagrangian density given in Ref. 3 is

Ly =cy(~ gY2R — ¢~ 1(— g)¥2p[c? + €(p)],

c, = c3/167k, 2.1)
where ¢ is the speed of light and % is the Newtonian
gravitational constant. The first term c¢,(— g)1/2R is
the Lagrangian density for the vacuum gravitational
field, and — ¢ 1(— g)1/2p(c2 + ¢) is the Lagrangian
density for the fluid. Setting

F =—plc? + ¢), (2.2)
we have
Ly =c(—g'2R + ¢t~ g)V2F, 2.3)

The fluid variables satisfy the following constraint
equations:

(pU) ;= 0,
g, Uil + ¢c2 =0,

(2. 4a)
(2. 4b)

where the semicolon denotes covariant differentia-
tion. Equation (2.4a) expresses conservation of
mass, and Eq. (2. 4b) is the usual kinematical con-
straint on the 4-velocity. The Lagrangian density we
must consider is3

Ly =L, + (= g@V2x (g,UiUt* + c2)

+(— QVan,(UY),,. (2.5)
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Variation of the action associated with L, with re-
spect to variables g,,,p, U7, X, X, yields the equation,

of motion
9L, ( 8L2) ( 8L, >
— + (=— =0, (2.6a

8 ik 08 ikr /v & ikrs v )
3L, <8L2>

— ) =0 2.6b
op ap,i ) ’ ( )
oL oL

—Z_ ( E: ) =0, (2.6c)
evi \evi,/

aL,

5}?: 0=>g, Uitk +c2=0, (2.64)
L2 g )., =0
—_— = = (2 — .

% >(pU9).; (2. 6e)

Solving Eqgs. (2. 6b)—(2. 6e) yield the following equa-
tions for the multipliers x, A,:

Ay U? =c-1F’, (2.7a)

Ay =— (2¢3)-1pF/, (2. 7b)
, _ dF(p)

F ———dp .

Via these equations for the multipliers, Einstein's
equations, Eqgs. (2. 6a), become

Git = (81rk/c4) Tik’ (2.8)
where
Tik = — c-2pF'[ipk + gk (F — pF’) 2.9)

is the energy-momentum tensor for the fluid. The
combined first and second law of thermodynamics in
the local rest frame of the fluid is®

Tds = de + Pd(1/p), (2.10)

where P is the pressure and T the absolute tempera-
ture. For isentropic flow,

de

ae _ 2

dp P/p (2.11)
Combining Egs. (2.2),(2.9), and (2. 11) yields

Tik = [p(1 + €/c2 + P/pc2)UiU* + gitP],  (2.12)

which is the energy—momentum tensor for a perfect

fluid. Writing out Eqs. (2. 6c), using Egs. (2. 7a),(2. 7b),

gives for the 4-velocity
U;=—(F')-1c3x, ;. (2.13)

Calculating the acceleration
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DU, ,
ar = Uil
of the fluid using Eqs. (2. 13) together with Egs. (2. 2},
(2.4b), (2. 7a), and (2. 11) yields the equations of mo-
tion for the fluid, that is, the relativistic Euler equa-
tions®,7
€ P\ DU, 2
£y N7 p o - TR
P (1 +5 +pc2) = p— PP, (2.14)
These equations can also be derived using the Bian-
chi identities

Tik;k =0
together with Eqgs.(2.4a)(2.4b), and (2.11).6,7

3. ISENTROPIC ROTATIONAL FLOW

The angular velocity of rotation of the fluid is given
by?8

wi = (2)-1nikrsU,U, (3.1)
If we calculate the angular velocity of the fluid using
Eqs. (2.13) for U, we find a surprising result
wi = 0. (3.2)
That is, the variational principle discussed in the
previous section describes only isentropic, irrota-
tional flow, This is the so-called Lin difficulty
which appears even in Newtonian fluid mechanics,9—11
We shall use the same technique (trick!) as Lin to
generalize our variational principle so that it de-
scribes rotational as well as irrotational, isentropic
motions. We assign to each particle a number X(x)
and require that this number not change as we move
with the fluid particle

&
Equation (3. 3) implies the conservation of particle
identity. The Lagrangian density we must now con-
sider is

Ly =L, + (—gV2r, X Ui (3.4)
The variations are carried out as before, and we ob-
tain Eqs. (2.6) with L, as the Lagrangian density plus
two new equations

aL aL
= <—3> =0, (3.5a)
oX X /.

oL

——2=0=>XUi=0, (3.5b)
g ’

By using L, in place of L, in Egs. (2. 6), the only
change comes in the equation for U?, where instead of
Eq.(2.13) we obtain

U;=—c3(F) Ing, + c3pF' ) 1n3X ;. (3.6)
Therefore U, no longer suffers the Lin difficulty,
that is, w? is not necessarily zero. Thus both rota-
tional and irrotational motions are included in the
extremals of the variational principle. The multi-
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plier equations, Egs. (2. 7a), and (2. Tb), are the same
as before as are Einstein's equations, Egs. (2. 8), (2. 9)
and (2.12). The relativistic Euler equations (2. 14)
can again be obtained either by differentiating U, or
from the Bianchi identities. Thus using the Lagran-
gian density L, we can described all isentropic mo-
tions of a perfect fluid.

4. GENERAL FLUID MOTION

As we remarked earlier a perfect fluid has, in gener-
al, two thermodynamic degrees of freedom which we
choose to be p and s. In the general motion of a per-
fect fluid, s is not constant throughout the fluid, but
is constant for a given fluid particle.® This means
there is no heat exchange between different parts of
the fluid. This condition implies that s not change

as we move with a given fluid particle

s Ut =0. (4.1)

The Lagrangian density we must now consider is
L=Lj+(—gV2ys, Ul (4.2)
The equations of motion in this case are Egs. (2. 6)

and (3. 5) using L as the Lagrangian density plus the
two additional equations

gf;ﬁ<@£> -0, (4. 3)
o8 38 /.

oL _ - =

o =0=>sUi=0. (4. 3b)

In writing out the equations of motion in this case, we
must remember that the fluid has two thermodynamic
degrees of freedom p, s. Therefore, instead of Eq.
(2.2), we have

F(p,s) =— plc? + €lp, s)]. (4.4)
Also we must use the combined first and second law
of thermodynamics as given in Eq. (2. 10). Writing
out the equations of motions just as before yields so-
lutions analogous to Eqgs. (2. 7a), and (2. Tb)

)\z’iU" = ¢-1F, (4. 5a)

A =— (2c3)-1pF", (4.5b)
where now

F

r= (%),
For Einstein's equations we obtain

Gik = (8nk/c?) T (4.6)
with the energy—momentum tensor

Tk = — ¢~ 2pF'UiU* + gik(F — pF’). 4.7
Using Eq. (2. 10), we obtain

@—;): £ (4.8)

which when combined with Eqs. (4.4) and (4.7) yields
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T# = [p(1 + €/c? + P/pc2)UiU* + gitp], (4.9)
which is again the energy-momentum tensor for the
perfect fluid. The velocity equation yields in this
case

U, = — c3(F) Iy, +c3pF') 1Ay X ; +c3(pF')-1ays ;.
(4.10)

The Euler equations can again either be obtained by
taking the derivative of U; or by using the Bianchi
identities. For isentropic motions s, = 0, we again
see that U, does not suffer Lin difficulty.

5. CONCLUSIONS

We have shown that the variational principle given
in Ref. 3 generalizes to include the general motions
of a perfect fluid. The basic Lagrangian density L;
is the same as in Ref. 3:

Ly =c3(— g 2R — (= g)172p(c? + &),
1 1

however, we must introduce two new contraint equa-
tions which the fluid variables must satisfy. These
constraint equations are

X U =0, conservation of particle identity,

s, Ut =0,

i conservation of entropy for fluid par-

ticles.

The first equation removes the Lin difficulty from

the variational principle, that is, for isentropic fluid
motions the extremals of our variational principle de-
scribe both rotational and irrotational fluid motions.
The second equation removes the requirement of isen-
tropic motions. The Lagrangian density L we must
consider is that of Ref. 3 plus the two new constraints
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L=L,+gV2n(g,UUk+c2) + A, (pU)
+ A3 X Ui+ Nys U9,

When we vary the action associated with L with re-
spect to the variables g.,,p, U?, X, S, Ay, Ay, A3, Ay, WE
obtain the Einstein field equations for perfect fluid
sources plus the equations of motion of the fluid, The
Eulerian fluid description is used throughout our
variational principle. In our formulation it follows
from the variational principle that U, has the general-
ized Clebsch form given in Egs. (4. 10). In the other
variational principles that use the Eulerian fluid de-
scription, the generalized Clebsch form for U, is either
built directly into the Lagrangian density2 or simply
assumed.4 The fact that we derive the generalized
Clebsch form for U; allows us to interpret some of
the terms occurring in it as Lagrange multipliers
associated with conservation laws. For example, in
Egs. (4. 10), 1, is associated with conservation of
mass, A4 is associated with conservation of particle
identity, and 1, is associated with conservation of
entropy. The other quantities occurring in Egs. (4. 10)
are variables associated with the fluid. This is the
same type of result one obtains in the nonrelativistic
case, 911

We feel that the variational principle presented in
this paper is the most natural variational principle
for a perfect fluid in general relativity. Our varia-
tional principle is a relativistic generalization of the
usual nonrelativistic variational principle for perfect
fluids. Besides the Einstein field equations and the
relativistic Euler equations, our variational principle
implies that the 4-velocity can be represented in the
generalized Clebsch form.
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The concept of moments, which are integrals of positive or negative integral powers w” weighted by real or
imaginary parts of admittance functions, is here generalized so as to be applied to a wide category of admit-
tance functions, including Lorentzian functions. The generalized moments are related to the derivatives or
integrals of sum rules in a general sense. This analysis is based on differentiation and integration—mapping
of admittance functions and the associated Kramers-Kronig relations, Some model calculations are also

shown.

1. INTRODUCTION

An admittance function X(w) is defined by

oC
X(w) = X'() —iX"(@) = [ atemivto),  (1.1)
where ¢(f) is a real response function of the system
to a pulsive perturbation. If the initial value of ¢ is
bounded, i.e.,

P+ 0) < o,
then
X(0) = ulJim X(w)=0 (1.2)

may be assumed by Abel's theorem. Further, if the
static response is finite, namely if
o0

X(0) = J, dro@) <, 1.3)
[which may be more generally the limiting value of
X(w) as w = + 0], then the function X(w) is analytic
on the lower half-plane of w, so that we have the
equation

(1.4)

by applying Cauchy's theorem to an infinite semi-
circle in the lower half-plane of v closed by a
straight line along the real axis with a small semi-
circle around the point » = w. The integral means,
thus, its principal value. Equation (1.4) gives the
Kramers—Kronig relations?!

X' (w) =% _w‘i(-_‘(%);d" (1.5a)
and
xn(@) = — = [0 X0 gy, (1.5b)

The real part X’(«) and the imaginary part X ”(«w) are
the cosine- and sine-Fourier integrals

X'(w) = ;7 dt coswt - $(t), (1. 6a)
X"(w) = Jy dt sinwt- ¢(), (1. 6b)
and so they are even and odd in w, respectively.
Equations (1.5) lead to the sum rules
1 (o X"w)
X’(O):;f_w 2 dw (1.17a)

and 1 s
[0X"]e0 = lim wX'(w) =2 [ X'(w)dw, (1.70)
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of which the f-sum rule and the thermodynamic sum
rule are familiar special cases.2™¢ If the expansion
1 X wr & pn

- n=0 pn*l N

V— w n=0 "

is inserted into Eqn. (1.4), it is transformed into

- wr po X(v)
Xw)~—23 - f_oo o dv (1. 8a)
or into
1 1 (e i
X(w)~— 23 o Lo X(rav, (1. 8b)

which are in fact merely formal. If these expansions
were convergent, they would give a set of sum rules
for positive and negative moments defined with res-
pect to the real or the imaginary part of the admit-
tance function X{(w) which should be equated to the ex-
pansion coefficients of X(w) in powers of w or 1/w.
Generally speaking, such moments in the form as
suggested by Eqgs. (1. 8) may not exist at all, and the
expansions (1. 8) may not make sense or may not be
convergent,

If the response function ¢(¢) is analyticinf at ¢ =0,
the inversion of Eq. (1.6a) or Eq. (1. 6b) gives the
sum rules3

om0 =1 [* x(w)wer do (1.9)
or
" _1 o i n
¢ @D (0) = = 12 XMw)w2rldw, (1.10)
depending on whether ¢(f) is even or odd in ¢, If ¢(¢)
is not differentiable at { = 0, beyond a certain order,
integrals of higher-order moments will not be con-

vergent.

The present work has been motivated by asking our-
selves the question how the sum rules of the form
(1.7) and those given by Eq. (1.9) or (1.10) are re-
lated. This question will be answered by introducing
areasonable generalization of the concept of moments
for an admittance function which may or may not
possess moments in the ordinary sense. Thus the
generalized moments can be applied to derive a set
of sum rules in relation to the moment expansions of
admittance functions from a somewhat unified point
of view. We do not aim here at a very great general-
ity, but are satisfied at this stage to find such a gene-
ralization of basic concepts which will hopefully be
useful to obtain a better understanding of nature of
sum rules appearing in a great variety in many prob-
lems of physics and also for some practical proce-
dures of analyzing admittance functions obtained by
various methods of spectroscopy.
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2. DIFFERENTIATION AND INTEGRATION OF
RESPONSE AND ADMITTANCE FUNCTIONS

Physically, a response function ¢(¢) is expected to
behave in a moderate way. It is analytic for real ¢'s
with possible exceptions at{ =0orf=w0. At{=0,
the microscopic law of dynamics should prevail as a
matter of principle so that any response should be
analylic at the origin.3 In practice, however, this
region of dynamic coherence may be limited to the
immediate vicinity of the origin. If that is the case,
the response function may look there nonanalytic.
The simplest example,

G(t) = eritl, @.1)

y> 0,
is most familiar as a typical form of response func-
tions. It is inconsistent with dynamics for £ ~ 0, but
is adopted as an idealization or as an approximation
to be justified under such a circumstance where the
microscopic characteristic time is far shorter than
the macroscopic time scale. In some cases,a re-
sponse function is approximated by a function diverg-
ing at ¢ = 0;but we shall exclude such a function in
the following treatment and assume that

(0} = lim () <
t—>+0

namely that ¢(0) is bounded. At ¢ = w0, the irreversi-
bility reveals itself in a macroscopic system to re-
sult in the decay of a response. Thus we assume that

¢(ew0) =

2.2)

lim ¢(t) =

f—>00

(2.3)

If, further, the static response should be finite, we
may expect that the condition (1, 3) holds, or more
precisely

X(0) = llmf

w10

e it pt)dt < o, (2. 4)
Foragiven response function ¢(¢) andthe correspond-
ing admittance function X(w), we note the following
basic transformations;?

X(w) = Jy dle-ivt ¢()
. (7-)(0) 1 Rt —iwt g
= o tio Joo dteier o) (2.5)
= &(0) — iw fo"" dte-ivt @ (1), (2.6)
where
()= [ o@)ar @.7)

is the corresponding relaxation function. These are
due to assumptions (2.2)~(2. 4).

The transformation (2. 5) defines a mapping of the
admittance function X(w) to

DX(w) = Jo  dteivt ¢(t) = iwX () — [iwX]_, (2.8)
where we have
[iwX] = lim iwX(w)= $(0), (2.9)
[wX']_= 0, [wX]_= ¢(0). (2.10)

This is due to Abel's theorem. This mapping may be
called differentialion mapping. Similarly, Eq. (2. 6)
defines the mapping
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X(w)= DIXW) =— J;° diemivt o (1) = X_(w)‘ia_“)g@,
2.11)
where we have

This may be called inlegration mapping. Obviously,
differentiation and integration are mutually inverse;
namely

DD =D1D = 1. (2. 13)

Differentiation or integration may be repeated as long
as the derived response function

6= 2 00)

y St T at e fo dt, () (2.15)

exists and satisfies conditions (2.2)-(2.4). Thus, to
a given admittance function X (w), there will be asso-
ciated a set of mapped admittance functions

{Xz(w)};

and the corresponding response functions ¢,({). We
then have

w) = [, dt-e-ivt (1)

(2.14)
or
0,0 =

l=—m,—m+1,...,n (2.16)

2.17)

for each member of the set. This set is finite if
further differentiation or integration leads to unde-
sirable divergences. We may say then that the re-
sponse function ¢ (f) or the admittance function X (w)
is regulav to that order, If differentiation or integra-
tion can be repeated indefinitely, we have an infinite
number of mapped functions. Such an admittance
function X(w) may be said to be infinitely regular.

An obvious example of this is afforded by ¢ (), Eq

(2. 1), for which we have

¢, @) = (—y)reviti (2.18a)
X (w)—y(+yl)w (2. 18b)

for positive and negative integers n. This can be
generalized to a poly-disperse system, namely to

o) =2 ¢, expl—v,lt]), (2.19)
for which wé have

() = %3 ¢, v;)" expl—v,itl), (2. 20a)

X, ()= 32 o)t v/ (y; + iw)]. (2.20p)

J

Note, however, that the weights ¢> in Eq. (2. 19) are
not necessarlly positive nor real Such an example
is given by the admittance function

X(w) = [iw + y/(iwT + 1)]. (2.21)
(This may be regarded as a modified Lorentzian
function satisfying the conditions X; = 0 and Ay =
finite.)

If the number of relaxation modes is finite, the cor-
responding admittance is infinitely regular. If there
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exist an infinite number of relaxation modes or a

continuous spectrum of relaxation frequency y, the
order of regularity depends on convergence of its

moments defined with respect to the weights ¢;-

It is emphasized here, in order to avoid misunder-
standing, that the function (2. 19) represents only a
special family of response functions. The whole ana-
lysis made here is applicable to much wider classes
of regular response functions.
3. MOMENT EXPANSIONS
The transformation (2.5) can be repeated to yield

0 h,(0 0
:¢()+<P1()+ +<¢?n()

iw (fw)? (7 w)nl

1 OO -iw
G Jo A 0

as far as ¢, (0) remains finite. Similarly the trans-
formation (2. 6) gives

Xw)=—9¢_,0— 0,0 iw—--

+ (wyml [ dtetivt g, ().

X(w)

3.1)

c = ¢, 1(0) (fw)
(3.2)

These series are terminated with residual terms
corresponding to the order of regularity of X(w). If
X (w) is infinitely regular, the expansion (3.1) or (3. 2)
may be pushed to infinite order. However, the result-
ing series may not be convergent, but merely semi-
convergent or asymptotic. Keeping this observation
in mind, we write formal expansions of X(w) in the
following way:

X(w)~ (1/1) @O A, /wml) (3.3a)
Xw)~i2) X, w". (3. 3b)

n>0
This defines the moment—expansions of X(w); the ex-
pression (3. 3a) is for positive moments and (3. 3b)
for negalive moments. Depending on the order of
regularity of X(w), the positive or the negative mo-
ment—expansion is terminated at a finite order or
extended to infinite order. The moments A, are re-
lated to the response function ¢ by

A, =i"¢,0), 730 (3.4)
or
A, = i—n[<i>" qﬂ , (3. 5a)
dt
0
Ny = (r [0 dty [ aty [7 at,e,).  (3.5b)
The negative moments can also be expressed as
_ (_ i)rﬁl 0
My = J° mowat (3.6)

if the integral is convergent.

For the example of a monodisperse system, we have
by Eq. (2. 18)

X(w) =1/ + iw) (3.7
and

A, =iy, nZ0. (3.8)
If the system is polydisperse as represented by Eq.
(2.19), the moments are given by

J.Math. Phys., Vol. 13, No. 10, October 1972

M. ICHIMURA

A, =" Z) fbﬂ’;‘ = in<yn> $(0), (3.9)
that is the moment-average of relaxation frequencies.
This may diverge depending on the nature of the
spectrum of relaxation frequencies.

If the response function ¢(f) is analytic at t = 0, it
can be divided into the even and the odd parts. The
positive moment-expansion (3. 3a) contains only odd
powers of w1 if ¢ is even in ¢ and only even powers
of w1 if ¢ is odd. This implies that the expansion
(3. 3) will then be only asymplolic. Simple examples
of this are

() = ect®  P(t) = teo?, (3.10)
Differentiation or integration mapping of an admit-
tance function is a very simple mapping for the mo-
ment-expansions. Definition (2. 8) means for the
positive moment-expansion (3. 3a) that the first (r=0)
term be removed, the powers of w-1 be lowered by
one, and the whole be multiplied by 7 ; namely,

DX(w) =X~ kZ-;O (X g/ w#1).

Similarly, integration (2. 11) means for the negative
moment-expansion (3. 3b) to remove the first term

(n = 0), to lower the powers of w by one, and to divide
the whole by 7; namely,

DX (W) =Xy~ 20 A ,wk,
£20
More generally we have

X, () =DX(w)~ in1 23 (A, /wkl)
£20

= Gor (x@ - 1 b5) )

i k0 wkil

(8.11a)

and
X, (@) = DX () ~ i B, 0k
1 n=1

= Gy <X(w)~i /;Z‘i) A_Hwk>. (3.11b)

4. KRAMERS-KRONIG RELATIONS AND SUM
RULES

To the order as it is regular, an addmittance function
X(w) is associated with its differential or integration
mappings (2. 16). Each member of these admittance
functions satisfies the Kramers-Kronig relations

1 .o X'
X (w) = = Ju 70 dv, (4.1a)
., 1 e X,()
Xiw)=—= [ -2 av, (4. 1b)

where X/ and — X, are the real and the imaginary
parts of X, , respectively.

These relations, (4. 1), are in themselves worth noting
though they are obvious: Because the use of such re-
lations for # # 0, instead of that for the original ad-
mittance, can be more advantageous for a detailed
analysis. For example, if X(w) is the conductivity
function of electrons, we know that

[wX] = [wX"] =ne2/m 4.2)
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in the customary notations. Thus the mapping
X(w)— X, (w) subtracts away the high frequency part
of the admittance. If X(w) is a susceptibility function,
the static part is subtracted by integration. This may
be repeated to the extent that we have good knowledge
of moments, leaving the unknown part of the admit-
tance in favor of the Kramers-Kronig relations.

The Kramers—Kronig relations (4.1) provide us with
a set of sum rules for the generalized moments, as
we shall see in the following. This will clarify the
reason why A, introduced in (3. 3) are named as the
generalized moments. As we have noticed in the In-
troduction, Eqs. (4. 1) gives the equalities

x0) =2 [ Xl g, (4.32)
[wX;]_ = % [2 X, ) do. 4. 3b)

When X, and X, are expressed in terms of the origi-
nal admittance function X(w), there will be obtained
sum rules for X(w). We note first the following equa-
lities;

X2(0) = 0,

[wx,] =0, (4.4)

— (X /w)o =X,0) =—[wX, 1], (4.5)
The first of (4.4) is obvious from (2. 12) applied to
¢, (t), and the second from (2. 10) applied to X,.
Equations (2. 8) and (2. 11) applied to X, give (4.5).
Now we find

i, =[wX], =— X400 @4.6)
by (3.4), (2.10), (2.17),and (4.5). Thus we write Eq.
(4. 3b) as

i o >

= — ’ d n o —

by - fm X (w)dw, n<0,

n

4.7)

where the explicit forms of the integrand is found
from (3.11) as follows: for positive moments,

Dok
w2ki2)’
i

A
X! = () w2l (X7 (w) — 2k
2n+1(w) ( ) w < (w) kZ~(>) w2k+1>

n-1
Xy, (@) = () w2 (X'(m ) . 83)

(4. 8b)

and, for negative moments,
n-1

X:Zn—l (w) = (—)” w=2n-1 <_ X"(w) _ Z)

2k+1
)‘—2/e-2 w ),
k=0

4. 9a)
n-1
Xipp(@) = () w2n (X’(w)~ 5 g, w2k>. (4. 9b)

k=0

Thus we see that the right-hand side of expression
(4.7) deserves the name of moments. The weight
functions are not necessarily the original admittance
functions, but are modified suitably so as to avoid
obvious divergences and to yield higher moments,
positive or negative, in a successive manner. Equa-
tion (4. 7) shows that the even moments are »eal and
odd moments are imaginary. This is rather a matter
of convenience, but is useful to secure some elegance
in the formal expressions. It is, of course, easy to
derive (3.5) and (3.6) from Eq. (4. 7).

By Egs. (3.5) and (3. 6), Eq. (4. 7) may be written as
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(4.10a)

Kd%) ”(ﬂ o % I2 X w)dw

for positive moments, and
1 00 o ) oo
in-1 =
= A pat= [;° at, [ at, ftﬂ_l
1 o o,
at,ot,) == [ X/, (@dw (4.100)

for negative moments. These should properly be
called sum rules.

If the function ¢(¢) is analytic at / = 0 and is even in
t,all positive odd moments vanish identically. Then
Eq. (4.7) recovers the usual form

Ny, = (_)n¢<zn)(o):ﬂl [2 w2 X' (w)dw. @4.11)

Vanishing of the odd moment-integrals can also be
easily proved. If the function ¢ (¢) is odd, all positive
even moments vanish,

The equality (4.10b) represents a great variety of
definite integrals to be defined by suitable choices of
the function ¢ (¢).

The expression (4. 10b) can be identified with the
moments of relaxation-time distribution, namely

n) (_)n ® - b
<r>_m L= triewar/ ° otat

= [0 X, Wde/ [T X(wde, nZ1,
(4.12)
This is equal to
(Tm)=20 v;"6;/2 % (4.13)

for a polydisperse system (for which the positive A,
are essentially the moments of relaxation frequen-
cies), but more generally it is a formal definition of
such moments because the decay of ¢(¢) needs not be
a superposition of exponential decay.

5. MODEL CALCULATIONS

A puzzling problem one may encounter in using the
Kramers—Kronig relations or the sum rules will be
that the integration range of frequency is practically
limited by some finite bounds. Experimental data
may not be available in wider ranges of frequency
because of technical difficulties or of unavoidable
noises. It is,therefore, very desirable to develop a
method to estimate or to correct errors caused by
such limitations. Leaving this general task to the
future, we discuss here some examples of application
of the foregoing analysis to a few typical models
which illustrate some important features of our
problem.

For this purpose we consider an oscillator the fre-
quency of which is randomly modulated. 576 It follows
the equation of motion
x = iQ()x, (5.1)
where x is the coordinate of the oscillator and Q(¢) is
the modulated frequency, its average being taken as
the zero of the frequency scale. If the modulation is
described by a stationary Gaussian process, the re-
laxation function ¢ () of the oscillator is given by

&(t) = exp (— S e— r)zp(r)dr),
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where {/(t) is the correlation function of the frequency
modulation, namely

() = Q) Qi + t)). (5. 3)
The admittance function X(w) is then defined by
X(w) = X' (w) — X" (w)
= JJ© et g()at, (5.4)

of which the real part X’(w) represents the absorption
of energy when the oscillator is subject to a periodic
driving force and the imaginary part represents the
dispersion.

If the modulation Q(f) changes in time very slowly,
the absorption curve X’(w) is Gaussian, reflecting the
Gaussian assumption for £(f). If the modulation is
very fast, the absorption curve is motional-narrowed
to a Lorentzian form. This corresponds to the change
of the relaxation function ¢(f) from a Gaussian decay

o(t) ~ exp[— 3 ¥(0) 2] (5.5)

in a slow-modulation case to a simple exponential
decay

o) ~ exp<-t v d7> (5.6)

in a fast- modulation case. Details of the line shape
and the associated moments reflect the nature of
modulation in a more delicate way. In order to see
this, we choose here two typical examples for the de-
cay ¥(7) of correlation of the frequency modulation;
namely,

(@) (1) = ¢(0) exp(— a [T]), (5. 7a)
and
(b) Y (7) = ¢ (0) exp(— a272). (5. Th)

The frequency and the time can be scaled by the width
of the unnarrowed Gaussian line, which is thus given
by

X'(w) = (27)71/2 exp(— w2/2). (5.8)
Correspondingly, we assume in Eqs. (5. 7) that
y(0) =1. (5.9)

For convenience we introduce here the modified
moments A, , which are real and are defined by
AL, = (DA, (5.10)

Explicitly they are expressed in terms of the res-
ponse function or the admittance function as follows:

Np=ho=90) =2 [ X'()dw =1,
)\'1=—i)\1:—qb(0)= 12T o X" —2g)dw,

Ay =—2x, = $(0) = f @2X' — A)dw, (5.11)
Ny = ixg = — $(0) =% I @3X7 — w2xy + A}) dw,
Ny =2, = 0@ (0) :%fo‘” (@AX’ — w2 + A5)dw, etc.,
and
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;o “o0 2 (o X'w)
Ny =iry = [ odt = = Jo == dw

" 00 2 o0 1
2 2 JO (p() T 0 w2 ( l)
Ng=—idg= 2 [ Powma

:_z—fw_l—(X”— (5.12)

)\iz)dw,

fw £3¢(t) dt

_.4 -
= 3 f0°° i X' — A, + M w2)dw,  ete.
7 w4
Exact values of positive moments are found from ex-

pansions of the relaxation function ¢ (¢) at ¢ = 0;
namely, for the example (5. 7a),

S)=1—512+ (/30 alt |3+ (1/41)3 — a2)i1 4 .-

(5.13a)
and, for the example (5. Tb),
o) =1— 3512 + (1/41) (3 + 2a2) ¢4 + . (5.13Db)
which give
Ay =1, /\’1=0, 7\'2:—1,
Ay=—a forf(a), Af3=0 for (b),
Ay=3—a2 for (@), N,=3+2a2 for (b).
(5.14)

The moments defined by Eqs. (5.11) and (5. 12) are
written as

2 o0
A;:-ﬂ- fo w? F, (w)dw.

By integrating to an upper bound M we define the
incomplele moments

N0 =2 [ ) do

In order to see how these converge to A,, we com-
puted A/ (M) for — 4 =n = 4 to M = 10 for several
values of a ranging from the ideal Gaussian limit to
a strongly narrowed limit. Numerical integration be-
comes more and more difficult for higher positive
moments and for larger values of o because contri-
butions from far wings more heavily predominate.
The negative moments show better convergence even
for larger values of «.

It is possible to correct the incomplete moments
AL (M), Eq. (5. 15), to better approximations. We de-
fine the error for A, by

ar, M) = An _)\n(M), (5]_5)
which can be written as
2t A + 2 ){’+ w
AN (M) =—= 224 D (g2 [ nz( )d .
Mo w (5. 16)

For an even positive moment, this is shown as fol-
lows:

2 o k+1>
I 2n ’ d
Ay, = - fM w <X (w) + kZ)O a2 w
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=) L. iAgpe
- X! _ _arrl
= f < 9n+o 2n+2(w) kE:0 w2k+2
1 in,,.
S5 O 1>dw
kO @2k2
2 ix (—)ntl
“feonn1 o
= = : - f ’2n*2 (w)dw'
T M

Derivation of Eq. (5. 16) is done for other cases in
much the same way. Therefore, the errors are
bounded by
an, 001 =2 T {]x, ]+ max | X, ()}
The second term in the bracket on the right-hand
side of the above inequality may be ignored when M
is sufficiently large, so that the first term on the
right-hand side of Eq. (5.16) may be used as a cor-
rection to the incomplete moment. Thus, for a modi-
fied incomplete moment of the nth order we may take

(5.17)

AJMY =X, (M) + 6N, (M) (5.18)
as an improved approximation to A], where
N (M) = (2/T)X}./M. (5.19)

In order to save space we discuss here only the re-
sults of computation for @ = 0 and 2, although compu-
tation has been made also for @ = 0.5,1,and 5. The
line shape is Gaussian for @ = 0 whereas it is con-
siderably narrowed for o = 2. Figures 1 and 2 show
the incomplete moments A}, (M) and the corrected
moments A/ (M) as functions of M. Positive even
moments A, A, and X, converge fast. Corrections
o1/ are zero to these moments. Positive odd mo-
ments, on the other hand, show much slower conver-
gence, However, the corrected moments A"}, converge
much faster to the exact limit values which are zero
for both. The third moment 2 %(M) attains a minimum
at M ~ 6 and then starts to dev1ate again. Thisis due
to errors in numerical integration which uses finite
meshes in integrating over time, As shown in Eq.
(5.11) the third moment is defined with respect to the
function

Xi(w) =— w3X"(w) + w2 + 1,

The asymptotic expansion (3. 3a) is so good that the
terms on the right-hand side cancel out almost com-
pletely. Thus the computed values of X (w) after this
cancellation are hardly above the error bound of com-
putation. When w becomes larger, say, than six, then
the values of A3 beyond there are subject to computa-
tional errors. This situation is somewhat similar to
what is encountered in obtaining spectroscopic data
from experiments.

Negative moments are found to be nicely convergent.
As is shown in Fig. 2, the incomplete moments in-
crease with the upper bound of integration monoton-
ously. When corrected, the convergence becomes
surprisingly improved. The corrected moments

A (M) attain their limit values at the values of M
as small as three or four., A nice feature about this
is that the correction A/, is determined by A/, .4, so
that the correction can be made sucessively.

The examples given by (5. 7a) and (5. 7b) with a large
a are instructive as models of non-Gaussian spectra.
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The spectral line shape is close to Lorentzian with a
strong peak at the center and with long tails which
are above the unnarrowed Gaussian tails at far wings.
These extended tails make the convergence of posi-
tive moments poorer than that in the Gaussian case.
Furthermore, the positive moments are determined
by the behavior of ¢(t) at £ = 0. This means that they
delicately depend on the shape of the spectrum at far
wings. A subtle difference almost indistinguishable
in the spectral shape reveals itself in the values of
moments as should be expected by Egs. (5. 13) which
give different moments for different models (a) and

(o).

Figure 3 shows the positive moments for the model
(a). The zeroth moment converges rather fast, but
the second moment converges rather slowly. The
convergence of the first moment A (M) is greatly
improved if it is corrected to A (M) using the exact
value of the second moment A;. The third and fourth
moments A5 (M) and 2} (M) converge only slowly. The
convergence is not much improved by correcting

4 \ |
100 1

0.50

0.00

-0.20 : ; E——

0 5 M IO

FIG. 1. Incomplete positive moments and corresponding
corrected moments for a Gaussian spectrum (@ = 0).
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FIG. 2. Incomplete negative moments and corresponding corrected
moments for a Gaussian spectrum (o = 0), The numbers on the
right are exact limits.
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them to A4(M) and A4 (M), respectively, using the
exact values of A} and A5 . The numbers given on the
right in this figure indicate the exact limit values to
which each curve of moments should approach as M
tends to infinity. The poor convergence of these
higher moments is due to the contributions from ex-
tended tails of spectra. The accuracy of computation
becomes poor at far wings, which makes the conver-
gence further worse and untrustable. Figure 4 shows
the corresponding positive moments for the model
(b). The zeroth,first and second moments behave al-

1.OO

0.50

0.00

—_— " A 1 o i

0 5 M 10

FIG. 3. Incomplete positive moments and corresponding corrected
moments for model (a) with @ = 2. The exact limit of the third and
the fourth moments A5 and A} are — 2 and — 1, respectively, and that
of the fifth moment A, which is used to obtain corrected moments,
is 12.

100
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) Fl A i

0 5 M

-040 s
-1

FIG. 4. Incomplete positive moments and corresponding corrected

moments for model (b) with @ = 2. The exact limit of the third, the

fourth, and the fifth moments A4, A}, and X5 are 0,11, and 0, respec-

tively.
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most in the same way as in case (a). The third mo-
ment, however, must vanish, and the fourth moment is
very large, as is indicated by Egs. (5. 13). Thus the
third incomplete moment A’;(M) and the corrected
moment A4(M) behave quite differently from the cor-
responding moments in Fig. 3.

Contrary to positive moments, the behavior of nega-
tive moments for these models is qualitatively much
the same as in the Gaussian case. The higher-order
negative moments are much larger in magnitude be-
cause the relaxation decay of the function ¢(#) is much
slower. The convergence is always very good if the
incomplete moments are corrected by Eq. (5.23).
Figures 5 and 6 show this convergence. The numbers
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FIG. 5. Incomplete negative moments and corresponding corrected

’

moments for model (a) with @ = 2. The exact values are A!; =2.448,
Ng =5.087, al3 =10.252, A/, = 20.54,
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FIG. 6. Incomplete negative moments and corresponding corrected
moments for model (b) with @ = 2. The exact values are A/; =2.530,
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on the right are the limit values of each moment com-
puted by Eq. (3.86).

The numerical analysis here made gives some insight
to the problem one may encounter in practical evalua-
tion of moments from spectra obtained by experi-
ments. Higher positive moments are difficult to eva-
luate not only because the contribution at wings are
dominated, but also because they delicately depend on
the spectral shapes. This means also that they pro-
vide some valuable information if they could be eval-
uated. On the other hand, the negative moments will,
in general,be more easily evaluated. They may be
used as measures of the distribution of relaxation
times,

6. CONCLUDING REMARKS

We have shown in this work that the definition of
moments can be generalized so as to be applied to
admittance functions of a rather wide class. The
positive moments are defined with respect to the
asymptotic expansion of an admittance function at
large frequencies, whereas the negative moments are
defined with respect to the power series expansion at
small frequencies. The generalized moments are ex-
pressed in terms of moment integrals defined by the
real or the imaginary part of the admittance function
which should be suitably modified to secure the de-
sired convergence., They are also given by the deri-
vatives of the response function at { = + 0 or by cer-
tain time integrals defined in terms of the response
function. This fact is a very general statement of sum
rules which contains most of known sum rules.

Application of this analysis may not be limited to ad-
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mittance functions. For example, if one write a fre-
quency dependent mobility function u(w) as

@) = [t + y@)]?,

the frequency-dependent friction y(w) is also related
to a function ¢ (¢), which is in fact the correlation func-
tion of a random force.?»>8 In this sense it is possible
to define moments for the function y (w) instead of
doing it for p(w). In the spirit of the continued frac-
tion expansion introduced by Mori,? this process can
even be carried on further. The moments introduced
at one stage are related in some way to those defined
at another stage. Their convergence properties may
be different; but they must have some connections.
There are a number of such questions, which have,
however, not been dealt with in this work,

It should be also noted that the Kramers—Kronig re-
lation can be applied to derivatives of an admittance
function with respect to a parameter involved in it,
and so the sum rules can also be applied to such de-
rivatives. This is obvious, but may be a useful re-
mark.

The numerical examples treated in Sec.5 are only a
sort of theoretical model, but they illustrate some
features of the problems one may have in applying
the analysis to a set of spectroscopic data.
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I. INTRODUCTION

There has been considerable interest1-7 in recent
years in the multigroup version of the neutron-trans-
port equation, basically because a great deal of the

fine structure of such energy-dependent processes as
scattering, absorption, and fission can be maintained
in this model without actually requiring solutions to
the more general energy-dependent form of the trans-
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I. INTRODUCTION

There has been considerable interest1-7 in recent
years in the multigroup version of the neutron-trans-
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fine structure of such energy-dependent processes as
scattering, absorption, and fission can be maintained
in this model without actually requiring solutions to
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port equation. In fact,the multigroup model has prov-

ed adequate for so many reactor calculations that mul-

tigroup diffusion theory is perhaps the most widely
used method in reactor design analysis. Since effi-
cient multigroup diffusion codes often make use of
transport theory, for example, to define improved boun-
dary conditions, we develop here the fundamental ana-
lysis required to place the two-group model on a ba-
sis equally as firm as that provided by Case8 for the
one-speed theory.

It seems that even the very basic subcriticality con-
ditions for infinite media have not been resolved defi-
nitively for the multigroup model, and hence in Sec.II,
we first seek the general conditions required to en-
sure the existence of a unique solution to the half-
space albedo problem, based on the two-group model.
These same conditions can, naturally, be shown to be
the infinite-media subcriticality conditions.

Our principal goal here is to point out that half-space
problems in two-group transport theory can be re-
duced to a convenient computational form and to pro-
vide the appropriate existence and uniqueness theo-
rems required to ensure that any computational re-
sults can be interpreted and used with confidence. We
shall rely rather heavily on a previous paper,7? here-
after referred to as SBK, in which the required analy-
sis was given for all cases but one. In addition to re-
solving the one elusive case not included in SBK, we
are confident that the functional analysis arguments
developed in Sec.II, and used in Sec.III to establish
definitively, in the manner of Goh'berg and Krein,®
the very impcrtant proof that the partial indices of a
canonical solution to a basic matrix Riemann problem
are nonnegative, will prove very useful in the analysis
of the more general models.

We consider the homogeneous, steady-state neutron-
transport equation written in a convenient form as

u% Vv, u) + 28, u) = C Ii‘lf(x, wdy’, (1)

where the two elements of ¥ (x, ) are the angular
fluxes in each of the two energy groups, and C, with
nonnegative elements, is the group-transfer matrix.
By choosing to measure distances in terms of the op-
tical variable x, defined in terms of g, (the smaller
of the two total cross sections o; and ¢,), we can
write
o0 0y
o= — > 1, (2)
Oz

% =

b

01

Since the solutions to typical half-space problems

based on Eq. (1) can be expressed in terms of the solu-

tion to the albedo problem, we seek a bounded (at in-
finity) malrix solution of Eq. (1) subject to the boun-
dary condition

(1 “I-ll) 0
v (ul’ MHas 07 /vL) =

’

0 O(p — 1)
My, Mg, b€ (0,1). (3)

We can now enter

(g, Lps X, 1) = ¥lpg, Lo ¥, 1)
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6(u — pq)e o 0
+ @)
0 o — uz)e'*’/“

into Eq. (1) to obtain
a o~ ~
By Wy, woi, p) + By, mo;x, 1) = CF (U, pg; X),
()

where

1 ~
Flug, pg;0) = [) Wiy, po; %, u)du

e
+ 6
0 e ©
from Eq. (3) we note that
g, bp;0,) =0, pe(0,1), (M

Equation (5) can be solved at once to yield

1 e~ olx-x0)/p 0
-~ X
V(g pgs ¥, ) = = [
H 0 0 e-G-xn/p
X CF(uq, pg;x7)dx’, u >0, (8a)
and
R 1 e eolxr-x)/ 0
Wy, poix,u)=—- [
K 0 e Cor-x)/ 1

X CF(U’ 1) M2;5 x’)dxla M < 09 (8b)

which can be entered into Eq. (6) to establish the inte-
gral equation

. E (o]lx —x') 0
Flug, po; ) = [
0 E1(|x —x'))
X CF(uq, osx)dx" + Qug, tp;x), (9)
where
e o7 0
y ; X) = . 10
Qlu g, 1p; %) o o (10)

Here E(x) is the standard exponential integral:
T dy
E\(x)= [ e " (11)

We now wish to argue that Eq. (9) admits a unique so-
lution for all subcritical media. For the sake of nota-
tional convenience, we prefer to write Eq. (9) as

Flug, pg; %) = LF(ug, pp; %) + Qluq, ng; %),  (12)
where L denotes the integral operator.

IO. EXISTENCE THEOREM

By investigating Eq. (12), the linear integral equation
for F(u 4, 4 o; x), we find in this section a condition suf-
ficient to ensure the existence of a solution to the
singular H-matrix equation discussed in SBK. To es-
tablish this condition, we consider

in the function space £ of vecfor functions with norm

It = max{ [lf; ()]s}, (14)
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where f;,Z = 1 and 2 denote the two elements of 1.
Note that we take Eq. (13) to be a vector version of
the malrix equation given by Eq. (12).

Theovem 1: If p denotes the dominant eigenvalue
of the nonnegative matrix Z-1C and if 20 < 1, then the
equation

with q in £, has a unique solution f in £, given by the
series

(2]

f= 2 L»q.
n-0

(16)

To prove the theorem, we note that the series given
by Eq. (16) converges in £, provided the spectral
radius HLHSp of L, which can be computed from10
— 1 i 1/
LI, = lim (L2127 )
satisfies HLHSp < 1. Since the kernels in the matrix
integral operator L are nonnegative, it follows that

L7q| = L”|ql, (18)
where by |q| we mean the vector
ICI1'
lq| = . (19)
"12 |
It can be shown that
fOOOLIqI(x)dxﬁ 22’1Cf0°c|q(x)|dx, (20)
and thus it follows that
oL lql(x)dx = (2z71C)" [ lq(x) dx 21
and, hence, that
| L*qll = 27|qf[max row sum of (Z-1C)»]. (22)

For a nonnegative m X m matrix, the maximum of the
row sums is the c«c~norm induced on the matrix when
multiplying vectors v with norm

Ivl, = max {lv,l}, (23)
-1,2,..., m
and thus we can write
ILlyp = 2 limj(=-10)"| Y/ = 25 1Cl,.  (24)

Since the spectral radius of a finite-dimensional ma-
trix is the maximum of the absolute values of the ei-
genvalues of the matrix and since £-1C is nonnegative,
it follows11 that the spectral radius coincides with the
dominant root p. The condition 2o < 1, thus, guaran-
tees that

ILfl,, = 20 <1, (25)
which proves that the series given by Eq. (16) con-
verges in £,. The proof of Theorem 1 is therefore
established.

It is immediately apparent that our Theorem 1 is va-
lid for the N-group version of Eq. (12). For the two-
group case, we find that the condition 2p < 1 can be
written explicitly in the form
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€11+ 0Cgp + [(cq1F 0Cy9)2 —40C] V2 < 0, (26)
which is equivalent to the two conditions
1—(1/0)cyq —c€qy >0 (27a)
and
1— (2/0)cyq — 2¢99 + 4/0)C > 0. (2'7b)

Here the elements of C are denoted by ¢;; and C =
detC. Henceforth, we shall assume that tI]le inequali-
ties (27) are satisfied.

We now wish to show that F (u, v; x}, the matrix solu-
tion of Eq. (12) corresponding to the inhomogeneous
term Q(u, v; x), defines a function which satisfies the
singular H-matrix equation discussed in SBK, We
thus consider

Fu,v;x) = LF [, v; x) + Qlu, v; x), (28)
with
e-ox/u 0
Qu, v; x) = , Reu >0, Rev > 0.
0 e (29)

In regard to Eq. (28), we now wish to establish

Theovem 2: For each value of x € [0, ), the func-
tion F(u, v; x) is analytic in # and v for Reu > 0 and
Rev > 0.

To prove the theorem, we first note that we can write,
subject to the conditions given by inequalities (27),

Flu,v;x) = 25 F,W,v;x), (30)
7=0
where for fixed x, the function
F,(u, v; %) = L"Q(u,v; x) (31)

can clearly be seen to be analytic in # and v, for Reu
> 0 and Rev > 0, since the first and second columns
of F,(u, v; x) are independent of v and u, respectively.
Now if |F| denotes the matrix formed by replacing
the elements F;; of F by |F,-]-|, then with the obvious
interpretation of inequality between matrices, we can
write
|F,| =L»|Q| =L»I, Reu >0 and Rev >0, (32)
since |Q| = I. It now follows from the definition of L
that

IF, @, v;%)| = (25-1C)x,

x € [0, ) (33)

for all Reu > 0 and Rev > 0.

Each entry in the matrix F(u, v; ) is analytic in # and
v for Reu > 0 and Rev > 0, since it is the uniform 1i-
mit of analytic functions, which follows by use of the

norm

IF|| = max {IF; 1 (34)
and the estin,late
“F(u, vy x) — anVE) F,(u,v;x) “ = aiﬂ I2z-1C)«|. (35)

The right-hand side of Eq. (35) is independent of # and
v and goes to zero as N — «, since inequalities (27)
require that
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lim [|(2Z-1C)»{| /= < 1, (36)
n—roo

Having shown that F(u, v; x) is analytic in « and v for

Reu > 0 and Rev > 0, we now note

Theovem 3: For Reu >0 (u ¢ [0,1]) and Rev > 0
v ¢ [0, 1]), the first and second columns of F(x, v;x)
can be represented by

F, ;) = Qq (u; x) —F(u,%;x) uli e(u)C oudﬁu
1] . 4
L red Flou, s MOWC g | (372)
and |
1 du 10
F, ;%) = Qg3 %) — Flov, v v [, ©(C 2 [1‘
1
+of Flop, u; M0 C -2 ’ (37b)
v), Flow, u; e = .
Here
6(u) O
o) = , (38)
0 1

with 8(p) =1, u € (—1/0,1/0),6(n) = 0, 1 & (— 1/0,
1/0),

Ql(uv x) = e_ox/u

1 1 0

and Q,(v;x) = e ¥

0 1

(39)

Note that the variable x enters Eqs. (37) only as a
parameter.

To prove Theorem 3, we first operate on Eq. (28) to
obtain

LF = L(LF) + LQ. (40)

Some elementary analysis can now be used to deduce
that

1Qu, vy x) = u|:*Q <u, %; x) [1 Y(u) oudiu
1 ' du :' 10
+ [y Qlop, py i (p) w—l]y
+ v <~ Q(ov, v; x)f'ill/(u) “d_llp
00
+ [ Qow, n3x) W) 2 ) :
0 U 01 (41)
where
Yu) =0u)C. (42)
Now since

LF=(0-L)ylLQ and F=(-L)ylQ, (43)

we conclude that LF can be expressed in terms of F

and subsequently used in ¥ = LF + Q to give Eqgs. (37).

If we now define

F(oz,2;0) = H(z), Rez >0, (44)

then clearly H(z) will be analytic in the half plane
Rez > 0, and from Egs. (37) it follows that

du

HR)AGR) =1+ zf01 () w(n) Rez >0, (45)

z ?

°
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where
AG) =T+ 2 [ w72

pp (46)
Equation (45) clearly relates H(z) in the right-half
planetoH(u), pu € [0, 1]. Since, by Theorem 1, the exis-
tence of a unique F(oz, z; x) has been established, and
since Theorem 2 ensures that F(oz, z; x) is analytic
for Rez > 0, it follows from Eq. (44) that there is at
least one H matrix, analytic for Rez > 0, which satis-
fies Eq. (45). It is also clear that there is at least one
H matrix, analytic for Rez > 0, which satisfies the N-
group version of Eq. (45) when the conditions of Theo-
rem 1 are satisfied.

III. THE RIEMANN PROBLEM AND PARTIAL IN-
DICES

Equation (45) as established in the previous section
can now be used to derive the system of singular inte-
gral equations discussed in SBK. Since H(z) is analy-
tic for Rez > 0, we deduce, upon invoking the Plemelj
formulas!Z and Eq. (45), that

+ T (Y (1),
pe@©1), @mn

B(u)A(w) = 1+ uP [ BOWE)

dv
V-

where the +(—) superscript denotes the limiting value
as z — 4 in the upper (lower) half~plane. We can now
average the two Egs. (47) to find

HpA(p) =1 + quol ﬁ(v)w(v)y fi_vu , 1 e(0,1),(48)
where
Ap) =1+ qu_i v(v); iyu : 49)

Since the integral term in Eq. (48) does not involve all
of the elements of H(u) on the interval 0 < y <1, we
prefer to replace Eq. (48) by the equivalent system
considered in SBK:

A () =1+ uP[) B0 72, o e(o, %),
(50)
and
HpA ()M (y) = <I + quol H(v) ¥ (v) Vdf u>M‘2)(u),
1 (51)
K €<G ’ l> ’
where
_Alz(#)
M®(y) o (52)
All(ll)

If, as in SBK, we now introduce the sectionally analytic
matrix

NG) = 5o [ BOW )

27g

dv
v—2z°’

(53)

then the singular integral equations given by Egs. (50)
and (51) can be reduced to the equivalent inhomo-
geneous Riemann problem

N(u) = G()N-() + YA W], ue (o 1),5 )
where - - 64)
G(u) = A (u)[A- ()] L. (55)

Except for proof that the partial indices of a canonical
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solution of the Riemann problem with the homogeneous
boundary condition

are nonnegative when both of the conditions detC < 0
and detA() > 0 apply, the analysis reported in SBK
establishes the existence of a unique solution to the
system of equations given by Egs. (50) and (51) and the
linear constraint

<+uf

&*(u) pe (1), (56)

!l/(V) i>M(Vi) =

i=1,2...,x, (657
where v;,2= 1,2, ..., k,are the zeros, with positive
real (imaginary) part, of

Az) = detA(2),
and
A(v;)M(v,) =0,

(58)
i=1,2 ...,k (59)

In a similar vein, the half-range completeness theorem
basic to the elementary solutions of Eq. (1) has been
proved in SBK, except for the one elusive case detC <
0 and A(») > 0. That completeness theorem also fol-
lows at once if a proof that the partial indices of ®(z)
are nonnegative can be established.

In the manner of Goh'berg and Krein, ? we now can
show at once that the results of Sec.II guarantee that
the partial indices of ®(z) are nonnegative for all
choices of the basic parameters which satisfy inequa-
lities (27). Note2 that the conditions given by inequa-
lities (27) ensure that all v, must be real, which in-
cludes the case detC < 0 and detA(w) > 0.

The general solution (of finite degree at infinity) to
the Riemann problem defined by Eq. (54) can be writ-
ten as

N(z) = (f K@) - + P(z)) (60)
where - B
K@) = [&*(W)] W @) [A- ()1 (61)

P(z) is a matrix of polynomials, and ®(z) is a canoni-
cal solution of the Riemann problem defined by Eq.
(56). Without loss of generality, we consider ®(z) to
be of ordered normal form at infinity so that
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2" 0
lim @(Z) = A,

12|00 0 ZKZ

(62)

where A is a constant nonsingular matrix, and k4 and
Ko = K4 are the partial indices.

We note from Eq. (53) that 2N(z) must be bounded as
|z| tends to infinity, and thus the proposition that
k1 = — 1 yields, from Eq. (60), the requirement that

1.\ 7T

[ R(av = 0. (63)

0

Cauchy's integral theorem can now be used to repre-
sent & 1(z), which subsequently can be evaluated at
the origin to yield

q>—1(0). (64)

T
f K{)d k
0

It thus follows that Egs. (63) and (64) imply that $(0)

is singular, which, of course, contradicts the notion of
®(z) being a canonical solution. We conclude, there-
fore, that if Eqgs. (50) and (51) admit a solution, then
the partial indices of ®(z), the canonical solution of the
Riemann problem defined by Eq. (56), cannot be nega-
tive; since the analysis of Sec.II, when inequalities

(27) are satisfied, does establish the existence of a
solution to Egs. (50) and (51), we conclude that the par-
tial indices must be nonnegative, when inequalities

(27) are satisfied. Again, we note that inequalities (27)
include the one case not resolved definitely in SBK. It
is also apparent that the crucial proof that the partial
indices for the matrix Riemann problem required in
the half-range completeness theorem for the N-group
problem can be taken as established, for these cases
when Theorem 1 applies.

Finally, we should like to mention that Pahor and
Suhadolcl3 have established the existence of a unique
solution to Eq. (15); their proof, however, is based on
conditions more restrictive than those of our Theo-
rem 1.
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A perturbation procedure is developed for two synchronously tuned, coupled, autonomous, nonlinear oscillators.
The procedure results in ordinary nonlinear differential equations for the slowly varying amplitude envelopes

and the slowly varying phase difference of the two oscillators. A method of obtaining initial values is included
as are two examples for coupled van der Pol and linear oscillators. ’

INTRODUCTION

In this note we develop a perturbation method for
studying two weakly coupled, synchronously tuned,
autonomous, nonlinear osgillators. The nonlinearities
are also assumed smali. The method is quite similar
to those developed by Krylov, Bogoliubov, and Mitro-
polsky! among others; but their methods are not
applicable to the particular case in which the oscilla-
tors are synchronously tuned. The method results in
differential equations for the slowly varying enve-
lopes and phases of the oscillations.

Perturbation series for the initial values of the
envelopes and phases are obtained, and the method is
illustrated by application to coupled linear and van
der Pol oscillators.

PERTURBATION SOLUTIONS
The coupled differential equations are

¥ +x=eflx,%,y,9,¢) (1a)
and

y+y =eglx,%,y,9,€), (1b)

where f and g are assumed to be analytic functions of
x,%,v,y,and €, expressible in the form

f= _EO Sl x,y,9)€ (2a)
5
and o
j=0

with f; and g not identically zero. Equations (1a)
and (1b) have unique solutions for specified initial
values of x, %,v,and y.

We seek solutions in the form

x =a cosy + exl(a,b,ll/, o) + szz(a,b,lll, }) +o-e
and

y = b cos¢ + eyl(a,b,t,l/, ¢) + e2y2(a,b,1l/,d>) Foeeey
(3b)
where a,b,¥,and ¢ satisfy the differential equations

(3a)

d = €A, (a,b,0) + €24,(a,b,0) +---, (3¢)

b = €By(a,b,6) + €2By(a,b,8) +---, (3d)
W =1+ eCy(a,b,0) + €2Cyla,b,6) +---, (3e)
¢

=1+ €D,(a,b,0) + €2Dy(a,b,0) + -+, (31)
and
6 =v — . (3g)

Thus
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6 =€(C, D)+ €2(C, — D) + + -, (3h)

and so 6 is a slowly varying function of {. Further-
more, x; andy; are all periodic functions of ¥ and ¢,
but do not contain the fundamental, while 4;, B;, C;, and
D; are all periodic functions of 6. The functions %,
v;,A;, B;, C; and D;, are determined iteratively; first
for 7 = 1,thenj = 2, and so on by the method des-
cribed below.

For ¢ = 0 the solutions are

x O = a cosy (4a)
and
v O =5 cosp, (4b)

where @ =0, 5@ =0,y ©® =1, ¢$© =1, and the
superscript has been added to denote the € = 0 solu-
tion. These results are now employed to determine
x1,Aq,and C; and later y,, B;, and D,. The procedure
for calculating x;, A, and C, is to substitute x @ and
v (@ in the right side of (1a) and retain only first
powers of €,

ef(x’)'(,y,j')’ €) = efo(x (0),55 (0),3; (0)’3')(0))’ (5)
where

O =—¢g siny + O(e) (6a)
and

yO =— b singp + O(e). (6b)

The right side of Eq. (5) is expanded in an exponen-
tial Fourier series with known coefficients, viz.,

€folx © 5@ 4O 5O) = ¢ 3, Ry, (@, b)eindime}, (M
n,m

It is convenient to assume that this series contains a
finite number of terms, which is all one would retain
in practice.

To evaluate the left side of (1a), we differentiate

X =a COSl’/ + €x1(a,b,1l/, d)) (8)
and obtain
X =— 1 a siny +a cosy

+ eaxyg+ bxgy + y'bxw + oxy4), (9)
where the subscripts denote partial derivatives, e.g.,

X1, = 9x1/0a. Upon substituting Egs. (3c) to (3f) in
Eq. (9), that equation becomes

% = — a siny — €aC,(a,b,0) siny + €4, (a,b, 6) cosy¥
+ exy, +ex;, +0(e2). (10)
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The above calculation is repeated to obtain

= —a cosy — €2aC, cosyY — €24, siny
+ €loyyy, + 20,5+ X g0) + 0(€2),  (11)

where the fact that ¢, b, and 6 are all O(e) have been
employed. When this result and the expression for

x are substituted in Eq. (1a) and first powers of € are
equated, we obtain a partial differential equation for
x4, which also contains the unknowns Ay (a,b,0) and
C,(a,b,0),viz.,

+ 2%3y4 t Xy g9 — 24y siny — 2aC,; cosY + x4
=23 h,,,etmrmd, (12)
Rt
To solve Eq. (12) for x;,A,, and C; we separate it into
resonant and nonresonant parts, The resonant part

contains the A, and C, terms which are equated to
the Fourier series terms withn + m == 1,

140

— 2A,(a,b,6) siny — 2aC,(a,b,8) cosy
=27 h,,lablei@ime).  (13)
n.,m

r+m=1

whereas the nonresonant part contains the Fourier
terms withn +m = £ 1,

Xygy F 2y F Higy F A= nZ;ﬂ h,,,(a,b)ei Gt md,

nrm# 2l (14)

The resonant equation (13) is solved by substituting
¢ =¥ — 0 in the exponent to obtain

ity m®) — gillermiy-m6l = g-imb(cosy £ ¢ siny).
Thus Eq. (13) becomes

— 24,(a,b, ) siny — 2aCy(a,b,6) cosy
= 25 h,la,b)eimO(cosy + i siny) (15)

ntm=z1
and so by equating siny and cosy terms,
A==t T @+ mh,,(a,b)em (16a)
n+7:r;:,n& 1
and
Ci=—p 5 hylabeine. (16b)
Ry
ntm= 1l

To solve the nonresonant equation (14), we write
x,(a,b,¥, ¢) as a Fourier series:

%0@,b, ¥, 9= 25
7%/
n+m= 11

£ @, ) O,

and substitute in Eq. {14), which thereupon becomes
> [1— (e +m)2]ED (@, p)et BV

7,
nrmg t1

= L e, b)),
nem
ntmg £l
Thus the coefficients are given by

mab) {h,, @,0)/[1—( +m)2]}, n+m=x1,

amn
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Note that Eq. (17) is defined for all » and m, withn +
m # + 1,and all other terms are included in the de-
termination of A; and C;. Resonant terms act to
drive the fundamental amplitude and phase, whereas
the nonresonant terms produce harmonics.

The above calculation must be repeated with Eq. (1b)
to determine y,, By, and D,. In place of (13) and (14),
we obtain

— 2B, sing — 2bD, cosp = 2, k, (a,b)eitri+me)
n,m

ntm=11 (188.)
and .
Yigy + 2V149 TV1gg TV = 20 hyla,b)eiCwimd,
n.m
nrmg+l (18b)

where %, (a,b) are the Fourier coefficients of

go(x(o) £ , ¥ y(0), Then after substituting ¢ = ¢ + 6
in (18a) and performing the same manipulations as
above, we obtain

B, = w% nzr)n n +mk,, (a,b)eino, (19a)
ntm=+1
and
Dy =g T k0, b)eine, (19b)
ntm=x1
Finally the series representation for y,,
V@b, 0) = L Anla,Beteimd (20)
e

ntmF2l

has coefficients given by
:{knm(a,b)/{l—- +m)2]}, n+m=zl,

(21)
The calculation of x,,4,,C, and y,, By, Dy 18 carried
out in the same way as the first-order terms.

12 (a, b)

INITIAL VALUES

In many cases it is desirable to express the initial
values a9, b® Y0 and ¢W in terms of given initial
values of x;, X;,¥;, and 9;. Such expressions can be
derived w1thout 1ntegratmg the equations for 4, b x{/,
and ¢, i.e., using A ,, B, G, and D;. Indeed, this is
essential since the equations for a, etc., may only be
integrable numerically, and thus the m1t1al values
must be known in advance. The procedure is not
complicated albeit laborious; our discussion is limit-
ed to a brief outline.

The initial values x; and %; are given by Eqs (3a) and
(9) evaluated at a®, b(z) \l/(@) and ¢@;y. and 9, are given
by corresponding equations. Then upon employing
Egs. (3¢)-(3f), combining the equations for x; and %;,
and rearranging terms, we obtain

\ A
a®etv® = x, — ik, + 21 eI (a®, b®, YO, p®), (22)
P

where W] contains x; and all terms in the equation
for x, multiplied by e/, Perturbation series are now
assumed for a® and v,
o0
a®= Z%) 5‘7‘{1(951,55;',3)1',5’1')
i=
and

(23a)
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(-]
Yo = Z}O €W, (x;, %, 9;, %), (23v)
i=
and zero order terms (€0 = 1) are collected in Eq.
(22). The results are

ay = (2 + 52) /2
and
Yo = — tan 1(%;/x;),

(24a)
(24b)

and similar equations hold for by and ¢.

To obtain expressions for the higher-order terms
a; and ¥;, we expand a®e¥" in a Taylor series about

aO, Yo» v1z
a(’).e“”() = aoe% + (a(i) — ao)eiw" + ia(i)ei%(zl/(i) —¥)
+etho ( a@® — yp)!
=2 \[!
i1 ® oy, V1,0
o — g)).
T VO e - ) (25)

The perturbation series (23a) and (23b) are substi-
tuted in Eq. (25), and the resultant expression is com-
bined with Eq. (22). By equating all terms multiply-
ing €/ for each j, we find

a; + iagl; = Gj(ao, R H YRR H 7R A

Ggs * - ¢j-1) (26)
so that

=Re(G) and V; = (1/ay) Im(G). (27)
Thus expressions for (ay, b;, ¥, ¢4), (a5, b5, ¥s, ¢2)
are successively determined as functions of (ao, 0
11/0, ), which in turn are known functions of ;, %;,

s B (242) ane. (4D

EXAMPLES AND DISCUSSION

Consider two coupled van der Pol oscillators des-
cribed by the equations

¥4x= (28a)
and

y ty =

elcg(1 —x2) + cpy]

€feyy (1 —y2) + ¢35 +¢,43], (28b)
where ¢, and ¢; are coupling constants and ¢, is pro-
portional to the detuning. The results of carrying
out the perturbation calculation are

a = €[3cqa(l — 1a2) — 3¢, sind], (29a)

b =e[Sc,b(l — 4b2) + 3cua sind), (29b)

v=1— e(c,b/2a) coso, (29¢)

b =1— 3€c, — €lcga/2b) coso, (294d)
so that

= e{3[— (c1b/a) + (cza/b)] coso + %04}. (29e)

It does not appear possible to analytically integrate
Egs. (29a), (29b), and (29e), and this is generally the
case. However, the equations for a, b, and § are sub-
stantially easier to integrate numerically than the
original equations, since the former describe slowly
varying amplitudes and frequencies. Furthermore,
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the equations for a,b, and ¢ yield insight into the
system behavior. Consider, for example, setting

8 = 0 in Eq. (29¢), which corresponds to synchroni-
zation. Then equilibrium values of ¢ and b can be
determined. Furthermore, occasionally a conserva-
tion condition relating @ and b can be obtained as,
for example,? if f and g in Eqgs. (1a) and (1b) are
given by f = xw(r?2) and g =yw(r2), where 2 =

x2 +92, The three equations relating a,b,and 8,
then reduce to two equations in @ and 6 alone, which
are amenable to study in the phase plane.

As a second example consider the linear coupled
equations

X +x = €2y (30a)
and

y +y =ecyy + €2¢yx, (30b)
The solutions obtained by linear analysis are

x = agicos(t) + (ebycy/agc,) cos[(1 — 3ec,)t]} + O(e2),

(31a)
and

v = byfcos[(1 — 3ec,)t] — (eayes/byc,y) cos(t)} + O(e2),
(31b)

where a; and b, are constants.

The results of our analysis, which follow from Egs.

{29a)-(29c), are

a=—%€2c,b sing, (32a)
b = éezc3a sing, (32b)
W= — (€2¢,b/2a) coss, (32¢)
p=1— z€c, — (€2c5a/2b) cosb, (32d)
6 = tec, + 2e2[(caa/b) — (c1b/a)] cosb. (32¢)

To integrate these equations, we assume

a=ayl1+0()] and b =by{1+ 0(e)]

so that
6 = 3ec, + 3e[cs(ay/bg) — c1(00/a) 111 + O(€)] cosd,
(33)
and the integrals are3
cosh = A cosyt) — B (34a)
A — B cos(yt)
and
sing = (A/y)[1 + (B/A) cosb] simyt, (34b)
where
A = 3ecy, (34c)
= — 3€2[(c;b0)/ ag) — (c3a0/b)], (344)
and
y = (A2 — B2)V/2, (34e)
After some manipulation we obtain
cosf = cos(At) — (B/2A)1— cos(241) ]+ O(e2) (35a)

and
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sind = sin(At) + (B/24) sin(24¢t) + 0(e2),  (35b)
and so
a = ag[1 + (ecy/c,)bo/ay) cos(At)] + O(e2), (36a)
b = bg[1 — (ecy/c ) ag/by) cos(At)] + O(e2), (36b)

1469
Y =1t — (ec1/cy) 0o/ ay) sin(At) + O(e2), (36¢)
¢ = (1 — zecy )t — (ecy/c,)ag/by) sin(At) +0(€2). (36d)

Upon substitution in x = @ cos andy = b cos¢, the
results agree identically with Eqgs. (31a) and (31b).

1 N.N.Bogoliubov and Y. A. Mitropolysky, Asymplotic Methods in
the Theory of Non-Lineav Oscillations (Gordon and Breach, New
York, 1961).

2 K.B.Paxton and W. Streifer, Appl. Opt. 10, 1164 (1971),
3 G.P.Bois, Tables of Indefinite Integrals (Dover,New York, 1961),
p.
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By using the complex null tetrad as basis for the tangent space, a Killing vector field (“symmetry”) is intro-
duced into the system of Einstein's equations with Maxwell's equations. The two bivectors F ,and K, (the
associated Killing bivector) are assumed to have a principal null direction in common. Killing's equafions,
Maxwell's equations, and Einstein's equations are then written down for the case where this special direction
is also a principal null geodesic for the Weyl conformal tensor. A certain analog of the Goldberg-Sachs theo-
rem is proved. The static cases, plus a sizeable class of the static algebraically special cases are examined,
to wit: where the special direction is also shear-free. In particular, all such algebraically special spaces must
be Petrov Type D as a result of a coupling of the principal null directions for FW. This algebraically special
metric is derived as an example of the static classes and is a static generalization of the Reissner~Nordstrém

metric.

1. INTRODUCTION AND PRELIMINARIES

This work is concerned with properties of spaces
admitting the vacuum Einstein-Maxwell equations
plus a Killing vector field. The formalism used to-
wards these ends is that of the complex null tetrad.

Section 2 develops some of the relationships between
the electromagnetic field in general rélativity and the
existing geometry of the principal null directions for
that field. This is mostly a synthesis of known re~
sults scattered through the literature.

Section 3 derives a result in general relativity with
electromagnetic theory which says that given certain
conditions, including a Killing vector field, one has a
theorem of the sort ‘““geodesic and shear-free implies
algebraically special.” Certainly, such a result is
next to trivial when the electromagnetic field is null;
but the new results are in the context of a nonnull
electromagnetic field.

Section 4 takes up the subject of lightlike Killing vec-
tor fields {for any space-time) in a separate context,
Some of the cumbersome cases in more general Kill-
ing vector studies are eliminated by the separate
results possible here.

Section 5 derives the equations necessary to study
first any vacuum Einstein—Maxwell space—time with
a Killing vector field whose Killing bivector and elec-
tromagnetic bivector possess a principal null direc-
tion in common. This is specialized to the study of
hypersurface orthogonal (in particular, static) Killing
vector fields. The primary equations include alge-
braically general as well as algebraically special
cases. The field equations are included in their gene-
ral form,

Section 6 derives as an example a static generaliza-
tion of the Reissner—-Nordstrom solution for a point
charge., This solution has two arbitrary constants:
one real and associated with mass and one complex

and associated with a static electromagnetic field. It
can be made to admit as many as four Killing vector
fields and, in that event, be the Reissner-Nordstrom
solution. More general axially symmetric cases are
possible, however, by a less restrictive choice of the
function p(¢, ). With any choice, however, the electro-
magnetic field remains unaltered for the whole class.

Reference 1, Secs. 2—4, contains most of the neces-
sary details surrounding the mathematical develop-
ment of this section. In the following work, quite
extensive use is made of the notion of a complex null
tetrad {e,la = 1, 2, 3, 4} and its dual {e?|la = 1, 2, 3, 4}
(e1 and e, are complex conjugates of one another
while e; and e, are real; all four vectors are null in
the sense that their squares, e,* e, are zero). If
Greek indices refer to components of an object with
respect to a coordinate system {x#} and Latin indices
refer to components of an object with respect to a
general basis (tetrad), we have e, = efo, and €7 =
e““dx”,where €%(e,) = 6¢;i.e., €26t = 09, and
etes = 06# . The choice of signature for the metric
tensor g =g, dxtdx? =g €%€b[eaeb = J(ea®ed +
€?® €4)] is made to be (+++—). Locally over the C
Lorentz manifold, the tetrad components g, =g(e,, e,)

of the metric may be given the form g,, = 3(61,62, +
62,01,) + 5(63,06%, + 64,53,) so that g = 2¢1e2 +
2¢3e4,

The set of transformations on the tetrad e, — e,, pre-
serving the above form for g,, (i.e., for which g,,,, =

&,5) is called the set of Lorentz transformations. The
proper orthochronous subgroup of these is given by

exp(iBle,’
exp(— iB)e, - |1 —apl1
exp(Ales:

exp(— A)e4/
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sind = sin(At) + (B/24) sin(24¢t) + 0(e2),  (35b)
and so
a = ag[1 + (ecy/c,)bo/ay) cos(At)] + O(e2), (36a)
b = bg[1 — (ecy/c ) ag/by) cos(At)] + O(e2), (36b)

1469
Y =1t — (ec1/cy) 0o/ ay) sin(At) + O(e2), (36¢)
¢ = (1 — zecy )t — (ecy/c,)ag/by) sin(At) +0(€2). (36d)

Upon substitution in x = @ cos andy = b cos¢, the
results agree identically with Eqgs. (31a) and (31b).

1 N.N.Bogoliubov and Y. A. Mitropolysky, Asymplotic Methods in
the Theory of Non-Lineav Oscillations (Gordon and Breach, New
York, 1961).

2 K.B.Paxton and W. Streifer, Appl. Opt. 10, 1164 (1971),
3 G.P.Bois, Tables of Indefinite Integrals (Dover,New York, 1961),
p.
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By using the complex null tetrad as basis for the tangent space, a Killing vector field (“symmetry”) is intro-
duced into the system of Einstein's equations with Maxwell's equations. The two bivectors F ,and K, (the
associated Killing bivector) are assumed to have a principal null direction in common. Killing's equafions,
Maxwell's equations, and Einstein's equations are then written down for the case where this special direction
is also a principal null geodesic for the Weyl conformal tensor. A certain analog of the Goldberg-Sachs theo-
rem is proved. The static cases, plus a sizeable class of the static algebraically special cases are examined,
to wit: where the special direction is also shear-free. In particular, all such algebraically special spaces must
be Petrov Type D as a result of a coupling of the principal null directions for FW. This algebraically special
metric is derived as an example of the static classes and is a static generalization of the Reissner~Nordstrém

metric.

1. INTRODUCTION AND PRELIMINARIES

This work is concerned with properties of spaces
admitting the vacuum Einstein-Maxwell equations
plus a Killing vector field. The formalism used to-
wards these ends is that of the complex null tetrad.

Section 2 develops some of the relationships between
the electromagnetic field in general rélativity and the
existing geometry of the principal null directions for
that field. This is mostly a synthesis of known re~
sults scattered through the literature.

Section 3 derives a result in general relativity with
electromagnetic theory which says that given certain
conditions, including a Killing vector field, one has a
theorem of the sort ‘““geodesic and shear-free implies
algebraically special.” Certainly, such a result is
next to trivial when the electromagnetic field is null;
but the new results are in the context of a nonnull
electromagnetic field.

Section 4 takes up the subject of lightlike Killing vec-
tor fields {for any space-time) in a separate context,
Some of the cumbersome cases in more general Kill-
ing vector studies are eliminated by the separate
results possible here.

Section 5 derives the equations necessary to study
first any vacuum Einstein—Maxwell space—time with
a Killing vector field whose Killing bivector and elec-
tromagnetic bivector possess a principal null direc-
tion in common. This is specialized to the study of
hypersurface orthogonal (in particular, static) Killing
vector fields. The primary equations include alge-
braically general as well as algebraically special
cases. The field equations are included in their gene-
ral form,

Section 6 derives as an example a static generaliza-
tion of the Reissner—-Nordstrom solution for a point
charge., This solution has two arbitrary constants:
one real and associated with mass and one complex

and associated with a static electromagnetic field. It
can be made to admit as many as four Killing vector
fields and, in that event, be the Reissner-Nordstrom
solution. More general axially symmetric cases are
possible, however, by a less restrictive choice of the
function p(¢, ). With any choice, however, the electro-
magnetic field remains unaltered for the whole class.

Reference 1, Secs. 2—4, contains most of the neces-
sary details surrounding the mathematical develop-
ment of this section. In the following work, quite
extensive use is made of the notion of a complex null
tetrad {e,la = 1, 2, 3, 4} and its dual {e?|la = 1, 2, 3, 4}
(e1 and e, are complex conjugates of one another
while e; and e, are real; all four vectors are null in
the sense that their squares, e,* e, are zero). If
Greek indices refer to components of an object with
respect to a coordinate system {x#} and Latin indices
refer to components of an object with respect to a
general basis (tetrad), we have e, = efo, and €7 =
e““dx”,where €%(e,) = 6¢;i.e., €26t = 09, and
etes = 06# . The choice of signature for the metric
tensor g =g, dxtdx? =g €%€b[eaeb = J(ea®ed +
€?® €4)] is made to be (+++—). Locally over the C
Lorentz manifold, the tetrad components g, =g(e,, e,)

of the metric may be given the form g,, = 3(61,62, +
62,01,) + 5(63,06%, + 64,53,) so that g = 2¢1e2 +
2¢3e4,

The set of transformations on the tetrad e, — e,, pre-
serving the above form for g,, (i.e., for which g,,,, =

&,5) is called the set of Lorentz transformations. The
proper orthochronous subgroup of these is given by

exp(iBle,’
exp(— iB)e, - |1 —apl1
exp(Ales:

exp(— A)e4/
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where A,B,a, 3 are parameters;af = 1; A and B are
real; @ and 3 are complex. (A bar above a symbol
denotes complex conjugation.)

As a basis for the space of bivectors (2-forms) over
this manifold, take the set {e4A|A = I,1I, 11,1V, V, VI}
or its dual {e, } introduced in Ref.1;1i.e., the bivector
B, dxt ANdx? = B,€? A\ eb =B,e4, where B, = —B .
The adjoint *B = B, dx¥ A dxV = Bfe4 is another bi-
vector formed as follows:

Bl = 5107 (1.2a)
or
Ba)z = %nabchCd’ (I'Zb)

where 1, = [det(g,,)]*/2 "€y,0 With €, the com-
pletely skew-symmetric Levi-Civita permutation
symbol. It turns out that 1,,,, = = V=1 where the
1,2, 3,4 are letrad indices as used in (1.2b). (Unless
otherwise stated, all number indices will refer to the
complex null tetrad.) A bivector B is null if and only

if B,BA = 0 = B;B4; otherwise it is said to be nonnull.

The following canonical forms are possible through
the transformations (1.1) using choices of o and 8
only:

B null: B = 2B ;€3 Nel + 2By €3 A €2

5 (1.3a)
(or = 2Bt /€2 + 2B et N €l),
B nonnull: B = 2B (el Ae2 + €3 ned) +
2By(e2 nel + €3 A ed), (1.3Db)

where B ;; = B, and By = 3 (B, + Bj,). The trans-
formation freedom left on (1. 1) after transforming a
null bivector to (1. 3a) is

exp(— iB)-[e; + Be,],

exp(iB) * [e, + Bey],

ey’ = expl— A): [e3 - Bel — pe, — 3394]:
e, = exp(A) - [e,],

®
.
1

®
N\
i

the so-called null votalions aboul e, (which is then a
principal null direction for B). The transformation
freedom left on (1.1) after the nonnull bivector is
put into the form (1. 3Db) is

e, = exp(/Be,,

e, = exp(Aley;

e, = exp(— iBleq, (1.5)

ey’ = exp(— Ae,,

Il

i.e.,a simple scaling is all that can be allowed. Both
e; and e, are now principal null directions for B.) It

turns out that in the latter case, B = B under (1.5)
so that no further simplification of B (such as mak-

ing it real, or pure imaginary, or constant) is possible.

This is in contrast to the null case where B’ =
exp(A — iB)B;; under (1. 4).

If we define

®C)= B + {*B, (1.6)
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then

RO = 2Bl + 2B el + 2B el = @0 A, (1.7
The following product is an invariant with respect to
both coordinate and tetrad transformations:

X=3®C),BA=2(B B, —B2). (1.8)
The existence of canonical forms for B and the in-
variance of (1.8) lets us obtain

B null = X = 0; B nonnull = X = —2B%. (1.9)
The equations for a source-free Maxwell field, whose
field tensor is the bivector B are written classically
as

Bi.g=0=Bmw. (1.10)
Equations (1. 10) have a particularly simple form if
one uses (1.6) and exterior differentiation. The
following is equivalent to (1.10):

d®¢) =0, (1.11)
Hence, the source-free Maxwell equations may be
written in the form of (1.11).

2. EINSTEIN-MAXWELL THEORY: THE
ELECTROMAGNETIC BIVECTOR IN GENERAL
RELATIVITY

Let F, be a source-free Maxwell field defined
locally over the manifold;i.e.,F =F dxt Adxv =

F €2 A €® is an electromagnetic bivector which satis-
fies dF ) = 0. To couple this with relativity theory,

the equations (R, is the Ricci tensor and T, is the
Maxwell energy—momentum tensor)

R,, :—811T‘w, 2.1)
where T, = (4m)(F, F 0~ égw FPOFPO) (2.2)

must be satisfied in addition to the Maxwell equations.

are de-

If the connection coefficients I' ), =— T,
fined through the first structure equations (T
gamr‘mbc)

e — Tea b c
dee =T42, e®nec,

abc =

(2.3)

the null vector field e, has the following interpreta-
tion of its connection coefficients 'y ,:

I'y54 = geodesy: e, is geodesic <> ['j,, =0,
I'y4, = shear: e, is shearfree <= I';,, =0,
r,,; = rotation,

T',5; = complex expansion: Re(I',,,) = expansion,
Im(I",,) = twist.

The physical interpretations of these quantities have
been given the most attention for the case where
T',5, = 0—the geodesic null congruence e,. (See, for
example, the work of Sachs.2)

If F is a null bivector and if e, is a principal null
direction for F, then it can be shown that d¥¢) = 0
implies

Lyosg = T4pp =0 (2.4)
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i.e., e, is then geodesic and shear-free. This is the
Mariot-Robinson theorem, and its proof is straight-
forward using F in its canonical form (1. 3a).

The Goldberg-Sachs theorem3 and additional lemmas
in Ref.3 were generalized by Robinson and Schild.4
In terms of the notation used in this paper, Ref. 3 con-
tains the following theorems:

(1) A vacuum space~lime R, = 0) is algebraically
special (CO) = CW = Q) if and only if there exists

a geodesic and sheav-free lightlike veclor field (e,).
Such a veclor field is a degenevale principal null
divectlion for the Riemann (Weyl conformal) curvalure
tensor.

(2) If with lhe lelrad {e 1, e, is geodesic and shear-
Jree and the Ricci lensor has lhe form R 9 =R 44 =
Ry =Riy =R,y =0,lhen CO®) =C® = O,z e., the
shace is algebraz’cally special. (This is not redundant
to the theorem above whenever the field equations are
more general thanR,, = 0.)

A corollary of the latter has application to electro-
magnetic fields and may be stated as follows:

Theovem 1: If an electromagnetic field F in
Einstein—Maxwell theory has a principal null direc-
tion ey which is geodesic and shear-free, then the
space is algebralcally special. Furthermore C ) =
C@ =0 (e, is a degenevate principal null divection
for the Weyl lensor.)

Proof: Using the canonical form for a null or non-
null F, a straightforward calculation shows that the
tensor T, has sufficient zero components to apply
the second theorem above. QED

A null field F always has its principal null direction
to be geodesic and shearfree. (A nonnull field gene-
rally has no such properties.) Hence we see that a
null elecivomagnelic field in Einslein-Maxwell lheory
is algebraically special,as shown by Sachs.

One theorem of Robinson and Schild is given (where
the tetrad is chosen so that F; is the only nonzero
component of §)) by the following. If C5) =C®) =
0 (e, a degenevale pvincipal null diveclion for the
Wevl tensov), then e, is geodesic and sheav-free if
and only if lhe “weak field equations”

P(‘)242:O:P(')442, (2.5)

wheve P, = —R,p 4 +1g,,R,  and PO = P +{*P,
ave salisfied. In the case of a nonnull electromagne—

tic field, Egs. (2. 5) become
|F11|2 Loy =0= |F11| 2F424'

Hence, no new information can be gained in the non-
null electromagnetic case since “geodesic and shear-

free <> geodesic and shear-free” is all that emerges.

There is no direct analog, for electromagnetic fields,
of the Goldberg-Sachs theorem; but certain familiar
additional constraints can give rise to a certain kind
of analog. Introduction of a Killing vector field into
the system provides one such constraint.

Finally the Maxwell equations,d¥ ) = 0, may be
written for a nonnull electromagnetic field F in
canonical form as

1471

Fiua=—2FuT5, Frpo=—2F T
Fr3=2F T3, Frp4=2F Ty,

423’
(2.8)

Equations (2. 6) are simple by virtue of both e; and
e, being principal null directions for F, making F'; =
F_.. =

111

3. INTRODUCTION OF A SYMMETRY INTO THE
EINSTEIN-MAXWELL SYSTEM

It is sufficient to study the nonnull electromagnetic
field F in this section since the main purpose here
is to try to say something about algebraically special
spaces and their relation to the geodesic and shear-
free property; certainly much has already been said
about the null field F in the literature.

Let K= K2e, be a (contravariant) Killing vector field
defined locally over the manifold, and let K = K €@
be its dual {covariant) field. Then (t) dK is called
the Killing bivectorl (KBV) and it has components

. (Recall K,., + K,., = 0 is a form of Killing's
equatlons ) Just as with any bivector,dK may be
classified according to whether it is null or nonnull
and may be put into a canonical form by Lorentz
transformations on the tetrad. If we define B = dK,
then dB®C) =0 ifR}w = 0; however,R,, = — 87T, for
the electromagnetic field and only dB = 0 holds true
in that case. Killing's equations with a first set of
integrability conditions may be written as follows:

Ka;b ==K, 3.1)
Ka,‘bc = Rabcmlfm’ (3' 2)
Ka,'bb :Rame' (3'3)

All three are quite tedious in their most general
form, but become more manageable if e; or e, is a
principal null direction for dK. Consider the follow-
ing lemma.

Lemma 1: Let F be a nonnull electromagnetic
field satisfying an Einstein-Maxwell system. Let K
be a Killing vector field admitted by the system for
which e, is a principal null direction for both dK and
F. If the space-time is algebraically special, with
e, a degenerate principal null direction for the Weyl
tensor, then e, is geodesic and shear-free;i.e.,

CG)=C® =0 = e, geodesic and shear-free.

Proof: Since e, is a principal null direction for
dK, it follows thatK =Ky =Ky =Ky =0;

ie,K =0= Hence two equatlons from (3 2) are
of the form
4K T, 5, = — CWKL — COK4, (3.4a)
4K Typ, = COK2Z — CAKS3, (3. 4b)

whenever dK is a nonnull KBV. So in this case C () =
C@® =0 implies I'y,, = Ty, = 0;i.e., €, is geodesic
and shear-free. In the other case where dK is a null
KBV, the Eqgs. (3. 2) include

C@)§K2

—C@K3 =0=CGOKL +C@KL.  (3.5)

Then if C6) = C®) = 0,CBKL = CBIK3 = 0. This
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last condition then splits into two cases: C3) = 0 or
c® =0.

Suppose C @) = 0. Then K1= K2 = K3 = 0. Hence

K = K%e, and K¢ — 1 by a transformation, making

K = e,. By virtue of being a lightlike Killing vector
it is clear by covariant differentiation that e, is geo-
desic and shear-free.

Suppose C 3) = 0. At this point we refer to the work
of Robinson and Schild 4 If C 6} =C®) = CG) = 0,
then “degeneracy d »,” of Ref. 4 is satisfied: “Theo-
rem I” of that reference has the result that “d oy’
implies Eq.(2.5) above in the present paper. Hence,
for the nonpull electromagnetic field, (2.5) gives us
that T4y, = Iyge = 0. QED

(Notice that in the last paragraph no essential use
was made of a Killing vector field; hence we have the
lemma: If F is nonnull and CG) = C@) = C ) = 0,
then e, is geodesic and sheav-free in an Einslein-
Maxwell space~-time.)

The lemma above and Theorem 1 go together to form
the following theorem.

Theorem 2: Let F be a nonnull electromagnetic
bivector satisfying an Einstein—Maxwell system.
Let K be a Killing vector field admitted by the sys-
tem for which thé tetrad vector e, is a principal null
direction for both dK and F. Then the space-time is
algebraically special, with e, a degenerate principal
null direction for the Weyl tensor, if and only if e,
is geodesic and shearfree;i.e.,,C®) = C®) =0 if and
only if e, is geodesic and shear-free.

At this stage the “charged-Kerr” solution (see for
example Ref. 5) with its timelike Killing vector and
nonnull electromagnetic field goes as an example
consistent with this theorem. Another consistent
example is in the work mentioned by Mas.6

4. LIGHTLIKE KILLING VECTOR FIELDS IN ANY
SPACE-TIME

A digression on lightlike Killing vector fields appears
in order at this point. If it is possible to conclude
something useful in general here no matter what the
space—time, exclusion of these special cases in sub-
sequent discussions is then made possible.

Let K = K4e, be a Killing vector field, without loss
of generality. A Lorentz transformation on the com-
plex null tetrad merely of the form (1.5) with B =0
may transform K¢ — 1. Then if K = K2e ,K? = §e,
or K, =g, ,. Consequently
Ky == Tyw (4.1)
are the components of the KBV. Since K, ; = K, .5 =
K3:3=0
=Tg,;=0. (4.2)

T44o=0and that Ky, =

Ty11 = Tyze

Also notice that K4;2 = —

— T'yy,; hence

Ty14=T = 0. (4.3)
Equations (4. 2) and (4. 3) imply that e, is geodesic
and shear-free. Moreover K, ., =0 = K = 0,in
bivector notation. Hence e, is a principal null direc-

tion for its own KBV.

424
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More relationships from (4.1) and Killing's equations
give the following:

Fapq 1 T419 =0=T34y =T5.5 —Typ3. (4.4

Since one usually defines the complex expansion of
€4, 2= Ty, ,thenz + Z2=0 K, =0, e, can be
made to coincide with the other principal null direc-
tion for dK, giving K{;; = K5, = 0. If dK is a null
KBV then Ky = 0 and Ky; 2 0 given that K; = 0.

Consider the expressmn K5 K90 ThlS has the
explicit form — % (Typ; — T'y;2)2 = — (2 — 2)2 when-
ever K = 0. So for this case,

Ky, b]Ka’ = — 5(21')2[Im(z)]2 = 2[Im(z)]2. (4.5)
Therefore

Im(z) = [3K,,,Ka0]1/2 (4.6)
for K; = 0. IfKI~0thenK =0=>T,,,=0.

Therefore z = 0 for dK being a null KBV (by defini-
tion K, K25 = 0 here).

Consxder the expression K¢, . This has the explicit
form K, + K2, + K3, +K44_O since K is a
Killing vector K111mg s equatlons giveK, , t Ky, =
0=Kg,, . Hence

2Re(z)=T 4.7

412 T Typy = 0=Tygyy,
when K;; # 0. To conform to other authors’ notation
when dealing with lightlike congruences, we have thus
far established that the complex expansion z of e,
has the general form

z=3Ke, +i[3K, ,Ku1/2, (4.8)
In all cases where €, is proportional to a Killing vec-
tor K, K¢,, = 0.

Finally consider the integrability condition (3. 3).
Since K is lightlike,

0 = (K,K%),, = 2K, Ke,

0 =K, K4 + K,,°Ke = K, K% + R ,K°K®.  (4.9)
By virtue of K¢ = 6%, Eq. (4. 9) becomes
0 =K, K% +R,,; (4.10)

hence K., K%% = 0 <=> R, = 0. This gives rise to
the followmg theorem. (One shows K, K%% = 0 here
by noting that z = 0 implies K is hypersurface ortho-
gonal.)

Theovem 3: Let X# be a lightlike Killing vector
congruence in a space—time. Then RWJC#SC” =0if

and only if the complex expansion of X*,z = 0. The
KBV X is then null.

Biv
An application of the theorem above (in addition to
the obvious cases: R,, = 0 andR,, = \g,,) is where
X*# is also a pr1nc1pa1 nuil d1rec{110n for an electro-
magnetic field. Then it is well known that T Sy =
aIpr,so that T L KXY = 0, where T is the electro-
magnetic energy momentum tensor And hence the
Einstein~Maxwell equations are sufficient to give
z =0,
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5. THE HYPERSURFACE ORTHOGONAL KILLING
VECTOR (WITH NONNULL KBV) TOGETHER
WITH A NONNULL ELECTROMAGNETIC FIELD

In this section we confine ourselves to the Einstein—
Maxwell case admitting a Killing vector field which
is hypersurface orthogonal. Further assumptions
are that the Killing bivector and the electromag-
netic field are both nonnull. One additional condition
is added: (hat the KBV and lhe eleclvomagnelic field
both have a principal null divection (here e,) in com-
mon which is also geodesic.

If a space—-time admits a /imelike hypersurface
orthogonal Killing vector field, it is said to be sfatic.
In this case the orthogonal hypersurfaces are space-
like and evolve with time and can be more easily
visualized from a physical point of view; examples
are the Schwarzschild and certain Weyl/Levi-Civita
solutions (for vacuum space—times) or the Reissner—
Nordstrém solution (for the Einstein-Maxwell case).
The hypersurface orthogonal Killing vector field of
this section is not necessarily timelike but could be
spacelike just as well. These instances have prac-
tically the same mathematical properties, however,
and timelike is assumed at an intermediate stage.
(The lightlike case is excluded in view of the fact that
z = 0 for this case, as shown in Sec.4.)

Using the assumptions at the beginning of this section
we reduce the electromagnetic field to its canonical
components and do the same for the nonnull KBV:

F <> (0,F;;,Fypp) (5.1)

dK <> (0,K,,,0), (5.2)

whereFH—z(F tF, ) Fru=Fg, Ky=
Q(K 2 4)- Then Eqs (3.2) and (3 3) y1e1d the
followmg general set of integrability conditions on
K(= K¢e,):

2K, =4K Ty, = CWK2 — CBIKS,
2K, = 4K [,,, = — CWK!l - CGK4,

(5.3)

2K,,5 = 4K T 4oy = COKL+ C@KY,
2K, = 4K Ty, = CGK2 — CUKS3,;
2K, = 2K, =(C® +R K2 — C@KS3,
2K, = 2Ky 5 =— (c® +R12)K1

sl T (5.4)
2K11;3 = 2K11'3 = C(Z)Kl +R32K3

+ (C®) + Ry, )K4,
2K ., = 2K, , = C@K2 —(C®) +R,,)K3;
ZKIII,'I = - 4KIIF311 = (C(Z) _RIB)KZ — c(l)KB’
2Ky, = — 4Kl = B3 — C@NK1

+ R K3 — C®IK4, 5.5)
2Kyy1,3 = — 4Ky, 5 = CAKY — R, K2

+(C@) +R13)K4,
2K ;.. =—4Klg1, =C®K2 — (C@) + R, K5

These are the direct generalization (with corrected
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numerical factors) of those in Ref.1. A set of
“Maxwell equations” for the KBV, quite similar to
(2.6), can be obtained from (5. 3)—(5.5): These are

Kyyq —2RypK2 + 3R ;K3 = — 2K T3, 4, (5.6a)
Kypp * 2R oKy + 3Rp3K3 = — 2Ky T 453, (5. 6b)
K5 — 2R 3K — 3(Ry; + R33)K3 — 3Ry ,K*

= 2Ky U319, (5.6¢)
Ky + 2R3,K3 = 2K Ty, (5. 6d)

For the electromagnetic field (5. 1), the Maxwell
equations dF ) = 0 yield

0=Fp —2FuT34 —Fuygy

+ FTya1 —T124 —T34q)r (5.72)
0=Fp o+ 2FTyps + Frlyso, (5. o)
0=Fy,3—2Fls15 * Fup,e

* Frp(Tyes + Tagp + T1pp), (5.7¢)
0=Fy 4 —2F T yp; + Frylygy (5.7d)

The condition that e, be geodesic (I'y,, = 0) reduces
the last of (5. 3) to

C®K2 — CHWKS3 = (. (5.8)
The additional requirement that K be hypersurface
orthogonal involves only two cases:

Im(K;;)=0 and

Kl =K2 =0, (5.9a)

Re(K;) =0 and K3 =K4=0 (5. 9b)

[see, for example, the derivation of (5.9a) and (5. 9b)
in Ref.1]. Hence, these together imply (5. 8) is satis~
fied by CG)K2 = CAK3 = 0. The case (5.9a) is that
for which K*K = 2K3K4 and can be spacelike or
timelike. On the other hand (5. 9b) is that for which
K'K =2K1K? > 0 and can only be spacelike.

For the remainder of this section only (5, 9a) is
examined. This case includes all stafic electromag-
netic examples of the spaces underlying this section.
Then K = K3e, + K4e, and 2K, =K, ., # 0.

The geodesic condition (5.8) implies C“) = 0. Then
(5.3) gives I'y 3 =Ty, 5, = 0. From (5.4), Kj; , =
0 =Ky;,;. Hence (5.3) then implies C®) = (. Since

K 4 is real, (5.4) implies C®) = C®), Hence
1"421 = I'y,, from (5. 3); therefore, e, is hypersur-
face orthogonal. (Algebraically special cases here
fall into the Robinson-Trautman class.7) In addition
(5.5) gives T'5,; = I'y,, so that e, is also hypersur-
face orthogonal. Since K1 = K; , =I',,5 = 0, Eq.
(5.6b) implies Ry5 = 0. But Ty; = n"1F;; F ;. Hence,
with F nonnull this dictates F'[;; = 0 for consistency;
and so e5 is also a pmnczpal null dirvection for F.
Since T3, =7~ FHIF 33 = 0. The energy-
momentum tensor then has the general form
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0 [|Fl2 0 0
|F 12 0 0 0
(T,)=@mt| U
0 0 ~—‘F11l2
0 0 —[Fylz 0

(5.10)

Equation (5. 6a) gives 'y, 4, = 0 and (5.5) gives I'y;, =
0. In summary we have the following list of relations:

(i) Both e; and e, are geodesic and hypersurface
orthogonal principal null directions for dK and

F;
(ii) CW = C@) = 0
(i) Kyj 3 = Kppp = 0=Typ5 =Ty

(iv) Ro, = 2|F |2 = —R,,, with other R_, = 0.
34 11 12 ab

Maxwell equations (5.7a)—(5. 7d) are now

Fiyi1=Fu,.=0 (5.11a)
Fr3=2Fl3;9, (5.11b)
Fr,a=2F Ty, (5.11c¢c)

Killing's equations (K ., + K,., = 0) simplify to

Ky, =0=>K3T3; +Kily, =0,
K3;3 =0= K4,3 +K4I‘343 =0,
Ky,4=0=>K3, +K33,, =0,
Ky,p=0=>K3T3y, + KT, =0, (5.12)
Ky =Ks,y =0=>K%, + K3y =0=K4y3,
Ky,y =Ky, =0=>K3 5, —K3Tg,, = 0=Kily,,,
Kg,0=2K; =K%, + K434, = 2Ky,
Ky3=—2K;=>K3 3 —K3T3,5=—2K.
Equations (5. 3)-(5. 6) become
2K L4051 =~ 3COK3,
2Kyl 20 = — ;COK4,
2Ky 5 = [C®) + 2| F ;| 2]1K4,
2Ky 4 = —[C®) + 2| F 1 2] K3,
2KyTay; = 2C K3,
2K, Tqyp = 5C @KL

(5.13)

At this stage no transformations of the (allowed) type
(1.5) have been utilized to simplify expressions.
Furthermore the field equations, or “structure equa-
tions”, for the gravitational field have not been im-
posed.

The following notation is introduced: z = I'j,4,

X =T5.5,0=Tyyp,and7= 1"3.11. (Nq s.imila.rit‘y to
names of Newman-Penrose spin coefficients is in-
tended.) The structure equations may be written as
d(zel + ge2) + 2(zel + ge2) A (T, €%)

= 4C®X4ne2 +C@k3 nel], (5.14)

d(Ty,,e™) + (21 + 0€2) A (tel + x€2)
=3[CBXNel Ne2 + €3 N ed)
+ Ry, €2 hel + €3 Ned) +Ryze3 N €?], (5.15)
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d{tel +xe?) + (2T, €™) A (Tel + xe2)
= 3[C®lrne2 +CWM3 A el
+Ry4(e2 hel +€3net) —Ryzed ne2]. (5.16)

Equation (5.14) reduces to

— 23 T2lg4p T 04 — 20T 5 ~0F54, =0,
2 5 —2z2x + Lgy3) —0T = 3CG),
(5.17)
0,4 =02 + 2T 54 —T3yy)=3C®),
04 —0 +2T,, + Ty,3) —27 =0.

— 52 _ g5 — _
2 4—¢ oo zF344_0,

Equation (5.15) reduces to

—Thie * e, —Tuilize —Tpelin
+zx — o1 =3[C®)—R,,),
—Ppay ¥ lpa,s 7 Tpa(Typs —%)
T = Tppal34 =0,
~Dlia T T, T Taa(Tip4 —2) (5.18)
D0 ¥ Tppalgy, =06,
—Tge ¥ Tiyo,s = Tppa™ — Tpa(lyps %)
—Prslg4e =Ry3 =0,
—Ta43,4 T T34q,3 = 2T343T 344 = [C® + Ry,),

- I_‘123.4 + I-|124,3 - 1_‘1241-1343 - 1'1123I‘344 =0,

where Ty, = 3(Ty,, + T3,,). Finally, Eq.(5.16)
reduces to

—T, + X _7(1"342 + 2r122) +xT341 = ~— %RISZO’
T 4+ 1Dy, + 2T 55 — 2¢) = 2CQ),
T4 t7(T34q + 2154 —2) —0x =0, (5.19)

= 1
¥ 5 ¥x(Fg43 —%) =TT = —3R;,=0,

x4 Tx(Lgy, —2)—0T =3CO),

At this point one may transform K3 (for example) to
a constant with the function A of (1.5) so that K3 ; =0
in Killing's equations (5.12). In particular this pro-
vides for I'y,, = I'3,; = 0. Hence

2K11:K3r343’ 2K11:K4.4’ K4.3:_K4F343

(5.20)

K4, =K%*,=0, and xK3 +zK%*=0.

Furthermore I'; ,, and T'; ,, may be transformed to
zero by the function B of (1.5). Consequently Egs.
(5.17)-(5.19) become
2 o—0 4+ 2705, =0,
2320343 =%,
z2,,—22—~00 =0,
03—0(x + Tg43) —27 =0,
04— 202 = 3C(®),
- 1ﬂ121,2 + 1—‘122,1 - 2Iﬂ1221—‘121

+ 2zx — 201 :C(S)_RM,

l—‘121,3 * 1-|343,1 —xr121 - TF122 =0,
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r —zT - oI =0
121.4 121 122 ’ (5.21)

Ty9n,3 + T343,20 —4T139 — T35 =0,
—T343,4 =C®) + Ry,

F343,0=T343,2 =0,
To—%1 121055 =0,
T 3 +7(Fg43 —2%) = 3CQ),

7'4—-7'2 — 00X :O’

x4+ x(Tgu3 —%)—77 =0,

- — — 1
X 4 —%2 —0T =35C®

(= o7 is real).

Consider the case where z = 0. Then x = 0, and vice-
versa from (5. 20). Furthermore 0 = 17 = 0. Hence
C@W=0fori=1,2,3,4,5. The space is therefore
conformally flal, with F; (and therefore F) being con-
stant. The metric of this space is included in the
work of Cahen and Leroy?8 in their study of the most
general conformally flat Einstein—-Maxwell spaces
with a nonnull electromagnetic field.

With z = 0 assumed, the results of this section are
summarized in the following lemma.

Lemma 2: Let K = K%e, be a Killing vector fieid
in an Einstein—Maxwell space where F = F e A €
is the electromagnetic bivector. Furthermore, let

(i) —dK =K,,,e2 A €® be the nonnull KBV,

(ii) F be nonnull,

(iii) e; be a principal null direction for dK,

(iv) e, be a principal null direction for both dK and F,
(v) e, be geodesic,

(vi) K be hypersurface orthogonal with Im(X ;) = 0.

Then

(a) e, is also geodesic and is a principal null direc-
tion for F;

(b) e, is shear-free <= e, is shear-free (from
KZ;Z = 0);

(c) ey and e, are hypersurface orthogonal;

(d) Typ3=Tyy3=T514=T394=0;

(€) Kyj,3 =Ky, =0=Fy; =Fp,;

) CH=Cc@ =0y

(g) arg(F,) = const.

It should be noted that as long as C(6)C 1) = 9C 3)2,
this lemma applies to algebraically general cases.

6. ALGEBRAICALLY SPECIAL STATIC CASES

From an invariant viewpoint, the algebraically special
cases from Sec. 5 above are those for which either

(1) e; or e, is geodesic and shearfree or (2)

C®G)C 1) = 9C B2, Here we propose to examine the
case (1): 6 = 0and z = 0.

By part (b) of the lemma above, e; and e, are geo-
desic and shear-free; hence 0 =7 = 0 and the space
is Petrov Type D. The structure equations (5.21)
yield

2, =2,=0, (6.1a)

2 3 =203, txz2 +3CG), (6.1b)
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z 4 =22, (6.1c)
X1=%,=0 (6.1d)
X3 =%2—xTg,q, (6.1e)
X, =%z +3C0), (6. 1f)
343,14 =T343,2=0, (6.1g)
Ty =C® +2|F,|2, (6. 1h)

D910 T Ty9g,1 =20 15,05, + 225

:C(3)"‘2’F11|21 (6.11)

Ti21,3=%C1595 (6.1j)
Tio1,4 =20 5. (6. 1k)

Consider first the relation from (5. 12) stating that
K3x + K4z = 0. Since K3 has been transformed to a
constant, it is possible to make that constanty unity,
so that — K4z = x, Define X= — K4, Then

x = Xz, (6.2)

where X is real. Furthermore Killing's equations
(5.12) imply

In particular note that (logX) ; = X , is implied.
From (6.1e) we have

(logx) 3 =x — T4,
=x + JC'4.
Furthermore
(logx) 5 = (logXz) 3 = (logX) 5 + (log2) 5
=X , + (logz) 5.

Consequently
{logz) ., =x
3 (6.3)
= z 5 =Xz,
In particular this implies
25,3 =—3C0®) = 22K ;. (6.4)

Next consider Egs. (5.11a)-(5.11c). These have the
general solution

Fi=az?, (6.5)
where o is a complex constant. Therefore |F ;|2 =
adz4, Differentiating (6.4) and using (6. 1g) with
(6.1h), one obtains

C®), —32C®) = 4adz5. (6.6)

The general solution to (6. 6) is
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C®) = (2C + 40dz)z3, (6.7)

whereC | =C , =C , = 0. Furthermore, differen-
tiation of (6.7) yields

C®) . =C 423 + 3Cxz3 + 16aaxzd.

The relation £, C3) = 0 yields K3C®) , + K4C®) , =

0. Hence C®) ; = XKC G , = Xz4[6C + 16aaz]. Put-
ting all this togetherresults in C ; = 0 since z # 0.
Therefore C is a constant in the expression (6. 7).

The expression for the function X introduced in (6. 2)
is now computed. Since X , = I'5,3, Eq. (6. 4) gives

X 4 =Cz2 +20az3, (6.8)

Equation (6. 8) has the general solution (since X ; =
x,=0) '

X =Cz +adz2 + K, (6.9)

where X, ) =X, , =%, 4, =0. Since X ; = XX ,
we get, after detailed calculation, X, , = 0. Hence
X is constant.

V]

The last field equation (6. 1i) now becomes

~Tya1,2 T Ty9,1 — 2T 53055 = — 2K 22, (6.10)

It can be shown that X in (6.9) and (6.10) is an
essential constant and is transformed away if and

only if I';,, = 0. Now it is clear that dT',, A T',, =0,
so that there exist functions ¢ and £ for which
zel =T,, = e%dg. (6.11)

If we compute del =T, €4 €®,we obtain ¢ ; =
~T,and ¢, =T ,, withe 4, = ¢ 5 = 0. Equation
(6.10) then becomes

@91 Q10 20 50 =—2K 22,
Hence, if we define Re(¢) = p and Im(p) = ¢, then
P01 T @12=P 12 TP 21 —iq,12—9,21)-
Furthermore
20 591 = 2P 1P 5 t414,2) =P 54 3 —P 19 5)
Therefore (6.10) now takes the form

— 2R 22 =p 15+ P 31 T 20D 1P 5 T4,14,5)
—i(q,lz—CI,zl +2p,2q'1—~2p.1q,2). (6.12)

Commutation relations on e; and e, give

Dag =01 =P 2P, —019,2=—iP 19,5 +P 44,1);

9,12 9,21=49,29,1 919,22 =9,20,1 9,102

— 2iq,1q,2.

Together with (6.12) these give
—X2Z2=p 15 TP 10,5 TP 19,5).

At this stage it is possible, by letting iB = — ig in
the transformation (1. 5), to transform ¢ to zero since
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4,3 =4q,4 = 0. Equation (6.12) and other calculations

simplify, giving p ,, =p ,; and
Do th P 5 =— 2K 22, (6.13)

In addition to the Bianchi identities all being iden-

tically satisfied at this point, the following fact is

easy to show: [K,e,] = 0fora =1,2,3,4. This

means, in particular, that the curve parameter along

K could serve as a coordinate, if needed. We choose

coordinates, in fact, in the following manner. Let

¥ = — 1/z and define the real coordinate ¢ through

€3 = do, since de3 =T, ;€2 > = 0, Then dr =

Xe3 + €4 and

€l =z 1lgrdl = —verdt,

€2 = z7lerdf = — yerdt, 1
6.

€3 =do, ( )

€4 = dr — Kdo;

i.e.,t and € form the other two (complex) coordinates
and p = p(£,£). The corresponding contravariant
basis is given by

e, =—7le e, = —r le p);
1 [ 2 [ (6. 15)
e; =3, — X9, e, =70,.
The metric g,,€%€® becomes
ds2 = 2r2e20dCdt + 2dvdo — 2Xdo2, (6.16)

where X = — (c/r) + (@@ /r2) + X,. The electro-
magnetic field bivector is

F =F el + FreV = 2F ,,e3 A et = (4a/r2)do A dr.
(6.17)

Note here that all the spaces in the class (6.16) have
the same electromagnetic field no matter what the
function e2¢,

By virtue of Eq. (6. 13) the function p = p(£, §) above
obeys

e"ZPp,gg— =—X,. (6.18)
This equation occurs frequently in studies of algebrai-
cally special cases and expresses the curvature
(— JCO) of the two-dimensional space d_72 = e20d{dt.
Equation (6.18) implies also that p(¢, ) satisfies
(0,2 —p ¢ = G({), where G is an analytic function;
i.e.,

(e?) = e &G (L), (6.19)
A second Killing vector field L = 19, + ﬁag satisfying
[K,L] = 0as well as dL A L =0 is possible if the
following coupling with p is satisfied:

(e2pn), + (207); = 0, (6.20)

where 7 is an analytic function of { only. The vector
L is spacelike and it can be shown that neither e, nor
e, is a principal null direction of the Killing bivector
dL. Hence one can deduce that these properties to-
gether with K define an axially symmelvic space.
More detailed analysis of examples fitting into this
class have been given at various times in the litera-
ture (see for example Witten®; Robinson and Traut-
man7),
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A prescription for decomposition into form factors of the matrix elements of totally symmetric tensor currents
between (s, 0) and (s’, 0) spinor states of the incoming and outgoing particles of spins s and s’ is presented.

The case of the electromagnetic. current is studied in some detail, and a procedure to modify the above pre-
scription resulting in the grouping of the form factors into Dirac—type and Pauli-type classes is given.

Several examples are used for illustration.

1. INTRODUCTION

The importance of the decomposition of a three-point
scattering function into form factors has been dis-
cussed by several authors,! =7 who give various dif-
ferent methods of effecting these decompositions for
processes with on-mass-shell particles (i.e., parti-
cles between whose states the matrix element of the
currvent is taken) of arbitrary pins, and with off-
mass-shell particles (i.e., bosons which couple to
the current) of both speciall (j = 0,1) and general
spins2 7”8, These different methods can be classified
under two distinct categories, which both have their
analogues in the decomposition of four-point function
decompositions. One is the canonical way of decom-
posing the Lorentz-covariant spinor function3:9 as-
sociated with the process into invariant functions
which have only dynamical singularities in the in-
variants of the process. The methods given by Refs.
(4-8) belong to this category. The other category,

to which the methods of Refs.1-3 belong, is the direct
utilization of the physical scattering function of the
process, in particular, the helicity amplitudes.19
From now on we shall concern ourselves with the
first category exclusively. One advantage that this
covariant approach has is that constraint conditions,
such as Lorentz conditions and gauge conditions, that
are expressed in a manifestly covariant form, can be
incorporated into this framework directly. In fact,

in this article, we are concerned eventually with pre-
cisely these considerations.

In the first category, Ref. 4 utilizes spinor functions
that are constructed from Rarita—Schwinger spinor
states, which possess decompositions into a number
of form factors that is larger than the number of
couplings obtained for the corresponding physical
process by use of the Clebsch— Gordan coefficients
(CGC) of the Poincaré group and the Wigner-Eckart
theorem, presented in Ref.5. The number of these
invariant functions can be reduced to the number of
independent physical couplings by projection of the
spinor states onto physical scattering states that re-
sults in “redundancy conditions,” which are rather
complicated in these cases. Moreover, when more
than one such spinor state is involved, the use of
other spinor identities? is necessary. This is an in-
direct method and involves unnecessary complication.

References 5 and 6 give the vertex functions related
to the matrix elements of the current such that the
on-mass-shell particles of spins s and s’ are repre-

sented by spinor states transforming according to
the irreducible representations (IR) (s, 0) and (s’, 0),
respectively, of the homogeneous Lorentz group
(HLQG), and the boson of spin j that couples to the cur-
rent by the IR of HLG (7, 0).

Reference 7 gives the vertex functions where the
three particles are represented by spinor states
transforming according to the IR's (4,,B,):

A, ® By D s,(A;,B,):A, ® B, D s’,and (4,B):
AQ® B D j of HLG, respectively. The distinguishing
feature of this method is that in this way it can be
arranged to have vertex functions without explicit
factors of four-momenta appearing. In Refs.5 and 6
four-momenta do feature explicitly.

Reference 8 gives form factor expansions of matrix
elements of totally symmetric tensor currents which
transform according to the representations (3, 3) X
- *+(e.g., the vector and tensor currents), taken be-
tween spinor states relating to the sequence of IR's
(s,0), (s —3,%8)""*,(,s —3),(0,s) of HLG, where

s is the greater of the spins of these two particles.
These are the Fierz—Bargmann-Wigner spinor
states.

It is clear that for the on-mass-shell particles, by
far the best spinor states are those belonging to the
IR of (s,0) of HLG, since these give rise to no re-
dundant components. For the current (off-mass-shell
particle), however, it may be advantageous to use
spinors of more complicated representations which
lend themselves naturally to the constraints of some
dynamical model for the interactions. Examples of
this situation are the weak-interaction currents (with
the formulation of PCAC, etc.) and the electromagne-
tic currents, which couple to the vector potentialll
A‘J (x) and which motivate the choices of construction
made in this paper.

We give a prescription for decomposing the matrix
element of a current that can couple to a particle of
spin-j, belonging to the symmetric tensor represen-
tation (z,3); ® (3,3), ® "+ - ® (3,3), of HLG taken
between the spinor states {p(s’,0)a| and |k(s, 0)4}
of the on-mass-shell particles whose free-particle
states belong to the IR's [m’, s’] and [m, s] of the
Poincaré group. In this way we incorporate the sim-
plicity of representing the on-shell particles with
the advantage of having a tensorial current. This
method is in fact the direct generalization of the
method used to decompose the matrix element be-
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Several examples are used for illustration.

1. INTRODUCTION

The importance of the decomposition of a three-point
scattering function into form factors has been dis-
cussed by several authors,! =7 who give various dif-
ferent methods of effecting these decompositions for
processes with on-mass-shell particles (i.e., parti-
cles between whose states the matrix element of the
currvent is taken) of arbitrary pins, and with off-
mass-shell particles (i.e., bosons which couple to
the current) of both speciall (j = 0,1) and general
spins2 7”8, These different methods can be classified
under two distinct categories, which both have their
analogues in the decomposition of four-point function
decompositions. One is the canonical way of decom-
posing the Lorentz-covariant spinor function3:9 as-
sociated with the process into invariant functions
which have only dynamical singularities in the in-
variants of the process. The methods given by Refs.
(4-8) belong to this category. The other category,

to which the methods of Refs.1-3 belong, is the direct
utilization of the physical scattering function of the
process, in particular, the helicity amplitudes.19
From now on we shall concern ourselves with the
first category exclusively. One advantage that this
covariant approach has is that constraint conditions,
such as Lorentz conditions and gauge conditions, that
are expressed in a manifestly covariant form, can be
incorporated into this framework directly. In fact,

in this article, we are concerned eventually with pre-
cisely these considerations.

In the first category, Ref. 4 utilizes spinor functions
that are constructed from Rarita—Schwinger spinor
states, which possess decompositions into a number
of form factors that is larger than the number of
couplings obtained for the corresponding physical
process by use of the Clebsch— Gordan coefficients
(CGC) of the Poincaré group and the Wigner-Eckart
theorem, presented in Ref.5. The number of these
invariant functions can be reduced to the number of
independent physical couplings by projection of the
spinor states onto physical scattering states that re-
sults in “redundancy conditions,” which are rather
complicated in these cases. Moreover, when more
than one such spinor state is involved, the use of
other spinor identities? is necessary. This is an in-
direct method and involves unnecessary complication.

References 5 and 6 give the vertex functions related
to the matrix elements of the current such that the
on-mass-shell particles of spins s and s’ are repre-

sented by spinor states transforming according to
the irreducible representations (IR) (s, 0) and (s’, 0),
respectively, of the homogeneous Lorentz group
(HLQG), and the boson of spin j that couples to the cur-
rent by the IR of HLG (7, 0).

Reference 7 gives the vertex functions where the
three particles are represented by spinor states
transforming according to the IR's (4,,B,):

A, ® By D s,(A;,B,):A, ® B, D s’,and (4,B):
AQ® B D j of HLG, respectively. The distinguishing
feature of this method is that in this way it can be
arranged to have vertex functions without explicit
factors of four-momenta appearing. In Refs.5 and 6
four-momenta do feature explicitly.

Reference 8 gives form factor expansions of matrix
elements of totally symmetric tensor currents which
transform according to the representations (3, 3) X
- *+(e.g., the vector and tensor currents), taken be-
tween spinor states relating to the sequence of IR's
(s,0), (s —3,%8)""*,(,s —3),(0,s) of HLG, where

s is the greater of the spins of these two particles.
These are the Fierz—Bargmann-Wigner spinor
states.

It is clear that for the on-mass-shell particles, by
far the best spinor states are those belonging to the
IR of (s,0) of HLG, since these give rise to no re-
dundant components. For the current (off-mass-shell
particle), however, it may be advantageous to use
spinors of more complicated representations which
lend themselves naturally to the constraints of some
dynamical model for the interactions. Examples of
this situation are the weak-interaction currents (with
the formulation of PCAC, etc.) and the electromagne-
tic currents, which couple to the vector potentialll
A‘J (x) and which motivate the choices of construction
made in this paper.

We give a prescription for decomposing the matrix
element of a current that can couple to a particle of
spin-j, belonging to the symmetric tensor represen-
tation (z,3); ® (3,3), ® "+ - ® (3,3), of HLG taken
between the spinor states {p(s’,0)a| and |k(s, 0)4}
of the on-mass-shell particles whose free-particle
states belong to the IR's [m’, s’] and [m, s] of the
Poincaré group. In this way we incorporate the sim-
plicity of representing the on-shell particles with
the advantage of having a tensorial current. This
method is in fact the direct generalization of the
method used to decompose the matrix element be-
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tween two spin-3 particles of the electromagnetic
currentl2:

{p Z,O)a‘JM 2,2)|k(2,0)*b} F )(jwi'*-)p)al';
+Fp ()N 5, (D)
with
ME¥ = o 1 potk, MP¥ = (k + p)P*

N®u = [p(aror — G¥o¥) + (oF6% — o¥G¥)k]g,; (2)

v

P=p+k, q=p-—*k
The notation
. ki o#a — k}{g}z‘ib
o :—‘;,#7 k?b :‘};li_, oy =(0070),
and 6” = (0g,— 0),
where o are the Pauli spin matrices.
The basis N¥; can be related to M §+) and M éﬂ linearly,

through use of the Dirac equation, and the super-
scripts () signify vector and axial vector character.
The equivalence of this two-component basis to the
usual four-component basis given in terms of Dirac
y matrices is given in Refs. 13 and 14. We choose to
use the (2s + 1)-component (s, 0) representations
throughout and not the 2(2s + 1)-component

[(s,0) ® (0, s)], because the former has some tech-
nical advantages in general cases, especially when

s =8,

This prescription is presented in Sec.2,and some
examples are given. In Sec. 3, the special case of the
electromagnetic current is discussed in some detail,
with special emphasis on the physical circumstance
that this current actually couples to a vector poten-
tial A, (x) and not the electromagnetic field.!1 As an
example, the matrix element of the electromagnetic
current between two spin-1 particles is decomposed
into form factors that can accommodate the above
physical properties of the interaction, to illustrate
the fact that the method given in Sec. 2 is amenable
to this kind of procedure. In fact the procedure fol-
lowed in Sec.3 can serve as a prescription for de-
composing the matrix element of the electromagnetic
current between the spinor states of a particle of
arbitrary spin.

2. FORM FACTORS FOR jth-RANK TENSOR CUR-
RENTS

The jth-rank tensor currents we shall consider are
those that couple to spin-j particle fields belonging
to the IR (3, 3) of HLG which are themselves jth-rank
symmelvic tensors, satisfying the generalized
Lorentz conditions

a“”Apl"‘“n"'“j(x) =0, n = 1,...’]-’ (3)
from which it follows, that all bases in the decompo-
sition which contain ¢*, the four-momentum of the
tensor particle, will not contribute to the physical
matrix element and hence can be neglected, and that
the current is also a symme/lric tensor.

This symmetry of the current and the Lorentz con-
dition (3) will be the only constraints we shall need in
our construction below.
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A. The Spin Matrices

In this subsection we shall give the definitions, ac-
cording to Ref. 13, of the spin matrices which are the
direct generalizations of the matrices o* used to
construct the covariant bases in (2). Unlike o*, how-
ever, which transforms according to the IR (3, 2) ~
(2,0) ® (3,0)* of the HLG and is a 2 X 2 matrix, spin
matrices in the general case, are not necessanly
square, that is, they transform according to the IR
(s, s) of HLG, where s # s’. In the special case where
s = s’,such matrices have also been defined and
used in Ref. 14 to construct projection operators for
propagators, i.e., covariant basis for two-point func-
tion, arising from the use of local fields with HLG
transformation (s, 0). Since the spin matrices are
so0 well discussed, we shall limit ourselves here
simply to defining them and then exposing the sym-
metry properties of a few special cases which we
shall need in the examples, later in this section.

A spin matrix is called a spin-j matrix if it trans-
forms according to the IR (s’, s) of HLG, where
max(s’, f) =j. Such a matrix can be constructed from

2j spin-3 matrices Oups " ’Uﬂzj with the aid of the

CGC of SU(2). Clearly for j > 1 there are several
modes of making the couplings, and this must be
specified for each such matrix, since the symmetry
properties depend on it.

From the point of view of presentation, the clearest
way of defining these matrices is to build the spin-1
matrices from spin-3 matrices first, and then define
the spin-3 matrices in terms of the latter thus pre-
scrlblng the constructlon of a spin-j matrlx by means
of spin-z and spin-(j — 3) matrices, etc., always
remembermg to record the modes of coupling, except
in cases where s’ = s = j, where the latter is unique.

Thus we write the spin-1 matrices:
ok i 1 bbs
P ! z(s’)s)aé = 1(Z;Z)abp (Z:Z)arl';/[%_lfs,]ia [%%S]é ’

where [331]2" is a CGC of SU(2),p#(3,3) = (1/V2)o*

and repeated indices are summed over. s’ and §

can take on the values 0 and 1. The verification that
(3) has the transformation of an IR {s’, s) of HLG is
performed in Ref. 13 by use of the orthogonality rela-
tions of the CGC's.

We next write the spin-3 matrices by means of (3):
,8):(L"L)] 5
= p"1(3,3) 30" (L, L) 3517 s

where s’ and s can take on the values 3 and 3.
now clear how to construct a (j’

p“l“z“a [(s'

L's']y [LS]B, (4)

It is
,J) matrix for any j.

The symmetries that these matrices may possess
may be obtained in the general case, by using the sym-
metry properties of the constituent spin matrix, e.g.,
the symmetry of p*2*3 (L, L) in (4’) and by further
using the properties of the CG and recoupling (or
Racah) coefficients of SU(2). In the basic case of
p"1f2(s’, s), the symmetry properties can be derived
from the properties of the CGC's and some basic
spinor identities.13

Thus, from the properties of CGC's under the inter-
change of two indices, the following useful property
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of the spin-1 matrix follows:
prifa(1,1) = pta¥i(l, 1), (5)

while using!3 ol 0, = =2C_, C;} we find that

g‘llﬂzp“l“z(l,l) = 0. (6)

Another useful property of spin-1 matrices follows
from the identity 0,6, = g,, + z1€,,,, 0T

prik(1,0) = ziek1¥21v2p, (1, 0), (7
from which it is also apparent that p#¢(1, 0) and
ptv(0,1) are antisymmetric and traceless with re-
spect to their space—time indices y and v.

Using (5)—(7) as well as properties of CG and re-
coupling coefficients we can find the symmetry pro-
pertles of the next higher spin matrices, namely
spin-$ matrices. In this way,for s’ = s = { and

L' = L in (4’), we find, using the appropriate recoup-
ling coefficient, that

phitets(3 3) = preiibs (3,3 (8)
but according to (4),p*1#2¥3(3,3) is symmetric in the
interchange of p, and p; and therefore it is sym-
metric in all its space—time indices. It follows from
(6) and (8) that it is also traceless with respect to
any two of its space—time indices. In fact symmetry
and tracelessness is a well-knownl? property of all
square spin matrices,i.e., s = s’ = j, which can be
seen by carrying out the above procedure to arbi-
trary j.

Let us now consider the case s’ = 3s = 3 in (4). This
can be achieved through both L’ =1,L =0 and
L’ =1,L = 1;and the two matrices are related as

follows:

Jépu1u2u3[(_ %) . (1,0)] — puaugul[(%’

2):(1,1)],
“3#2#1[1 L) (1 0)

2):(1,1)]
— $pHikaba %’

é’d pFikeks[(d 9)

3):(1,1]=
3,2):(1,0)]

by use of the appropriate recoupling coefficients. It
is clear from (9) that one is free to choose between
(L',L) = (1,0) and (1,1). As in our example, we
shall choose to use (L*,L) = (1, 0); we shall not need
(9) from now on. Finally, we glve the following useful
symmetry property of p*1#2#3[(3 3) : (1, 0)], obtained
like (8) was, but by use of (7) and its consequences:

puluzus[(z, 3:(1,0)]=

+ pHikz “3[

0“2“1“3[(2, 3): 1, 0)]

+pH 2R3 3) 1 (1,0)],  (10)
where the notation pv serves to remind us of the
additional property that the interchange of y and v

is antisymmetric. It is, of course, easy to find the
relation analogous to (10) for p[(z, 3):(1,1)].

B. The Form Factors

In this subsection we present our prescription to
decompose the matrix element of a tensor current
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of order j between (s’,0) and (s, 0)* spinor states
corresponding to the on-mass-shell particles whose
free-particle states are labeled according to the IR's
[m’, s"] and[m, s] of the Poincaré group. The currents
are tensors in the sense that they transform accord-
ing to
UA)J 1 *i(x)U-1(A) =J”1"'”J'(Ax)A“‘,i. ARG (11)
7
Furthermore, these tensor currents are symmetric
in all their space—time indices, that is, they couple
to spin-j tensor fields of rank j.

We adopt the following notation:

{p(s,00ald, .y k(5,08 =M, ..y (Pra)e,  (12)
with the decomposition (suppressing tensor and

spinor indices)

m
MP,q) = LEVPAMOP,q)
i=
n
+ 2 FA)MIXP, q), (13)
i=m+l

where F; ¢ )g2) are the m form factors correspondmg
to the posmve parity signature couplings and F; Og2)
the (n — m) form factors for the negative- parlty
signature couplings. The M~ (P,q) are the covariant
bases of both parity signatures, respectively, and
have the same transformation properties under HLG
as M(P,q). Our object is now to construct the set of
independent bases M fi ) out of the two independent
four-momenta P and g of the process which are
equal in number to the number of physical couplings
of the corresponding vertex. The only constraints to
be used are those given by (3), in addition of course
to those imposed by the symmetry properties of the
spin matrices that are used in the construction.

Before we actually carry out this construction, we
must indicate how to proceed, such that the bases
we obtain should be endowed with definite~parity
signature.

It follows from the transformation properties of the
(s, 0) spinor state5 that any basis in the decomposi-
tion of (12) will undergo the following transformation
under space reflection:

My (P,q) o5 & T ()0 aMi (P, q)s T ()P, (14)

where I1 (k) = p e (s, S)kpl- .-k, _as in Ref. (14),
S

and 11 (k) = T1(k), where £ = (k,, — k) the space-reflec-
ted four-momentum. Thus, by replacing all four-
momenta K by their space-reflected counterparts K
in the right-hand side of (14), the parity conjugate of
each basis can be found, and by adding (subtracting)
it to (from) the original basis the positive (negative)
signature combination can be obtained. The space-
reflection character of the positive- (negative-) sig-
nature combination is that of a j th-order tensor
(axial tensor) characterized by the space—time in-
dices (k) = (uy- - p,

All that need be done now is the construction of the
bases Mlu) (P’q)aﬂ’ out of the four-momenta P,q and
the (s’, s) spin matrices, where the on-mass- shell
partlcle spins s’ and s (s > s), according to the fol-
lowing prescription:
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(a) s"> j. Contract » of the space—time indices of
the spin matrix with all permutations of the four-
momenta P and ¢, giving all independent rank-(2s’ —
r) tensor covariants, having taken into account the
symmetry properties of the spin matrix, Then multi-
ply (in direct product) by #’ factors of the four-vector
P,where 7' is such that (2s’ — 7) + 7’ = j, thus obtain-
ing all independent rank-j tensor covariants. The co-
variants arising from the multiplication in direct
product of the four-vector ¢ have been omitted since
their contributions vanish under the constraint of (3).
Repeat the process from v = 28’ —j,--- , m tovr =
2s’.

(a") s’ < j: In this case the above process should be
performed v = j — 2s’,-+- 2s’,

(b) The rank-j tensor bases obtained in (a) or (a’)
should then be symmetrized in all space-time indices
Byt iy The bases can then be obtained in their final
form accommodated by the decomposition (13) by (c).

(c) Castingallbases M(“)(P, q)p into parity-definite (£
form (combinations) with the help of (14) and the dis-
cussion following it.

We shall now illustrate the above prescription by
some examples, (i)—(iii), which cover all cases s’ zj
and s’ = s and hopefully are also of some physical
interest. The notation we use is the one of (1) and

(2), in which the incoming (outgoing) on-mass-shell
particle has mass m (m’'), spin s(s’) and four-momen-
tum k (p),with P =p + k and ¢ =p — k. In addition,
we shall in the following use the shorthand

p“r"“zs'(sl’ s) = (“1' . ‘“251)(5 '-s)’

(s*,s)

s’

L))

Hibo By 15
KR O (15)

= (X1 Xge e e X, Pyiqe e e by

where x, is the four-momentum of one of the on-mass-
shell particles, divided by its mass. In this notation

M p) = (p, 0, * =, o).

(i) j =1, s’ =s = 3: According to (a), we can con-
struct from P and ¢, or more conveniently, from &

and p and the (3, 3) spin matrices the following bases:

(W #2, () B2, () S

and by the use of (¢) we find the bases of both parity
signatures o, =+ 1:

ME" = () = (D)D),
MO =[(k) £ (p)]P+.
= + 1 members of {(16) are in agreement with

As it happens, there are in
= — 1 couplings for this

(16)

The o,
the same members in (2).
fact two 0, = + 1 and two o
vertex.

(ii) j =1, s" =1, s = 0: There are two o, =— 1 and

one o, = + 1 couplings for this vertex.
According to (a) we find the following bases:

1,0 a, 0)

YO up) Y,

(uk (kD)

and by applying (c) we get the following ¢, -definite
combinations
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MDY = up) ™9,
MEO¥ = (kp) LOph
k- P
MOE = () GO +mﬁ( p) &0 += - (kp) 1O

(17)

’

_ @0 kP O _1, Ou
= (uk) + o MY+ M

where it is clear that we have had to use the condi-
tion (3) once more on the third member (o, = + 1).
The contractions implied in (14) have been carried
through by use of the orthogonality conditions on
the CGC.

(iii) j =1, s’ =s = 1: There are four o, = + 1 and
three o, = — 1 couplings for this vertex:
@ (W)WY,  @p)@D,  (kk)@,DPH,
(pp) VP, (kp) L VP,
(c) At this stage, we have used the following useful
identity:

(pp) @D () 4,1 (k) 4D = (pjik, pok) 4,1, (18)

where ({t; V) is just the spin matrix constructed from
the spin matrices d* and &%, and the right-hand side
of (18) means

(DRik,DVE) o5 = (DTRE) 3 (DTR), 5, (33110 (35113
In fact (18) is the special case (s = 1) of the more
general identity
T~
(pp- . -p)(s.s)(ulpz. .o #25)(&5) (kk- .o
= (p":"lkap’ﬁZky o ,Pﬂzsk) (S's)’

k) (s.8)

(20)
with a similar notation for the right-hand side of (20)
as that of (18) [cf. (19)].

Using (14) and (18), we obtain the following o, —
definite combinations

‘ 1 _
MO = () B £ (pr,p) TP,
+ 1,1 - 1
MY = ()P & (pfik, k) P, (21)
1,1 1,1
M = [(er) P (pp)‘ 1P
£ 1,05
(iv) j =1, s’ =3, s =3: There are three o, = + 1
and three o, = — 1 couplings for this vertex:
(@) (RSP, ()=, (pkp) PP,
(P €2, (PIDSP,  wkp)S PPt

where the designation of the antisymmetry used in
(10) is used here. In fact the above bases have been
constructed subject to the restriction of this anti-
symmetry, as well as of (10), which eliminates the
basis (ukp).

(c) The operation of (14) is carried out by using the
orthogonality conditions of the CGC in a very simi-
lar manner as in (ii) yielding the following definite
o, contributions:

@ u

MP" = [(ep)2? * (pp) D7?),
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MY = [(kkp) @72 F (pRp)ED|pH, (22)
mE = (kRSP + (puk) &P
k- P 1(*)# . 1 MfF)u
mm om’ 2 ¢

(v) =1, s’ = s = §: There are five 0, = + 1 and

five o, = — 1 couplings for this vertex:

(a)
3,3 3.3) 3.3 33
(wkk) =2, (uep)©2 (k) S Pr,  (pp) ©P P,
3,3 (/ 3)
(wpp) 2’2", (ppp) 2P, (pkk) G PH,
which are all the independent bases, satistying (3),
and the conditions coming from the symmetry of
square spin matrices in all their space—time indices.

(c) Using (20) for s = 5 in the application of (14), we
get the following definite o, bases:

MO = (ue) €2+ (pitk,p,p) S 7
MY = (upp) 9D £ (pik,k, P,
MP¥ = (up) €2 £ (pk,p, 0P, (23)

A/lz(;t)“ _ [(kkk)(%’%):t (ppp)(%;%)]})l‘

e 3,3 @,3
MY = [(epp) €72 = (pkk) S P]PH-
(vi) j =2, s’ =s =3 (j > 2s): There are two ¢, =
+ 1 and two o, = — 1 couplings for this vertex.
(a)

L1y @Y p
WP, PP,
which all satisfy (3). We next apply symmetrization
in the indices pv as this current must couple to a

spin-2 particle for which there is a second-rank
symmetric tensor field.

A, v
Pp'p”, (p)F PP,

(b) (wWPv + )P+, (R)PPPY, (p)PHPY

and (c) finally we obtain the o_-definite bases:

MPE =~ [ £ (D@EIPY + [(0) + (D) @) ]PH
MEY = (&) £ (p)]PrPv. (24)

(vii) j =+ 1 and

four o, =—

(a)~(b)

2, s = s =1: There are five o,
1 couplings for this vertex.

(uv) O (uk) @D pr + (yk)(lyl)Pl‘,(kk)P“PU’(kp)PFPu’

(4p)EsDPY + (up) WD P (pp)PHPY,
(c) with the o_-definite bases
M = @) SV & (o, p7R) Y,
ME = [ @ + (b, p) SV]Pe
+ [R) @Y & (pvk,p) VI,
M = ()M x (pik, k) S V)P (25)
+ [wp) BV = (pok, B) T DIPY,
M = [(kk) £ (pp)]P* P

MO = (rp)P*P*
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It should be mentioned that the form factors occur-
ring in the decompositions of (i)—(vii) are not the
couplings occurring in the Clebsch-Gordan decompo-
sition of the Poincaré group for the respective pro-
cesses, although they are equal in number to these.
A particular case for the comparison of such coup-
ling functions (of ¢2) labeled by s & s’ and the orbi-
tal angular momentum [, with the form factors given
by the method of the present article, for the same
process (j =1, s = s’ = 3), is to be found in Ref. 15.

3. ELECTROMAGNETIC INTERACTION

This is the special case of j = 1. The method of de-
composition described in Sec. 2 does not use any-
thing but the covariance property (under HLG) of the
spinor matrix element, and the assumptions that it is
analytic in the components of the four-momenta and
possesses a decomposition into invariant functions
(form factors) that are holomorphic in the scalar
variable of the process. These assumptions are
expected to accommodate all types of interactions,
but that does not mean that the ensuing decomposi-
tions would be suitable for describing any interaction,
for it may be the case that some interaction satisfies
the above assumptions only under certain conditions
governed by certain constraints. A case in point is
the electromagnetic interaction, where the mediating
quantum is not the photon field F#v(x) but the vector
potential A#(x), which unlike the field, does not trans-
form according to any IR of HLG. However, its use,
or in other words the use of the electromagnetic
current coupling to it, does not violate the assump-
tion of covariance made in Sec. 2, provided the cur-
rent satisfies the following constraint derived in
Ref. 11;

8,JH(x) = 0, (26)

in which case the coupling J¥ (x)A,(x) is guaranteed
to be a Lorentz scalar. In a purefy S-matrix theo-
retic framework, the condition (26) is replaced by
q,M*(P,q) =0, ¢2=0. (27
The derivation of (27) is given in Ref. 16, and its main
ingredients (as in the derivation of the noncovariance
of A ( ) and hence (26)) are the properties of the re-
presentatlon function of the little group of the Poin-
caré group for massless particles. Equations (26)and
(27) comprise the massless particle gauge conditions.

In order to be able to enforce (27) in a convenient
framework, we have chosen to write the matrix ele-
ments of currents of Sec. 2 in tensorial form. We
have, in particular, avoided currents with (j,0) HLG
transformation properties because these can couple
only to (j,0) photon fields (related to F,,) and not to
the vector potential A, .

The reason that we must insist on the coupling to

the vector potential is that such an interaction, as
opposed to one mediated by a (1, 0) photon field, does
not vanish in the limit of the four-momentum of the
phonon, g, , vanishing. This property is desirable be-
cause it accommodates the Coulomb interaction, It
follows from this argument that our approach in Sec.
2 of using tensorial rather than (j,0) currents is
compulsory only if the particle it couples to is mass-
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less and mediates an interaction which has a long-
range effect in the limit ¢, — 0, and not if it is a free
particle, massless or massive, in which case, cur-
rents transforming according to any IR (4, B) of

HLG can be used, subject in the massless case to the
condition (3. 8) of Ref.17. It also follows that our
approach is specially useful only for j =1 and 2 (pho-
tons and gravitons).

We now proceed to give a prescription for j =1,
which, although consistent with that given in Sec. 2,
modifies the decomposition of the current to satisfy
the additional features of photonic interactions de-
scribed above.

Needless to say, the masses of the on-shell particles
will be taken to be equal, m = m’, in the following,
since otherwise we would be excluding the crucially
important possibility of ¢, — 0.

Our prescription is a very simple one. In Sec.2 we
obtained decompositions with respect to bases which
can be divided into two distinct classes: those with
the space—time index carrying the vector character
belonging to the spin matrix and those with the vector
index appearing on P¥. Both of these are capable of
contracting with a vector field to give an invariant
vertex function. In the event, however, of the current
coupling to a vector potential A, (x) related to the
photon field F,,(x) through

F“u(x) = apAy(x) — aUA“(x), (28)
we must satisfy the requirements discussed above,
that is, current conservation and the appearance of
a Coulomb term at g, — 0. In quantum electrodyna-
mics (j =1, s’ = s = 3), which will be our guideline,
this is assured by using the principle of minimal
coupling, whence it follows that the charge coupling is
associated with the Dirac form factor. The Pauli
form factor, on the other hand, does not contribute
in this limit because its basis involves a factor of
the photon four-momentum ¢, contracted with an
antisymmetric spin matrix o#¥, which in other words
means that the current in this case is really coupled
to F‘w(x), the photon field (28).

The central objective of our prescription will then be
the division of the bases into two classes, which give
rise to Dirac- and Pauli-type form factors, respec-
tively, as distinct from the two classes of bases men-
tioned above. This can be done essentially by con-
structing generalized spin matrices Z 4¥ that are
antisymmetric in the indices p and v, but before doing
that, we shall review the electron—photon situation,
which will serve as a guideline.

The bases of expansion in this case are given by the
o, = + 1 members of (16). It can be checked, remem-
bering g+ P= 0 for m’ = m, that the constraint (27)

is satisfied in this case. It is quite clear, however,
that this situation is not accommodated by the prin-
ciple of minimal coupling, because in the limit g, = 0,
both F{* and F{® contribute, while only the Dirac
form factor F, (t) which is the coefficient of M,
should contrlbute This situation can be rectified by
the well-known artifice of defining a new basis, which
includes a factor of g, contracted to the spin matrix,
such that in this limit it does not contribute, and such
that the spin matrix Z#’(3, 3) is antisymmetric in p
and v, so that when contracted with A(x) it gives rise
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to a coupling with the photon field F, (x) In other
words, we obtain the Pauli form factor F p. Now this
basis is related to M{" and M by

N® = [(p)Zwv + Z(k)]g,

z‘(‘;) = (o8Gv — ovGH),

= — 4mM® + 2M®,
(29)

which permits us to write M in terms of N and
M, thus redefining the form factors, namely obtain-
1ngF (t) and Fp(t) [cf. Eq. (2)]. We must note that
(29) has the particularly convenient feature that MM,
the basis we desire to replace, does not have a kine-
matic coefficient, which would have imposed a kine-
matic constraint (in particular, a zero) on the rede-
fined form factors. This is an important point to
keep in mind when extending this procedure to higher
spins.

The new decomposition with respect to M, and
N® also satisfies the condition (27); what is more,
in the g, — 0 limit, N® vanishes and so only F(f)
contributes, as required. [Considering the o, = —1
(axial vector) members of (16), and then proceeding
as above to replace M) in terms of NO) =

(pEwy — EP"k)qu, we would find that condition (27)
would force the coefficient of M, to vanish, so that
in the limit {q| = 0 there would "be no long-range
interaction for the axial vector current.16]

We now proceed to give the spin matrices Zhyy for
the arbitrary s case (s’ = s). Zk» 4 is obtained from
the following matrix:

pHizeetBas(s, §) P2 e Vas(s, S) VB — pUbatebas(s, ) oy

x ﬁ“”z'"”zs(S,S)?B (30)

by contracting (for s > %, E"S") is not a number matrix,
but is momentum dependents, all the indices py° * * o,
and v, , with any combination of the four-momenta
P and g or more conveniently, with 2 and p. The

. = + 1 bases then are given [cf. (14)]

Mp Fhv B
Ngyoy = MO (AT + T R} opa,  (31)

which satisfies all the requirements of a basis for a
Pauli form factor. The label ¢ in {31) denotes the
particular combination of 2's and p's contracting the
matrices (30).

It is straightforward but tedious in general to express
the N, in terms of the M, by using the orthogona-
lity relations of the CGC's when, for example, con-
tracting the indices y in (30). Once the N, are ex-
pressed in terms of M;, we are in a position to carry
out our prescription to its conclusion by replacing all
those M; which would give neither Dirac-type nor
Pauli-type form factors by those M, which give Dirac-
type form factors and N, which give Pauli-type form
factors. In general,the numker of N, arising from
(30) and (31) is greater than the number of M, that
have to be replaced.

So far we have given our prescription only for s’ = s,
which is in fact a necessary condition if we are to
expect interactions (Coulomb) in the g# — 0 limit. In
the above procedure, (30) is without content for s’ =
s. However, this does not mean that it is not possible
in this case to construct vector bases N§ which con-
tain a contacted factor of g, and are antisymmetric
in u and v. Rather, suchbases are easier to construct
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for s’ # s because one can always find at least two
space—time indices in whose interchange the spin
matrix p"1"""¥2s1(s’ ) is antisymmetric, thus by-
passing (30). It follows that we would then have

three types of bases: (a) The two antisymmetric in-
dices of the spin matrix contracted with P and g, the
vector character being carried by P*#;this basis does
not contribute at g# — 0, (b) One of the antisymme-
tric indices contracted with g,;this basis also vani-
shes as g* — 0. (c) One of the antisymmetric indices
contracted to P, ; this basis could contribute at ¢* — 0,
but the enforcement of condition (27) eliminates the
form factors associated with this type of basis.
Therefore, for s’ # s there is no Coulomb interaction
in the g# — 0 limit, and thus we restrict our attention
only to s’ = s.

We shall now illustrate our prescription with an
example,where j = 1 s’ = s = 1, which is the sim-
plest case after s’ = s = 5. The bases for this
matrix element are given by the ¢, = + 1 members
of (21). As discussed above, in a minimal-type coup-
ling framework the bases M® and M could give
rise to Dirac-type form factors, whereas M{" and
M would give rise to neither Dirac- nor Pauli-type
form factors. It is the latter two, therefore, that have
to be replaced by N® and M{*),. The following are
the N # that we can construct for s = 1, where all
(1,1) covariants (xy) @>D are implicitly denoted as
(xy):

NOE = {(pp) (k) (vB) — (VB) (k)] + [(k) (V)

— (vk) (k) )(%R)} q,,,
N = {(pp) (1) (vp) — () ()] + [(up) (D)

— (1) () J(kk)}g,, (32)
NSO = {(pp) (1) (vp) — (V) (up) ] + [(uk) (7P)

— (vk) (D) l(kk) g,
N&OE ={(pp) (D) (vk) — (iP) (uk)] + [(up)(VE)

— (up) (k) J(kE) ), .

Clearly not all these bases are needed just to replace
MM E and MHO#, but we have listed all that follows
from (30) and (31).

Carrying out the contractions in the matrix multi-
plication of spin-1 matrices, for example, over y in
(30), by use of the orthogonality relations of the GCG's
we obtain the following:

@,1), -~~~ &rB 1 a,n o ~ \q,l
(B12)aar (r1V2)a,1)MA)gih = (B PiAy, UaVaY o) as
a,o 1,0p* ’ b
+ 387172 (u ) 00 ) 0T — 1 341 ],

~ ~ ~A A
x [(p"2p"2p"1p 1 C1) , (C1572p My,

)

+ (p"2p"1C1),, (C71672p 25 "1 0" 5], (33)
where we have used the notations of (15) and (20).
Since there are only two independent momenta in the
problem, in every case the last two terms of (33)
turn out to be products of p(1,0), and p(1, O)’B" co-
variants.

Using (33) in each member of (32), and then using
the identity
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PHT(1, 0)p ¥ M1, 0)% + p¥N(1,0),047(1, 0)F
=—2(g"p™1,1) 5 — g*MV7(1,1) 45

— gUPEM1, 1) 5 + g™ore(1, 1) 4 5) (34)

and its conjugate given by the transformation (14}, we

get
NP =m — M —mml? + smE —m P
—3m + 1,
NO = —mu® + me — 2m + 3m — u
+3aP -, (35)
N = m@ = 3n)u 4 (ar — 1)MEO — am®,
NP = o+ ) 2

where 7 = kp/m?2 and M§+)" and Mf)" are the coun-

terparts of M:(;)“ and Mf')“,with Pt replaced by g# in

both, and are in fact those bases that were excluded
in our construction in Sec. 2,under the constraint of
(3). Here also, they may be excluded by invoking (3).

4
We are then, it seems, in a position to replace M3( e

4 G 4
and M4()“ in terms of Nl()“"'Ni o Mfr)"
M2(+)'J by use of the relations (35), being careful in

the process not to introduce a kinematic constraint
onto the newly defined form factors. For example,

and and

replacing M§+) in terms of N§+) would result in a
kinematic zero in the coefficients of M1( ), M(z), and
M at 4k p = m2. Even under this restriction, how-
ever, this procedure does not seem to be unique,
since we do not need all members of (35) to carry it
out. Moreover, what appears to be more dangerous

is that gne could also find a way of replacing Mf')
and M2(+) in terms of N,-(‘L). This clearly is impossible,
since there are two relations between, namely,

(W + N, Ny, and N, not involving M and MS",

Here we enforce the condition (27) onto the matrix
element,18 resulting in the constraint
- +
F{P(g2) = F{(g?). (36)
Calling both form factors in (?16) F,(g?), and hence
obtaining the basis (M + M) = M) we can re-
write relations (35):

® @

N{ "+ N, M

m(r — )My +3m$7 — 2m$?,

N = —m@r —2my + @ — )M — 4, @37)

NP =~y +2m0,

It is then obvious that however we use Eq. (37) to sub-
stitute for M and M S'), it is subsequently impossible
to ;'_nake a sgbstitution for Mj without bringing back
Mgz” and M g ) into the expansion of the matrix ele-
ment. The subscript D on the form factor signifies
that it is a Dirac-type form factor, that is, it con-
tributes to the Coulomb interaction in the limit

lql— 0. The two other form factors in this case will
be, of course, Pauli-type.

Finally we should remark that our prescription in
Sec. 2 is concerned with a rank-j tensor current that
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couples to a spin-j particle, which means that this
particle is not really off its mass shell at all since

it has definite spin. The reason for this was our
desire to obtain couplings for a vertex function that
are equal in number to the couplings obtained direc-
tly by the use of the CGC's of the Poincaré group

and the Wigner-Eckert theorem as in Ref. 5. The on-
mass-shell property can be reversed, however, by not
giving the tensor current a definite spin, which can be
done simply by relaxing the condition (3) which was
included in our prescription. The result will be to
have a greater number of bases. The additional bases
will be those with HL.G transformation character

(s',9)® g"1gl2- - g'nptnri... phay (38)

where #n ranges from 1 to 2j. Thus for example, for
j =1, gt will carry the tensor character of a basis
corresponding to a spin-0 particle, the so-called
scalar photon,

We shall now demonstrate, in the special case of the
electromagnetic current, the connection between the
above approach and our prescription. In this case,
the constraint to be satisfied in both approaches is
(27). 1t is precisely this condition that leads to the
two approaches giving the same result, through
forcing the form factors associated with all bases of
the form (38) to vanish, provided that the constraints
arising from time-reversal invariance are already
gatisfied. These constraints will be nontrivial since
the on-mass-shell particles (incoming/outgoing)

are identical in the case under consideration. This
symmetry can easily be found by the interchange

k = p in the bases of decomposition in Sec.2B. Thus,
for example, if m’ = m, then & = FE& in (21) and
F® = F® in (23) and F® = Ff in (25) etc. Now
applying (27), results, for all s,into a constraint on
the matrix element involving as many (s, s)-covar-
iant o _-definite bases as there are bases whose vec-

D. HH TCHRAKIAN

tor character can be carried by P#. There are,
therefore, just as many constraints on form factors
as there are form factors with bases (s, s) ® gt. In
the event of time-reversal constraints being imple-
mented, the latter form factors vanish, giving the
same result as that obtained by our prescription.
We illustrate the above by examples (iii) and (v) of
Sec. 2B. We proceed by supposing that in both cases
the separation of the form factors into Pauli and
Dirac types has been carried out.

(iii) Under the time-reversal constraint,the new
bases are (M) + M®)k, NOr, N the Pauli-
type bases, and the two additional bases:

B = [ 0 + (o) SV,
IO~ () DV gu, (39)

Applying (27) with ¢2 = 0, we end up with the con-
straint equation

22 F 5@ [ S0 + (pp) DV + 2F (@) (kp) WV = 0,
(40)
whence it follows that F4(g2) = F,(g2) = 0.

(v) Under the time-reversal constraint, the new
bases are (M + Mk, MPe N,®e NPk and the
two additional bases are

Bigw= (k) §2 + (ppp) B2 Jgn,
~ 3 3 -3—71 (41)
S$w= [(kpp) 92 + (phk) @2 g,

Applying (27) with g2 = 0 we end up with F,(¢g2) =
FS(QZ) = O.
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The solutions of the coupled differential equations arising in the quantum mechanical discussion of the colli-
sion of an atom with a rigid, rotating diatom are written as Neumann series, i.e., expanded in terms of spheri-
cal Bessel functions. The coefficients of these series are generated by a set of coupled recursion relations.
The formalism is limited to potentials less singular than »~2 at the origin.

1. INTRODUCTION

The exact quantum mechanical description of the col-
lision of a structureless particle with a rigid rotor
has been reduced to solving an infinite set of coupled
equations.! In the close~coupling approximation, this
infinite system of equations is truncated to a finite
set which is then solved numerically.2 As the size of
the truncated set is increased, the exact solution is
approached, but the computational effort becomes
€normous.

Recently Gersten3 presented an analytic method for
representing, as an expansion in spherical Bessel
functions, the solution of the radial Schridinger equa-
tion describing a particle scattered by a spherically
symmetric potential. The coefficients in this expan-
sion are generated by a recursion formula. Thus, in
the region in which the series converges, the solu-
tion can be generated very rapidly in a convenient
analytic form.

In this paper we generalize Gersten's method to
obtain a solution of the close-coupled equations of
rotational excitation. Again the solutions are re-
presented as series of spherical Bessel functions
and the coefficients are generated by a set of coupled
recursion formulas. In Sec. 2 this more general
approach is applied, in detail, to the simple case of
spherically symmetric scattering. Without explicit
use of a second expansion procedure, we obtain a
result entirely equivalent to Gersten's but of a differ-
ent form. The method is applied to the coupled equa-
tions in Sec. 3. Section 4 contains the algorithm for
the determination of the phase shift, and Sec. 5 con-
tains a discussion of the significance and usefulness
of the method.

2. THE RADIAL EQUATION FOR SPHERICALLY
SYMMETRIC SCATTERING

The basic formulas used in this derivation are slight
modifications of those discussed by Watson4: If f(z)
is analytic inside and on the circle |z| =R, and if

C denotes the contour formed by this circle, then f (z)
has the representation

(3) %@ = T arin (2.1)
where
a, =@yl §. f@)A, 1q/,()dz (2.2)

and / is an arbitrary, nonnegative integer. Here

7,(z) is the regular spherical Bessel function,® and
2 m(n 4+ m) t2
zntl v=0

I'm +m— v)z2v

o (2.3)

A, =)=

is a Gegenbauer polynomial.®

The radial Schrodinger equation for the spherically
symmetric case is
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<_d3 + p2 _l(l_"'ll> Y,ir) = U0y, (r), (2.4)

dr? r?
subject to the boundary conditions ¥,(0) = 0 and
Y, r) ~, A[sin(kr — 31I7) + tann,cos(kr — 3I7)].
(2.5)

For potentials less singular than -2, the origin is a
regular singular point and ¥, (#) = O(r**1). The re-
presentation

‘Pl(y) = kr Z}O fnl jl+n(k'y)

satisfies this condition and hence the boundary con-
dition at the origin.

(2.6)

Because krjl,,n(kr) is a solution of the homogeneous
(U= 0) form of Eq. (2. 4), with [ replaced by [ + #,
inserting the expansion (2. 6) into Eq. (2. 4) yields the
expression

o0

2 [ +n)@ +n + 1) =10 + 1] f} g, Er)
n=0 o«
= @()ﬁrzU(r)jl,,m(k’r). (2.7

Up to this point the derivation is identical to that
presented by Gersten. However, his method of obtain-
ing a recursion relation for the f}! is not applicable

to the more general case of coupled equations. We
will rederive what is essentially the same result but
using a method which can also be used in Sec. 3 of
this paper.

We note that, by setting kv = z, Eq. (2. 7) is of the
form of Eq. (2. 1) with

a, = [ +n)l +n +1)—1( + 1)]fnZ
and

10 =(2)" w2 5 ez i@, @9

But combining Egs. (2. 2) and (2. 9) gives an alterna-
tive expression for a,:

2\1/2 bad
—{= -2 )
an - <7T> k mZ=>O fm

" Ezm-)—l 9{0 22 U@) jl+m(Z)An.z+1/2(Z)dz} 2.10)

(2.8)

For potentials which can be expanded as

U(’V) = 5
g

. u,r, (2.11)
the integral in brackets in Eq. (2. 10) can be evaluated
by the residue theorem (see Appendix). The signifi-
cant result is that the integral vanishes for m>n — 1.
Thus the rhs of Eq. (2. 10) is a finite sum. Using the
explicit result for the integral whenm =< n — 1, Eq.
(A3), and equating Eqgs. (2. 8) and (2. 10) yields the pre-
viously derived?® recursion relation for the f}:
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[@ +n) +n + 1) =11 +1)]f}
=@ +1+3) 2 JnChny  (2.12)

where
Cl = 9nm h’f_z_'(i
mn k=0 22kfn-m-2k
K — )Tl +1+5—v
v=0 PI(k —V)ITm+1 +k+3—1)
and N = [(# — m — 1)/2], the largest integer contained

in (n —m— 1)/ 2. For an arbitrary choice of f§,
which corresponds to a normalization constant, these
equations can be used to generate, recursively, the
set of coefficients f!.

3. THE COUPLED RADIAL EQUATIONS FOR
ASYMMETRIC SCATTERING

The generalized method of the preceeding section,
which we used to obtain a known result although in
a somewhat different form, will be used here to re-
duce the set of coupled differential equations occur-
ring in the theory of rotational excitation to a sys-
tem of coupled recursion relations. These equa-
tions! we write in the form

d2

i+1
d72+k]2 (’r )> ]l()
= 2 GG, 0), (3.1)
]I 1
where

kP = ui~2E — pj(j + 1)/1 (3.2)
j,l and J are the quantum numbers specifying, res-
pectively, the angular momentum of the rigid rotor,
the orbital angular momentum of the atom and the
total angular momentum of the system, y is the re-
duced mass of the atom-diatomic system, is the
moment of inertia of the rigid rotor, and E is the
total center-of-mass energy. The boundary condi-
tions are

¥;(0) =0 (3.3)
and
1I/]l( )y_,oo 6]] Gll exp[— l(k]’}’ - %l'”)]
— (k,-o/kj Y289(jL,jolo) exp[itlr — zIm)]. (3.4)

Because of Eq. (3. 4), ¥;, should also be labeled by
J,Jg, and [y, To reduce clutter however, this extra
notation has been suppressed.

The Y's can be represented as

Ul0) = b7 5 [ 8- (3.5)

This is a valid representation for the regular solu-
tion [Eq. (3. 3)] in some region about the origin, pro-
vided the potential matrix elements are less singular
than »~2. Inserting Eq. (3. 5) into Eq. (3. 1) yields

2 (@ + ) +n +1) =10 + DIffGn7)
=2 Z)

]Ill m=0

¢ Ry L r 2L TNUN U3 Dy, (B ).
(3.6)
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By setting kjr = z, this equation is of the form of
Eq.(2.1) with

=[{ +n)l +n + 1)~ 10 + D] (3.7)
and
f(Z) 2/‘”)1/22 ZEZ} k k 3f]’l’
7' m=0
X220l UG/ G 30) 02 /). (3.8)

Inserting Eq. (3. 8) into the integral expression for
. Ea. (2. 2), gives

a, = (2/mV2}; >k, k53
i'm=0
z 171
o))

X l:(2m')‘1 fczz"LQl;J
k]/Z

X Jram (k—> An,m,z(z)dz] . @9

As before, using the expansion

oC
GLINUENj1;5d) = Elu,l(il,j’l’;J)W, (3.10)

ot
the contour integral in Eq. (3.9) can be evaluated
(see Appendix). In this case the integral vanishes
form>1—-1'"+n—1, Form=I—1!"4+n—1,an
explicit result can be obtained, Eq. (A7). Thus the
sum over m in Eq. (3. 9) is finite and can be readily
evaluated. Equating this expression for a, to Eq.
(3.7) yields the set of coupled recursion relations
for the f7%:

(¢ +n)0 +n + 1)~ 10 + 1))/

-1+n-1
=W +1+3 Vs n=t-1 D E HYC (L),
]Ill
(3.11)
where
Cprn(J,3U3d) = Q1Y nompLivmr
K kA, 2k o
* Z;0 <é> Uy pen-m-gr-2 GLJ'L5d)
Mo kv k)2vT0 +1+ L — v
X ( ) (]/ “j ) ( 5 ) a. 12)

v=0 Ik —V)ITm+1' +k+%—v)

Here K =[(I —1' +n —m—1)/2]and M =
min{k, [n/2]}.

At first sight Eq. (3.11) does not appear to be a truly
recursive relation for the £ of channel (jI). The
maximum value of m attained on the rhs is! —1’ +

n — 1, so that, for I > I, the values of m can become
greater than », the index of the lhs of Eq. (3.11).
Thus, for I > ', fiV is required for m > n in order
to calculate f/*. However f}' is a coefficient of the
wavefunction of a different channel (I’ # [). The coef-
ficients in this (j’l’) channel are also generated by

a recursion relationship obtainable from Eq. (3.11)
by interchanging () with (j’I’). In order to obtain
Si'Y, fi is needed only up tom =1’ —1 +#n — 1, which
is less than» since ! > I’. Thus the series for the
fi'Y can be “run ahead” to larger values of #. On
each recursion of the system, by always using Eq.
(3.11) for the smallest value of [ first, /¢ will be
available when needed.
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1t should also be noted that closed channels (% imag-
inary) present no formal difficulty aside from

the requirement of complex arithmetic. Since the
analysis was performed in the complex plane there
is no requirement that &, be real. In particular, the
series expansion for j;(k7), which was used in the
Appendix, is valid for complex values of the argu-
ment. .

4. EVALUATION OF THE PHASE SHIFTS
From the representation (2. 6) and the boundary con-
dition (2. 5), since j,, , (kr) ~ sin(kr — 3In — 3nm)/(kr),

tann, = — (z; 1) f2n+1) (2 (- 1)"f2) (4.1)

As it must be, this result is independent of the choice
of f§. However, Eq. (4.1) is only formal. In fact (see
Sec. b), the radius of convergence of Eq. (2. 6) may

be smaller than the range of the potential, in which
case the method of this paper could not be used to
determine the phase shift at all, However, even if
the radius of convergence is large enough so that the
wavefunction has assumed its asymptotic form [Eq.
(2. 5)] before the series diverges, Eq. (4. 1) makes the
further assumption that j,,, (k¥) has assumed it
asymptotic form for all values of » which contribute.

Writing Eq. (2. 5) more precisely as

V,(r) S Akr[j,(kr) — tann, y,(kv)], (4.2)
where a is the range of the potential and y, is the
spherical Bessel function of the second kind, 5 the
phase shift is given by the more complicated ex-

pression

kRj(kR) — D(d/dr)[krj(kv)]|, - 4.3)
@nm, = try, kR) — D@/dr)lry ],
where
d -1
_kRE Tl (FR). <2 5t g o], )
(4.4)

and R is some value of 7 outside the range of the po-
tential but inside the radius of convergence of the
series (2. 6).

This same consideration applies to the coupled equa-
tions. As in any close-coupled calculation,’? N linear-
ly independent sets of solutions to the N equations
must be combined to satisfy the boundary condition
(3.4). These sets of solutions vi, i=1,...,N,are
obtained by choosing N linearly 1ndependent sets of
values for the fﬂ For large 7, each function of these
N sets has a form similar to Eq. (4. 2) or (2. 5):
Vi) 3, Al [sin(ey — i) + tanni; cos(ky — $17)].
(4.5)

The ¥§; must then be combined? in the usual way to
satlsfy Eq. (3. 4) or, equivalently, Al and 7} %; must be
combined to form the S7(j,j,1)-

5. DISCUSSION

We have presented a method for generating analyti-
cally the solutions of the coupled, differential equa-
tions appearing in the rotational excitation problem,

1487

Eq.(3.1). The coefficients of an expansion of the
solutions in terms of spherical Bessel functions can
be generated recursively. Thus the close-coupled
solution can be obtained rapidly and in a convenient
form.

The method is of the nature of a power series expan-
sion in terms of the radial variable ». However, the
series is rearranged to display the spherical Bessel
functions, a natural function for the problem. Because
of this the convergence properties of the series
should be improved. The rate and radius of conver-
gence will determine the utility of the method. We
are analyzing the convergence properties of the
series for several model potentials. Unfortunately it
does not seem that any simple conclusions can be
drawn. We will present a detailed discussion of this
complicated question in another paper.

From preliminary work, it appears that the method
can also be extended to the vibrational excitation
problem, both collinear and three dimensional. We
plan to investigate this possibility further.

APPENDIX

According to the residue theorem,® the value of the
contour integral in Eq. (2.10) is the sum of the resi-
dues of the 1ntegrand at its singularities within the
contour. Since z27%j,,,, (z)is entire and, under the as-
sumptions on the potential, z2U(z/k) is analytic in
some region containing the origin, the only singulari-
ties are due to the pole of A, ,,,/, at 2 = 0. Thus by
expanding the integrand in powers of z, the residue
{and hence the integral) can be found as the coeffi-
cient of z-1, This coefficient can be obtained by re-
peated application of Cauchy's formula for the pro-
duct of two series.? Proceeding in this way, we ob-
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and M = min(x, [#/2]).

Settingm—n+1+2u=—1lorm—n +1+2u—1=
— 1 yields the value of u corresponding to the 271

J.Math. Phys., Vol. 13, No. 10, October 1972



1488

term: p=[(r —m — 1)/2] = N. Since u= 0, there is
no residue for m > n — 1. Further, N satisfies the
condition N < [r/2] so that, in all cases, M = k. Thus

(2mi)1 fc I(z)dz

= (7/2)Y2(m +1 + ;) 2nm ‘Z“, Slnm (A3)
Kk =0

n-m-2,K
for m < n — 1 and vanishes identically otherwise.
The residue of the integrand in Eq. (3.9) can be eva-
luated in much the same way:
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oG
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According to Eq. (A4), the value of i corresponding
to the 21 term is givenby I’ — Il +m—n + 1 + 2u =
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k
X Z())SZI"mH-l’-Z,K(].l,jIZ’;J)
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form =1 —1'" +n — 1 and vanishes identically other-
wise. Insertion of this result in Eq. (3.9) gives the
coupled recursion relation (3.11).
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A modification of Weyl's theory of the electromagnetic field is presented, such that the usual gravitational
Lagrangian becomes invariant under the corresponding definition of gauge transformation. As another advan-
tage the problem of the weight of the tensors in the construction of Lagrangians is eliminated.

1. INTRODUCTION

This paper proposes a geometrical interpretation of
the electromagnetic field, closely related to Weyl's
theory,l though it uses a different geometrical struc-
ture. The model includes a new geometrical defini-
tion of gauge transformation, which makes gauge in-
variance a weaker requirement than in Weyl's theory.
Some important advantages follow. For instance, the
usual gravitational Lagrangian becomes gauge invari-
ant and the problem of the weights of the tensors is
eliminated.

The present model has some common points with a
theory presented in 1958 by Sciama.2 He needed,
however, a complex space—time of the Einstein—
Schrodinger type. It seems that this is not necessary,
the present interpretation being, therefore, much
simpler.
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FIELD

In order to describe the affine properties of space~
time, we consider the 4-vector fields X;3:

X =he
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and the differential forms

wi = hi,dxe, &)
whk = A dx*, (3
such that
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ELECTROMAGNETIC FIELD AND GAUGE TRANSFORMATION

The quantities hki‘,A"j;l are very often called—compo-
nents of the vierbein and of the local affine connec-
tion—respectively4—8. The latin indexes will alway
refer to the basis X, while the Greek ones will be
related to the basis X, = d/0xk.

The torsion tensor C¢,, and the curvature tensor
Ri;, are determined by means of the structural equa-
tions of Cartan:

dwi = — wi, /\wP——é-Cijkwf A wh, (5a)
dwiy = —wi Nwb — %Riljkwj A wk, (5b)
from which one can deduce

Ly = (rhy — hphy) (R

LT Ak q“), (6a)

Riljk = hj“hky (Ailu,u - Ailu,u - Aiqqulu + Aiqqulu)‘ (Gb)
(Our torsion and curvature tensors differ by a minus
sign from those of Ref.3.)

The metric properties of space—time are described
by means of a tensor field g, of type (0, 2). Let us
choose the basis X, such that

g(XiX}) = Mij» (7

7,;; being the Minkowski metric tensor with diagonal
elements (1,— 1,— 1,— 1), It is then convenient to
raise and lower the latin indexes by means of 7;;.
One has then

3 3N ., . _ )
g, =g<a—x“, ax”) — g, By =0y, (8)

As it is always done in general relativity we assume
that the forms w'; verify the condition

wi + wit =0, 9)

which implies that the length of a vector is invariant
under parallel displacement.

We will consider the quantities #,#, A? ;ju @s indepen-
dent basic fields of the theory. Such a formulation

is usually called mixed theory. Another possibility,
the so-called metric theory, is based on the assump-
tion that the space—time is Riemannian and considers
only the 4,* fields as independent fields.

The simplest Lagrangian which can be constructed
is then

£ =RX, (10)
where R = R¥J;; and 3 = (dethy) ! = V| detg,, .

Independent variations of k,?, A ju 8ive the field equa-
tions

R, =0, C%,=0, (11)

Where R,, is the Ricci tensor. As we see, they are
the same as in the purely metric theory.

mM. INTRODUCTION OF THE ELECTROMAGNETIC
FIELD

Now let us assume that when the electromagnetic
field A‘1 is present, condition (9) is no longer ade-
quate. More precisely,w? picks up a symmetric

1489
part and takes the form

wij — (O)Wij + 51'].(1, a = AudxH, (12)

where (O)Wi]. = AL dxt verifies (9). The length L of a
vector is then changed under parallel displacement.
One has

dL = La (13)

just as in the Weyl model.
From (12) and (6) we get

Rijkl = (O)Rijkz + 5iijz’
— (0
= Ot I, (14)
Chy, = (O)C'kz T A — B A,

R = OR,

where the left index (0) means that the correspond-
ing quantities are constructed only in terms of
(O)w’jand A =nhtA,, Fyy = hohp A, s — Aﬁ’a).

We now take the Lagrangian
L =(R— 3izRiiklRJ'jkl)Jc, (15)

where k is the gravitational constant. From (14)
we get

£ =(R—3E,Fmk, (16)

so that £ has the usual form. Note that (15) is the
only Lagrangian which is quadratic in Ri]-kl and re-
duces to (10) as A, vanighes.

Now we submit k,#, A, ;A to independent variations.

w2
The calculations are very similar to those of Refs.
6 and 8, where we refer for more details. Variation
with respect to A%, gives

©Ci, =0, (17)
which implies

Ci].k =064, — GikAj . (18)
As we see,Ap induces a torsion. In spite of (13) our

geometry is therefore different from Weyl's.
Variation with respect of 2,» and A“ give

ORE, — 38%R=— K(FFE, + ;6% F, Frl),
(Frvge), , =0, (19)

which are the usual Einstein—-Maxwell coupled equa-
tions, with symmetric Einstein and energy-momen-
tum tensors. This is somewhat surprising since it
is known®.7 that these tensors become nonsymmet-
ric in twisted spaces. This peculiar situation is due
to the fact that the first term in (15) depends only on
Ow?, which, on the other hand, does not affect the
second one.

Now it seems natural to define the gauge transfor-
mation as

wi; - wi, + 61,dg, (20)
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where ¢ is an arbitrary function. In terms of our
fundamental fields this takes the form

=k, AijpaAi]_w A” ~>Au+¢’u' (21)

Let us recall the corresponding definition in Weyl's
theory:
8.7 08 AL AL+ z(log) . (22)

It is clear that (5b) and, consequently, the curvature
tensor, is invariant under (20), as well as the metric
tensor g,,. This means that the Lagrangians (10) and
(16) are gauge invariant. As it is well known this is
not the case in Weyl's theory. An important conse-
quence is the elimination of the problem of the
weights of the tensors in the construction of Lagran-
gians. More precisely one does not need to change
the gravitational Lagrangian if electromagnetism is
to be introduced. It is also easy to make invariant
the Dirac or Klein—Gordon Lagrangians by the usual
phase transformations

Y ety
and the substitution 9, =9, — 7A,. This is in sharp
contrast with the Weyl model. On the other hand, Eq.
(5a) is not invariant under (20). This means that the
torsion tensor is not invariant.

In Weyl's view, gauge invariance expresses the fact
that a theory must not change under arbitrary point-
dependent changes in the scale of length. Even in the
absence of matter this requirement is too strong,
because the gravitation constant links the units of
length and energy. In our model, gauge invariance
means independence on the way we compare the tan-
gent spaces at two neighboring points, provided that
the comparation device (wij) is changed according to
(20). This is certainly a weaker condition.

It has been argued with respect to Weyl's theory
that the variation of the scale of length under paral-

ANTONIO F. RANADA

lel displacement leads to contradictions [see for
instance Chap.13 in Ref.9). The arguments are based
on the following assumption: The mathematical
parallel displacement of a vector is always the ex-
pression of the physical transport of a rod. This
view is plausible, but difficult to apply to more gene-
ral objects as spinors or tensors or to transport
along a spacelike curve. We can, however, take the
view that the parallel displacement gives only a

rule useful to construct a covariant derivative. (See
in this connection Ref. 10, Chap. VIL.) In other words
the scale of length is given by the metric tensor
which we take as independent of the connection. If
we transport the scale of length V# from P to P’, we
have to adjust this vector according to the value

g, (P’) if it is to be interpreted as the unit of length

Syy

at P’'.

IV. CONCLUSIONS

We have given a geometrical interpretation of Ap
which has some important advantages over Weyl's
theory, specially the gauge invariance of the gravi-
tational Lagrangian.

The usual Einstein—Maxwell coupled equation can be
interpreted in two different ways:

(a) as equations involving purely geometrical quan-
tities in a non-Riemannian space-time;

(b) as equations involving geometrical (i,4, Aij“) and
radiation (4,) quantities in a Riemannian space-
time.

We stress the fact that in both cases the equations
are identical.
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If EO(G) is the spectral projection operator associated with the free Hamiltonian H, corresponding to a boun-
ded measurable subset G of R,and E (G) is associated with the total Hamiltonian H = H, + V,where the opera-
tor E (G)VE(G) is of trace class, it is proved that the element g = E4(G) f belongs to the domain of the gener-

alized wave operators @, if and only if
lim [i(1 — E{(G))e #Hdig| = 0.
t—rxoC

A stronger version of this result is also proved, from the theory of time-dependent scattering,and is applic-
able to scattering systems for which families {61} , {GZ} of measurable sets may be found such that

E,(G,)VE(G,) is of trace class.
INTRODUCTION

For a scattering system described by free Hamil-
tonian H, and total Hamiltonian H, where H, and A
are self-adjoint, the generalized wave operators 2,
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are defined by

Q,f = s-lim e P, ¥, (1)

t—>F00

where P, is the orthogonal projection onto the abso-
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are defined by

Q,f = s-lim e P, ¥, (1)

t—>F00

where P, is the orthogonal projection onto the abso-



CONDITIONS FOR THE EXISTENCE

lutely continuous subspace of H,. One of the most
important problems of scattering theory is to dis-
cover what conditions must be imposed on # and H,
for the wave operators 2, to exist and prove that
these conditions are satisfied for systems of interest
in quantum mechanics. For single-channel systems,
it is equally important to prove the existence of the
limits

Q*f = s-lime ol p (1)

t>F0

where P, is the orthogonal projection onto the abso-
lutely continuous subspace of H. The conditions for
QF to exist as a strong limit may be derived from
conditions for €2, to exist by interchanging the roles
of the operators H, and H. If, for all elements f, g,
the strong limits of Egs. (1) and (1’) both exist, it
follows that the restriction of the scattering operator
S = Q*Q, to the absolutely continuous subspace of
H, is unitary. The unitarity of $ has important
physical consequences for the system, and may be
regarded as the defining property of single-channel
systems.

It is known.2 that if H = Hy + V, then the wave
operators exist provided V is of finite rank. This
result has been considerably strengthened by succes-
sive authors, using the properties of trace-class
operators.3 Kato! and Rosenblum* showed that the
wave operators exist provided V is of trace class,
and Kato5 has subsequently shown that it is sufficient
that Y(H) — y(H,) be of trace class, where { is any
function satisfying a set number of rather weak con-
ditions. For example, , exist provided (g — H)Y'N —
(z — Hy)¥ is of trace class for some positive number
N and some complex number z. [The result of
Kuroda,® requiring that | V|1/2(H, + ¢{)-! be of Sch-
midt class and that Vx|l < allH x|l + blx],a < 1, for
all x in the domain of H,, may be derived as a spec1a1
case of the above result with N = 1, It is sufficient
to prove that (H, + i)-1V(H, + i) is of trace class.]

Now if (z — H)"N — (2 — Hy)™¥ is of trace class, it
may be deduced that there exist bounded measurable
subsets G of the real line such that the operator
Eo(G)VE(G) is of trace class, where E(G) is the
spectral projection operator corresponding to the
subset G and is defined in terms of the resolution of
the identity for H, and E,(G) is similarly defined

in terms of the resolution of the identity for H. [The
operator E4(G)VE{(G), which is always bounded, may
be defined in a natural way even when the domain of
V = H— H, is not dense in the Hilbert space.] More-
over, the union of all such subsets is R\ 0, where o is
a set of Lebesgue measure zero, and this remains
true for a wide class of functions Y, given the more
general condition that (H) — y(H,) be of trace class.

The condition that E (G)VE(G) be of trace class is
an extremely weak one, and does not of itself guaran-
tee the existence of the wave operators. (If H, is the
one -dimensional “position operator,”then E4(G)VE,(G)
may be of trace class for every bounded subset G,but
the wave operators do not exist.) Inthe present paper we
prove that if E;(G)VE(G) is of trace class,then
Ey(G) f belongs to the domain of Q, prov1ded that

N -iHgt —
tllg;||E1(E)e Ey(G)fll =0,

where G denotes the complement of G. This is in
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fact a special case of Theorem 3 of Sec. 3, which pro-
vides sufficient conditions for an element of the space
to be in the domain of §,, given the existence of a
number of subsets G,, G, such that E,(G,)VE,(G;) is
of trace class. Theorem 3 is actually the strongest
possible result, in the sense that if E;(G) VE,(G) is of
trace class for every bounded measurable subset G
(as in the case for a wide class of scattering sys-
tems), then we have a necessary and sufficient con-
dition for an element to be in the domain of Q, .
Theorem 3 is in that case a generalisation of a theo-
rem of Birman,” who postulates the existence of
subsets G, G, such that E,(G,)E(G,) is compact;
the existence of subsets having this property is not a
necessary condition for the existence of Q,. The
application of Theorem 3 to proving the existence of
the wave operators for a class of singular potentials
will be considered ina subsequent paper, and provi-
des examples of scattering systems for which weaker
versions of Theorem 3 are not adequate.

In Sec. 1, we define,8 for any bounded linear operator
L, the family of linear operators F,,(L) and the cor-
respondlng singular integral operators F,, (L) and

(L) In Theorem 1 we consider the case where
L 95 of rank 1, and in that case construct a dense set
of elements belongmg to the domain of F | (L)
Theorem 1 is a generalization of a resulf’ proved in
Ref. 9.

In Sec. 2, we use the properties of the F operators to
derive, under very general conditions, an identity for
the evolution operator e*#’e "’ using techniques
which have been applied in Ref. 10 to the case where
V is of rank 1. The main result of Sec.2 is summari-

zed in Theorem 2.

In Sec. 3, we make the assumption that subsets G, G,
exist such that E,(G,)VE,(G,) is of trace class. The
argument is analogous to that of Ref. 9, and in
Theorem 3 and its corollaries we give conditions for
an element f to be in the domain of §,.

1. THE DOMAIN OF F__ (L) WHERE L IS OF
RANK ONE

For any bounded linear operator L and any pair of
real numbers q, b, we define the linear operator
F, (L) by

b . .
Fp(L)f =50 [ e'oLe i, 2)

The integrand being strongly continuous in s,the
integral may be defined as a strong limit of approxi-
mating Riemann sums.

F,. (L) is defined by
F (L)f = §-limF,,(L)/,

for any f such that the limit exists. F
ed in a similar way, and we also define

o (L) is defin-

E, (L)=F_ L) +F, (L)

-0
It is not difficult to show that
eiHOtF:z (L)e*1H0 a+t b+t(L) (3)

so that, for example,
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eiHotI?aoo(L)e-iHo — F‘mt OO(L)' (3/)

In the following sections, we shall have to deal with
the F operators where L is of trace class. Since any
trace class operator may uniformly be approximated
by sums of operators of rank 1, a first step is to
study the case where L is of rank 1.

If L = |¢ (], we have
F,(l¢) Whf 1 f s oy, e %f)ds.  (4)

Applying the spectral theorem, we find, for any ele-
ment y of the space,

3 E @ W) = o f ds(y, e o5 f)
o7 e a6, 5,0).

The interchange of A and s integrations may readily
be justified, giving
fo (y, (W — Hy)-

i0-Hot _ ¢ ]f)dx(y,E)\(P) (6)

nyOt(ld)) <4/I
x [e
Although (X — Hy)-! is not defined whenever A is an
eigenvalue of H,, we understand the integrand of the
rhs in that case to mean
00
S T(waw, E, /),
—o0
where

P(A-p)t
T(y) = et —1

(=)
= it ,
Thus I is a continuous function.

If f is orthogonal to every eigenvector of H,,an
application of the Lebesgue dominated-covergence
theorem shows that

(W,(A— H

A iOn-
0) {el()\ Ho)t__

1) = lim
(W, (A — Hy + i) [e! O 1], (1)

and, with further application of the theorem, we de-
duce from Eq.(6) that

2nily, Fol) WD)f) = limm [~

W, (A — H, +ie) 't 1)d\(v,Ed). (8)

Using this expression, we shall construct a set of
elements belonging to the domain of F (/¢ (W)
[i.e., these elements will belong to the domain both of

Fooo(|¢> W) and of F__ (1) (¥1)].

Denoting by M, . (H,) the absolutely continuous
subspace, let g be any element belonging to M, . (H,)
so that, for some y € L,

= f:o v(s)ds. (9)

We have, apart from a set of values A having Lebes-
gue measure zero,

g, Eg) = y(0). ®)
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For any positive numbers €, M, N we define the fol-
lowing measurable sets of real numbers:

N) = {k; |1 — I:(k)]|
< N for all @in the interval 0< o < 1}, (10)

Z(M,N) = {&; |y(R)| < M} N S(V), (10"
where
LER) = (o, [k — Hy £ i0]T ¢). (10"

Although y(k) is not unique, any two representatives
of the element y of L,( — o, «) differ only on a set of
(Lebesgue) measure zero; we shall say that Z(M, N)
is denoted modulo a set of measure zero.

Given any measurable set G, there is a corresponding
projection operator E,(G) defined by

Y=L x (v, Ex), (11)

where x is the characteristic function of G. We de-
note the corresponding projection operator defined
in terms of H instead of H, by E, (G).

(nyo(G)x

If G is only given modulo a set of measure zero, the
restriction of E(G) to M, . (H,) is nevertheless
uniquely defined.

Theovem 1:
My ¢, (Hy), the element g, =
to the domam of B (1) @Wl).

For any element g belonging to
(Z)(M, N)) g belongs

Proof: Define, for € # 0, the one-parameter
family of operators ¥, by
o0
v f=[_ W~ Hy+ il {1 — [(H)YE$. (12)
For fixed €, [1 — I'(1)]"! is a bounded continuous
0

function of y, so that ﬁw[l — I ()] YdE, f exists.

[\, 12 is the triple integral
Ex¢, d(f,ElP)d W, E,f)
fff —ie)(A — v + i€)

x 1 (13)
(1 —L(W][1 —I(v]

e fli2 =

Substituting
A—p—ie)y A —v +i€e)l =(u—v+ 2!
X{A—p—ie)T—A—v+ie)l]

we may carry out the A integration, and, using Eq.
(10”), we have

,J(f EA) W, E,f)
ff — v+ 2ze)

* <1 —lzg(u) C1— Ilg(u)>' 1)

Now replace f by the one-parameter family f, =
[1— L (Hy)] 8w
Then

d eaEl u(d/’ v8] )
j9.7,12 = owe ([ L OB 2EN)

— v + 2i€)

e, £ |2




CONDITIONS FOR

Now

v d
(&u.n> By, w) = f_oo Xz ogn)(S) T (g,E, g)ds,

so that for almost all v we have

d d
'd—'v(gM,N’EugM,N) = xzamv) a—v-(g,E;,g)

= x s (VIy(v) < M, since |y(v)|
< Mfor v € L{M,N).

_the orthogonal projection of i onto
¢.(Hg), we have

Denoting by ¢, .
the subspace M

d
]g; (%U,EugM,N)lz < (d—l) (gM,N, Eng‘N))
x (*‘1 e o E )) (16)
du (¢a.c,9 114/ k] B

so that, writing b(v) = (d/dv)(y, E, gy »), we have

W8ll)2 = [ 16(v)|2dv < Milyl2, (17)
Similarly, if

CO) = (g, Brd), ar)
we find that

(HCHZ)Z < Mlol2. (17")
Wr1t1ng at(p) = (d/dp)(f,,E V), we have, provided

lel <
a2 = |1 —Izw)}a‘% (8, E0)|?
<i1- mmt 2x s Wy (B) 75 Vo o EY)
< MN2 L oo, EY) 18)

since |1 —I(u)| <N for p € Z(M,N).

Hence
(la li5)2

and Eq, (15) becomes

< MN2[y |2, (19)

b(v)dud
2,7, 12 = 2me ([7 [7 EWRODA gy
Similarly we may evaluate [ e '™, to obtain
i, waX(u)b(v)e’ "
“‘Ilae Hffeuz = 2Re (f fmmdudl/).
(21)

If we take € > 0 and note that both ¢, and & belong to
L, (— o, ®), we have

e'zétn\P e IH ? “2
= — 2Re[i ft ds ([ : f :a’:(u)b(u)e““‘”*z“’Sdudvﬂ ,

i.e.,,

AL

H\Ifee_m"
= 47 Im (ft “lags)* B(s)e'zﬁ‘“)ds), (22)
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where &, and b denote the Fourier transforms of a,
and b, respectlvely,and are elements of Ly(—« 00)
Now,in the limit as € = 0 +, e11(r)n IXw exists for al-

most all i, being the boundary value, on the real axis,
of a function analytic in the upper half-plane and hav-
ing negative imaginary part. [See Ref. 11, pp. 69ff,and
Appendix 2 of Ref. 10, The mapping w = ({ — z)/

(i + 2) maps the upper half-plane onto the (open) unit
disc, and by the sectorial limit theorem (Ref. 11,
p.105) we may prove the existence of a sectorial
limit for almost all .]

Hence a (i) converges poinfwise a.e, to a limit as

€ > 0 +. But if follows from Eq. (18) that |a (p)] is
bounded above by an element of L ,( — o, ©) whlch is
independent of €. Hence, using the Lebesque domina-
ted-convergence theorem, we deduced that,as ¢ —» 0 +,
a.(p) converges in the mean to a limit in Ly( — o, @),
Moreover if this limit is denoted by a,, than @, con-
verges strongly to a0 and we have, from Eq. (22)

zH t 'LH

of |2 = 4 Im([ [ag(s)]*e (s)ds) (23)

hm ]le

where
laghy < ML2N|ly|, (24)

Ibll, < M1/2y], 24%)

Comparison of Egs. (12), with f = [1 — I (H )] & v,
and Eq. (8) shows that
Wei,loiP] (ewot \I’ee—igatfe

=¥ f) =21 Fo,(|¢) W) eyy.
(25)

Hence
wolim(e ot w e Y, — ety e )

=2mi Fy (1) Wl)gyn-  (26)
Therefore

2 |F (1) W gy

< lim soupllem0 \I/ee_“%tfe _ e”IOS\I/ee.”FI"S]‘e I

< [411’ Im (f;o [ao(s)]*ﬁ(s)ds)] Ve
1/2
+ [417 Im(f:o[ a,(O]*b t)dtﬂ , @7

from Eq. (23).
Hence
sltgg HFst(l(b) <lpl)gM,N” =0,

so that by the completeness of the space it follows
that Fy(19) (¥|)gyy converges strongly to a limit
ast~ ©;i.e., gy y is in the domain of Fo(|¢) W1).
We may simnarly consider ¥ for negative values of
€, and by analogous arguments show that g, v belongs
to the domain of F . o(1¢) (¥]); this complefes the
proof of Theorem 1.

We also have, from Eq. (8),

(ng\r;F;t(!¢> QPI)gMN)

(A-u)t i p)s

1 ¢ —e

= e 1 m d W ON)]

2ni 0 ff A— pu+ie) k(gM’N >
X d“(W9Eng,N)
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" omi “0'

= [beycm e, (28)

ff ei(A—)t __ gi(Ap)s

*(\)b(p)d
o atio CTN)b(u)drdp

on using arguments similar to those used to derive
Eq. (23).

Using Schwarz's inequality and Eq. (17), we find

B 1) WD )| = 302101 ‘|a<k>|2dk)1(/2.)
29

With Eq. (17"), it follows that
[ Foll0) Wy W) < Milgl . (29)

It is important for the subsequent arguments to note
that

(i) The bound in Eq.(29’) is independent of N,

(ii) For a given element g belonging to M, . (H,),
and for given values of M, N, the element g,
and the measurable set Z(M, N) defined in Eq.
(10’) both depend only on ¢, but not on /. Hence,
for a given ¢, g, y belongs to the domain of

F o o(l¢) (W) for all y.

Corollary lo Theorem 1: The domain of
Foo(l®) (@) is dense in the subspace M, . (H,).

Proof: Almost all real numbers & belong to
Z(M,N) for some M,N, and hence for all M,N suffi-
ciently large. The measure of the complement of
2(M,N) tends to zero as M,N—w. Since g €

d'c_(HO), this remains true if we replace Lebesgue
measure by the Lebesgue~Stieltjes measure genera-
ted by (E,g, g), since the latter is absolutely contin-
uous with respect to the former.

Hence

aNln;lgMN_s lim EO(L(M N)g =g. (30)
Slnce each element Eu,n belongs to the domain of
Fo (l®)(¢]) and g is a general element of

M, . (H,), the conclusion of the corollary follows.

2. THE EVOLUTION OPERATOR e'¢ "'
Let G,, G, be two bounded, measurable subsets of the
real line, with corresponding projection operators
E,(G,),E,(G,), k =0,1. EyG) is defined by Eq. (11),
and E, (G) is defined similarly in terms of the reso-
lution of the identity for H. Throughout this paper
we shall use the convention that, e.g., E,(G ) VE ((G,)
denotes an operator defined on the whole space by

E()(Gl) VEl(Gz) = Eo(Gl)HEl(Gz)

— HyEy(GE(Gy).  (31)

For any complex number A, with ImA + 0, we define
an operator g(i) by

g0 = Ey(G,)VE, (G,)(x — H)VE, (Gy) VEy(G,).  (32)

If Z is some closed interval of the real line contain-
ing G U G,, we define in the obvious way g(x} for
values of A in the entire complex plane cut along 2,
so that g(A) is strongly continuous, and indeed opera-
tor analytic, in A in the cut plane. If C is a closed
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contour containing 2 in its interior, we define A((),
for real values of {, by

)= J cirigan. (33)

A(l) is a one-parameter family of bounded operators,
and is independent of the precise shape of the contour
C (which however, may conveniently be taken to be
rectangular and to intersect the real axis in two
points &, ).

We define the bounded linear operator T by

Tf =

<
o<y,

7/

S aja, ehag, —1)e Moy, (34)
Tyt

and, as in Ref. 10, obtain an identity for the evolution
operator by evaluating T in two ways.

We have, first of all, on using the definition of A and
carrying out the ¢, integration,
¢ .
. IOy
Tf = [ dx fo dty i(h — H) L(e "0 )

% g()\) (A1 ),

°f

with the convention that the integrand is taken to be
strongly continuous in A where C intersects the real
axis.

We deduce that
¢ . GG
Tf:fo dl, ie' w(
— [axpr—a,
C

g(A)dA)e'“’O‘Zf

Le(r — HO)’l(e"“"”O” —1)f. (35

Now (A — H) 1g(x) is strongly continuous in A (in the
cut plane), and, writing

Ey(G,)VE,(Gy) = A\ — H

we find, from Eq. (32),

(A — HoY lg(h) = [Ey(G
— (A — Ho)1E(C

DA — H)LE(Gy)
VE1(GRIE(GL)VE(G,)  (36)

Using the techniques of Ref. 10, to evaluate contour
integrals of operator valued functions, we have

S,

Y lgM)dh g = 2ni[E(G1)E | (G,)
— EfGE{(GY)E (G VENG ) g
=0 for any element g
so that the first term on the rhs of Eq. (35) vanishes
identically. To determine the second term, we have,
from Eq. (36),
(A —Hyy 1g)(n —H )1
=E G )X ~HYE (G,)Aa — H)E(G,)
— (A —HE{GELG )X — H )t
— N =HLE(G)E(GOVE (G )X — H )1
= EU(G]_)(A - H)‘lEl(Gz)EQ(Gl) (37)
- EQ(Gl)El(Gz)(A - Ho)_lEo(Gl)
— (A =H)LE(GE(GLHVE (G )X —H )1,
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By operating on the right by e!* ) _ 1 and carry-

ing out the A integration, Eq. (35) becomes

Tf = — 2MiEy(G,)E,(Gy)[e e o' — 1B (G,)f

+ Jpdx(x — IVEL(G)( —Hy)

i O-Hy )t

Ho) 'E(G,)E, (G

X[e

—1]7. (38)
We can write

- i (= t S (=
(A= Ho) ! O 1) f = [ dse' O, (39)

so that by integrating with respect to A the contour
integral becomes

iH,s

¢ .
— 21 [, dse'"0°E ((G,)E, (G,)VE (G, )e o,

and with the notation of Eq. (2) we have

Tf = — 2mE(G,)E, (G,)[e"" e ! —1]E (G ,)f
—(2M2F o (Eo(GE, (G,)VE,(G,)). (40)

Using Egs. (32) and (33), we find

A(t) = 2miE (G )VE,(G,)eifltE (G,)VE(G,). (41)

Thus A(f) is continuous in ¢, with the operator norm.
[It may readily be deduced from the spectral theorem
that e?#’E,(G,) is continuous in ¢.]

We may therefore define the one-parameter families
of operators A,, B, and L, by

t
A = [, Aw)e oau, (42)
B, = [y &M  aw)du, (42')
and in
L= fydv Fy (@)Y —Fo(B). (427
Now, from Eq. (3) we have
t -1 V.
L, = [, dve "F, (A@)) — F (B,
¢ v
= fo dvF o (e Ho¥ A@w)) — Fy AB))
¢ b2
— fo avF (e Ho¥ A(0)). (43)

Writing the matrix element ([fé dvFO,(e'iHO”A(v))]f,g)
as a double integral, it is easily seen that we may
interchange orders of integration and deduce that

t . t il
fo dv F (e Ho¥ A(0)) :F0t<f0 dv ¢ o A(v>
:FOt(Bt)’

so that we have the alternative formula for L,,

L= [y dv Fy,(e " ap)). (44)

Theorem 2: Suppose L, is compact, and let f be
any element of the space belonging to M, . (H,). Then

O(G E (Gz)[ ”” THt l]Eo(Gl)f
= 27iF { (Eo(G1)E1(G,)VE(G,)f

+ z.FOQO(At - Bt)f + iFOt(Bg)f. (45)
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Proof: From Eq. (44), we have

f(: dv

Lt _ ezHosL e zHos: [_Fov(e~iH0vA(U))

zHOsF (e zHouA(v))e zHos].
The integrand may be written

ovA(v))e—zH s

——FOv(e Ho¥ A(p)) + elHOSFO oos(€

sz

oS Ho¥ A (p))e 0"

:—FO,,(e Ho¥ Aw))

-iH v

o A(v))e_ zHos

iHyv )e -iH, (s-v)

USU(

zH s
FO v—s(e

+ eiHo(s—u)F

v~s,v

(A(w)e

iH, v

= —Fg (e a@)) + F, (e " aW))

+ Fo(a@)e ") = Fo(a@)e ” — & o Aw)).

Hence

iH s
L,—e %L,e

=[5 dv Fo (a)e ™" — &0 aw))
t - t -
=F,, (fo dv A)e o’ — [ dv e ’”o”A(y)), (46)
by the same argument as we used above.

iH
: 0sLe

Therefore L,/ — e fof = F (A, —B)f.  (4T)
Since L, is compact and f belongs to M, _ (H ), it fol-
lows that lim L, e °f || = 0. An immediate con-
§$2>to0
sequence is that
Lf= FOoo(At

—B,)f = Fo,—oo(At — B,)f.

Now, from Eq. (34), we have, by the change of vari-
ables

(48)

ty=u, ty,—t, =v,

T = fu+v<tfdudl) e’HO”A( Je 'Houe—mouf’
u, 020

which on carrying out the # integration gives

Tf = 21 [y dv Fy . (a@)e ™0)f = 20[L, + F,(B))]
= 2F, (A, —B)f + 21F (B)f, (49)

on using Eqgs. (43) and (48) and applying Eq.(3). Com-
paring this with Eq. (40), we may deduce Eq. (45), and
this completes the proof of the theorem.

3. PROOF OF THE EXISTENCE OF THE WAVE
OPERATORS

We now restrict the discussion to scattering systems
for which there exist (nontrivial) bounded measurable
subsets G, G, of the real line such that E, (G, )VE
(G,) is of trace class.

Suppose then that E(G,)VEy(G) is of trace class.
Then E {G,)VE ;(G,) has a (nonunique) representa-
tion of the form

E,(G,)VE(G,) = 2’1 a6 (@, (50)
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where |¢,] =1 and the a's are complex numbers
such that 2,2 |a,|< . The rhs of Eq.(50) conver-
ges in the Banach space of bounded linear operators
on the Hilbert space.

Equation (41) shows that A(¢) is also of trace class.
Hence ¢ %" A(v) is compact. But FOU(e_’HOUA(v))
may be expressed as a limit (in the Banach space of
bounded linear operators) of approximating Riemann
sums, and since any limit of compact operators is
itself compact, it follows that Fov(e_lHOUA(v)) is com-
pact. By the same argument, it follows from Eq. (44)
that L, is compact. Hence the conditions of Theorem
2 are satisfied, so that Eq. (45) holds for any f be-
longing to M, . (H,).

From Eq.(50) it follows that

Ey(G)E,(G,)VE,(G,) = °z°‘1 al$) @), (50

where @i = EyG))o,.

Similar representations may be derived for A, and B,.
Thus we have, for any element x,

t ; .
fo du e E(GLVE(G,)e o x

. ¢ d iHu -iH u
= — lfo du 7 [el E (G,)E,(G,)e o %]

iHt -iH
€ €

= — 1 E4(G,) o — 1E((G, ),

where “d/du’ denotes a strong derivative,
Hence from Egs. (41) and (42) we find

A, = 21E (G, )VE, (G )(e'e ' —1)E (G)), (51)
s0 that

A= °z°;1 atlo,) Wi, (52)
where ‘ .

Yt) = 2WE(G )™’ e ! — 119, (53)
and

Iy, () < 47. (54)
It follows similarly that

B, =AY = OZO) a; W (—1) (¢,l. (55)

i=1

Now let M be any positive number and let {Ni},
i=1,2,3,--+, be any sequence of positive numbers.
Given any element g belonging to Ma’c_(H o), we define
v(X) by Eq. (9'). For each value of i, we take ¢ = ¢,,
N = N, in Egs. (10), (10’), and (10”) and make the fol-
lowing definitions:

S,(N,) = {&; 11 — It (R)| < N, for all & in the interval
' 0<a <1} (56)

(M, N) = {k; |y(R)| < M} N S;(N), (56")

where I% (k) = (¢, [k —Hg  ia]16). (56”)
Each Z,(M, N,) is defined modulo a set of measure
zero. We denote the corresponding sets, obtained by
replacing ¢, by ¢, in the definition of I ;(R),by S,

and Z,(M, N;), respectively.
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The following lemma enables us to deduce the exis-
tence of the wave operator:

Lemma 1: Suppose that El(Gz)VEO(Gl) is of trace
class, and let g belong to M, . (H ).

Define, for any M,{N, },
gy = E0<ir31 [Z,(M,N) 0 ii(M,Ni)]>g. (57)

Then
- -iH ¢
s,ltl-p}oo (Eo(Gy)e T E1(Gy)
% [eiH(s—t)e-iHo(s—t) _ l]EO(Gl)e—iHOth)zo, (58)

Proof: We consider first the limit as s,{ — +©,
The proof will depend on the following result:

Let {Ci(s, )}, i =1,2,3, ,be a sequence of com-
plex-valued functions of two real variables s, . Sup-
pose that there exists a sequence {d;} of real positive
constants such that

IC,(s, )] <d, for all s,
and

0
2.4, < o,
1

Then if lim ., C,(s,t) = C,, it follows that lim
ET Cl(s:t) = E;_o Ci-

We shall also use the corresponding result for func-
tions of a single real variable. Both results are

special cases of the Lebesgue dominated-conver-
gence theorem.

5,200

~iH,t

By making the substitutions t = (s — ), f 2> e "°g,
in Eq. (45) and taking the inner product with e-iHOth,

the lhs of Eq. (58) becomes, on using Egs. (3) and (3),

Jim [— 2mi(gy, F, (E(G1)E{(GR)VE(Gy))gy)
+ 8y Fr o (As -y — B, ) 8y) — i 8ys Fy (B, ) 8y
(58")
Now

(8as Fro Aoy — B, _)8y) = }}j{.}) (8 Fy W \As_y — By )&M)

= %1_5,10 [(gM:Ftu(As_t)gM) - (gM; Ftu(Bs*_t)gM)*]

= lim (ozo) Oli*(gM,Ftu(I d);) (ll/l(S - t)] )gM)

UPo N =1
- i; o, Fo (19, Wit —s)l)gM)*). (59)

Now gy = Eo(Z,(M, N,)))gy, so that from Theorem 1 we
know that g,, belongs to the respective domains of

F, (19, (s —01) and F, (1 ¢,) Wt —s)]).
We also have, from Egs. (29’) and (54),

(g Frull 6, (s — HDgy)l < Ml NIl (s — B

< 47M  (60)
and
Moreover, 2,7, |a;| < ®, so that we may take the limit
under the summation sign, to obtain
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lim (°°1 Mgy Full 6 Wils — )agyy)

g .
u=>00 \ ;7

- OZZ ai(gM, Ftu(l ¢,> (RUi(t —s)| )gM)*>

= ozi)l [a:(gM’Ftoo(l ¢,> <l,Ui(S — t)‘ )gM)
— a8 Froll 0,0 Wit — $))gy)™), (61)
where again we have the inequalities

(g Fro (10 Wils — 1) gy)| < 4nM,
[(gas Fr (1 0) it — s)gy)| < 4nm,

From Eq. (29), we have

| (&ys Fy (1 8,) Wils — ) gy < 4nm1/2

x(f:o |C(R)] 2dk>1/2,
where from Eq. (17’) it may be verified that C(k)
depends on ¢;, but not on s or £.

Hence

Jim (g, Fo (1 60 Wils =)D ay) = 0.
Similarly

JLim (& Fo (10,0 Wyt —s)D)gy) = 0.

We may again take the limit under the integral sign,
so that

sl,izinao (gu> Ftco(As—t - Bs—t)gM)

= lim <°Zji Oli(gM,FtooU ¢,> (llq(s - t)')gM)

s,t=00

- oé Oli(gM’ Ftoo(‘ ¢1> <Wi(t —9)l )gM)*> =0. (62)

Similarly,

s];itzpoo (gM’Fst(Bs—t)gM) =0; (627)
and, by noting that g,, = E(Z,(M, N,))g,, and using the
representation (50'), we also have

sl,it—r)noo (gM7Fst(Eo(Gl)El(Gz)VEo(Gl))gM) =0 (62U)
so that the limit in (58’) vanishes, and we have shown
that Eq. (58) holds in the limit as s,¢ — ®, The proof
that Eq. (58) holds in the limit as s, - — © is very
similar, except that we use Eq. (48) to substitute

F, (A _, —B,_,) for F, (A _,— B,_,) in (58").

This completes the proof of Lemma 1.
Corollary lo Lemma 1: Suppose that E,(G,)VE,

(G,) is of trace class, and let g belong to M, . (H,).
Then

. -iH .t
lim (E,(G,)e 0, B, (G,)
x [eHE DD _ g g (G e i) = 0. (63)

Proof: The arguments used to derive the Corol-
lary to Theorem 1 show also that if 2 € Ma-c_(Ho),
then
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sﬁiicgl Ey(T(M)h = h,
where T'(M) = {#; |y (k)| < M},

and that, for each value of i,

s-lim E(S,(N,) n S,(N)h = h.

Ni—mo

Now let € be any positive number.

Define inductively g, ¢ =1,2,3,-++,by
g(l) = EO(SI(N]_) n gl(Nl))ga
gD = Eo(si+1(Ni+1) a §i*1(Ni+1))g(i),

and choose successively the positive numbers Ny,
N,,+ -+ such that

lg® —gll < e/2,
lg @D — g < /201,
Then

16 (i 15,00) 0 S,0001) 1
X1

=|s-limg® —gl| <e 2, — =¢
i—eo 0 21,+1

i=1,2,3,---.

If we now choose M such that
||E0(F(M))Eo<§? [S;(V;) N §i(Ni)]>
x g— E, (g‘? [S,V) N §i(Ni)]>g|| <e,

we have, from Egs. (56') and (57),

lgy — &l < 2¢;

i.e.,given any € > 0, we can choose M and {N;} such
that lig, —gll < 2e.

We then choose N > 0 such that

[(E,(G,)e Ho'gy,

El(Gz)[eiH(s-t)e-iHO(s—t) _ 1]E0(G1)e_iH t

ogM)|<€’

provided that s,# > N (or alternatively s, < — N ).
Noting that ||e €™ ¢ ™ _ 1| < 2 it is a simple
exercise, using the Schwarz inequality, to show that if
s,t > N, then

|(Eq(Gy)e ', By (G ™D 7t 1
X Ey(G,)e ') < e (1 +8lgl). (64)

Since € is arbitrary, we have verified Eq. (63), and
this completes the proof of the corollary.

We are now ready to state the main theorem of the
paper. We adopt the notation that if G is a subset of
the real line, then G denotes the complement of G, so
that, for example, E,(G) =1 — E(G).

Theorvem 3: Let g be any element belonging to
Ma-c_(Ho). Suppose that, for any € > 0 there exists a
positive number 7 and bounded measurable subsets
G4,G, of the real line (2,G, G, depending on €) such

J. Math. Phys., Vol. 13, No. 10, October 1972
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that
(i) EL(G,)VE((G,) is of trace class,

(i) 1E4(Ggl< ¢,

Tty < € for all £ > n.

(iii) 1B, (Gy)e
Then g belongs to the domain of the wave operator
Q_. [If (iii) holds for all ¢ < — n, then g belongs to the
domain of 2,.]

Proof: Given any ¢ > 0, choose =, G,,G, such that
(1), (ii), (iil) are satisfied. Then

IEG(G,)e g — & Holgll = e (G g < e (65)
and
1E,(G,)Ey(G,)e o'y — & oy

=11 — E;@,)) (1 — Ey(G,))e o'y — &g

< 20|E,@)e gl + 1 By G, )e gl < 3¢ (66)

But, from Eq. (63), we may choose s, {, sufficiently
large that

1,Ht

g,E (Gz)[ tH(s—t)e-iHO(s—t)

(Eq(Gy)e Y

X Ey(G,)e M'g)| < e,
and we may deduce that

|(e-iH0tg’ [eiH(s—t)e—iHO(s—t) _ l]e—iHOtg)l <e(l+ 8Hg|!).

(87)
Since € is arbitrary, it follows that

iHyt [e QHH G0 i (5= l]e'm"tg) —0. (68)

lim (e ""o'g,

s, =00

Now in Ref. 9 we proved the elementary identity

”(eiHSe-iHOS the-iHot)gHZ

— €
- ZRG{( —iHyt o, [eiH(s-t)e~iH0(s-t)

- l]e_iHOtg)}’
(69)
so that we now have

tHs ~iH_ s iHt —iHOt
g —e e °gl

11m lle =0, (70)

By the completeness of the Hilbert space, it follows

iHt —-iH

that s-lim, e e A Otg exists, so that g belongs to

the domain of ©_.
This completes the proof of Theorem 3.

Corollary 1: In this statement of Theorem 3, con-
dition (iii) may be replaced by
(iii’): HEI(C—;Z)EO(Gl)e‘”’o‘gH < € for all ¢ > n.
Proof: If
IEo@ gl < €'/2 and | E}(G,)E, (G )e gl <e/2,
then
IE,(C,)e o'gl< | E;(C,)Ey(G,)e gl
+11E8,(C,)EyC e Mgl < er/2 +er/2 =€ (T1)

Hence if #,G,, G, may be chosen, for each €, so that
(i), (ii), (iii’) are satisfied, then we can also satisfy
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(i), (ii), (iii) for each € and the conclusion of Theorem
3 remains valid.

Corollary 2: Suppose that, for every bounded
measurable set G, E (G)VE (G) is of trace class.
Then a necessary and sufflclent condition for an ele-
ment g belonging to M, . (H ) to belong to the domain
of Q_ is that: Given any € > 0 there exists a positive
number 7 and a bounded measurable set G such that

“E (~ -th

Gle "“og|< e forallt>n.

Proof: That this condition is sufficien! follows
from Theorem 3. Conversely, suppose g belongs to
the domain of £_. Then

iHyt ” _ 11m “E (G iHt —1H tgH

=lE,(G)e_gll.

lim IE, (G)e

Take G to be the interval (—a, a), and take a suffi-
ciently large so that | E,(G)Q_gl < €/2.
-iH t

Then # may be found such that | E,(G)e “"*'gl| < € for
all £ > =, and this completes the proof of Corollary 2.

CONCLUSION

A number of special cases of Theorem 3 are impor-
tant in practice. Three examples are as follows:

(i) Suppose E,(G)VE(G) is of trace class. Then the
elementg = E (G)f, where feMm, (H ), belongs to
the domain of .Q if and only if

~iH _t

s;lim E, (G)e "0g =0.

(n) _Suppose E,(G)VE(G) is of trace class and that

E,G )E(G) is compact Then every element g of the
formg E(G)f, wheref e M, . ¢ (H ), belongs to the
domain of Qi.

(iii) Suppose E,(G)VE(G) is of trace class for every
bounded measurable subset G of the real line and
that, for every element f in the domain of H,

lHfIl < alHyfll +blfll, for some constantsa,b.

In that case, (H + i)(H, + )1 is bounded, and, setting
=(H, + z)f, we have

N%@)e‘"”o?u
=B, @) + i [ +i)H, + i) e ]
< const || B, (G,)#H + 1) "I lgll.

Taking G, to be the interval (—a, +a), we have

|E (Gz)(H + iy s (1 + a2)1/2,
Henece
hm 1E,@G,) f|| =0,

and we may verify that the conditions of Theorem 3
are satisfied for f to belong to the domain of 2,.

Since the domain of H0 is dense, it follows that in this
case £, is defined on the entire Hilbert space.

The applications of the results of this paper to par-
ticular scattering systems will be considered in a
subsequent paper.
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Levinson's theorem is deduced from a general property of singular integral equations in the case in which both
the unperturbed and the total Hamiltonian have a finite number of discrete eigenvalues. We also discuss the

conditions of validity of the theorem.

1. INTRODUCTION

Dyson, Fairlie and Polkinghorne, and Lee and Klein!
have studied the scattering problem for a system
whose unperturbed Hamiltonian H, has discrete eigen-
values.

The purpose of these authors was to clairfy the physi-
cal meaning of the redundant solutions of Low's scat-
tering equation.?2 They analyzed a variety of models
in which the scattering amplitudes satisfy the same
Low equation and can be calculated directly by solv-
ing the Schrodinger equation. They could show that
every CDD solution3 of the Low equation is the phy-
sically correct scattering amplitude for a particular
model and that there is a one-to-one correspondence
between the discrete eigenvalues of H, and the CDD
poles.

Discussing the solutions of the Low equation, Haag4
showed that the Levinson theorem should be written,
in the nonrelativistics case, in the form

[6(0) — 6(e)]/n = n — N, (1)

where n is the number of bound states of the system
and N the number of CDD poles.

In the particular case of the models discussed by
Dyson et al, Haag's result can be rewritten in the
following way:

[6(0) — b(x)|/7 = n —ny, (2)

where n and n, are the numbers of the discrete
eigenvalues of the total Hamiltonian and of the un-
perturbed Hamiltonian, respectively.

More recently, by using the channel inelastic N/D
equation, a generalized form of the Levinson theorem
has been proved for analytic scattering amplitudes.5
This generalized form can be written in the same
way as formula (1) where 7 is the total number of
bound states and ghosts.

Our purpose is to discuss the validity of the extension
of the Levinson theorem given in formula (2) for the
case in which both the unperturbed Hamiltonian H
and the total Hamiltonian # = H, + V have a finite
number of discrete eigenvalues.

For the sake of simplicity we shall start treating the
elastic scattering of two spinless particles in a single
partial wave. However the extension to the scattering

in any finite number of two-body channels can be
given in a completely analogous way.

We shall assume the spectra of both H and H, to be
orthonormal and complete. Then we shall deduce the
Levinson theorem directly from the orthogonality
condition of the continuous and discrete eigenvectors
of H.% This condition, in the representation in which
H, is diagonal, is a singular integral equation (s.i.e.),
which has as many independent solutions as the dis-
crete eigenvectors of H. The Levinson theorem fol-
lows directly from classical results of the theory of
s.i.e.

Our approach to the problem will be completely for-
mal at the beginning. But before using the theory of
s.i.e. we shall assume some appropriate mathematical
conditions on the reaction matrix. Those conditions
will also guarantee the validity of the previous deduc-
tions.7,8

In Sec.2 we shall give a brief description of the for-
malism, and then we shall deduce the singular integral
equation. Its independent solutions will be counted in
Sec. 3.

In Sec. 4 we shall prove the Levinson theorem, and we
shall state the assumed mathematical properties of
the reaction matrix. The corresponding conditions
for the potential are given in Sec. 5 together with the
extension of our treatment to multichannel scattering.

2. DEDUCTION OF THE SINGULAR INTEGRAL
EQUATION

We denote the discrete eigenvectors and the corres-
ponding eigenvalues of H, by | $,) and E,; ©), respec-
tively (i = 1,...,ny), and the continuous eigenvectors
of H, by |¢(E)) for 0 < E < . In an analogous way
we denote the discrete eigenvectors and eigenvalues
of Hby |y, and E,(i =1,...,n). The kets |Y"(E))
for 0 < E < o are the continuous eigenvectors of H
and are normalized as incoming waves.

Expanding |y 7(E)) in terms of the complete set of the
eigenstates of H, we obtain

[ E) = [CdEpE, E) o E) + zi wB) ), (3)

where Y,(E) are square integrable functions, and
U(E',E) = (¢(E")| Y (E)) is comnected to the matrix
element R(E’; E) of the reaction operator by the re-
lation®
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equation. Its independent solutions will be counted in
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shall state the assumed mathematical properties of
the reaction matrix. The corresponding conditions
for the potential are given in Sec. 5 together with the
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tively (i = 1,...,ny), and the continuous eigenvectors
of H, by |¢(E)) for 0 < E < . In an analogous way
we denote the discrete eigenvectors and eigenvalues
of Hby |y, and E,(i =1,...,n). The kets |Y"(E))
for 0 < E < o are the continuous eigenvectors of H
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WE)IY(E))=6(E—E') + [R(E,E')/(E' —E + i€)].

4)

In the case where H, has only a continuous spectrum,
the diagonal matrix elements R(E; E) are connected
with the phase shifts by the relation

R(E,E) = — [ei8 (E)gind(E)]/7 (5)
following from unitarity of the scattering matrix. Our
case is more general since H, has some discrete
eigenvalues and the discrete eigenvalues, both of H
and H, can be embedded in the continuum, as a result
the scattering matrix can no more be defined in the
usual way, namely,

S= lim lim eofe- i {t-t)p-ilhot!, (6)
t—=+o0 t/= -c0

However, if the matrix elements R(E, E’) are bounded
and Holder-continuous functions in the two variables
E and E’, we may define a unitary scattering operator
on thecontinuous subspace of H in a way analogous to
(6). The matrix elements of this scattering operator
are given by

5(E — E")e2i8(B) = ($(E)IS|p(E"))
= 8(E — E')[1— 2miR(E,E)]. (7)

From the last relation, formula (5) follows again.

We see now how to count the discrete independent
eigenvectors of H. Let us call discrete subspace of
H the subspace spanned by its discrete eigenvectors.

Using the orthogonality and the completeness of the
spectrum of H we have that the necessary and suffi-
cient condition for a vector |¢) to belong to the dis-
crete subspace of H is

WHE)Y =0, (8)

forany O0< E < w0,

Now we expand the vector |{) in the complete set of
the eigenvectors of H:

W) = [y aBENpED + T x,19), (9)

where p(E) is a square integrable function. From (3)
and (9), Eq.(8) can be rewritten in the form

00 nO
A YHE, E)pB)AE" = — 2, 5 3] (10)
Then, from (4), we get
pE) — [C-BUELE) g = 3 xgtE). (1)
0 E—E'+in irl

Equations (11) and (10) are inhomogeneous s.i.e. The
term at the right-hand side depends on n; independent
parameters [namely x (] =1,... ,no)] and the number
of nontrivial 1ndependent solutlons is n. Here we call
trivial solutions those for which the functions p(E) and
the parameters x; vanish simultaneously.

3. DISCUSSION OF THE EQUATION

The nontrivial solutions of Eq.(10) can be classified
into three classes:
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(I) Solutions for which p(E) =
not vanish.

{O0) Solutions for which p(E) # 0 and all the X,
vanish,

0 and some x; do

(II) Solutions for which p(E) is not identically
zero and some x; # 0,

We consider separately the number of the linearly
independent solutions belonging to the three above
mentioned classes. The sum of these three numbers
is equal to the number “n” of the independent discrete
eigenstates of H.

Let us consider the solutions of Eq. (10) belonging to
the class I; such solutions exist if some nontrivial
linear combination of the quantities % (E) vanish iden-
tically [this happens in particular if some one of the
Y7 (E) is identically zero].

If the largest number of the ¢ }(E) which are linearly
independent is # = n,; then there are ny — h nontrivial
independent linear relations among the Y *(E):

5‘ f(”w*(E) =0, I=1,...,ny—h (12)

the coefficients of each linear combination (12) pro-
vide a solution of the Eq.(10) belonging to class I.

The number of the independent solutions of class II is
the same as that of the independent solutions of the
homogeneous equation

f: WHE, E)p(E")dE" = 0. (13)

Let us indicate it by a

We must now find the number of the independent solu-
tions belonging to class III. In this case the right~-hand
side of Eq.(10) does not vanish. Then Eq. (10) is in-
homogeneous and has solutions if and only if the term
at the right-hand side is orthogonal to all the solutions
of the corresponding adjoint homogeneous equation.
This is a well-known property of the integral equations.

The homogeneous equation adjoint to (10) is

f: Y(E,E"(E")E" = 0. (14)
Let us suppose that Eq. (14) has “b” linearly indepen-
dent solutions; we indicate them by ni(E}i = 1, ,b).
Then Eq. (10) has solutions if and only if all the follow
ing orthogonality conditions are satisfied:

n

2 X5
il

<

f0°° YHEHENE =0, j=1,...,b. (15)

The number of the linearly independent solutions of
Eq. (10) belonging to class I coincides with that of
the nonvanishing linearly independent combinations of
the Y ¥(E) satisfying condition (15).

Let n(E) be a linear combination of the function 7,(E);
we define the vector

@) W E) dE = | o), (16)
and we have
@le)y= [ In(E)|2dE. (1
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Using the completeness of spectrum of H,, we obtain

ol :]:’ dE(p| p(E)) (YE) | ¢ +Ez @lo) o, ley. (18)
From (16), (14), and (3) we have
@E)lo) = [ dB @By (ENn(E)

= {;’° Y(E,E"(E")dE’ =0. (19)

Then, by taking into account (18) and (19), Eq.(17)
becomes

r~ |n(E>|2dE=:zj JEAENIES (20)
Now, by (3) and (16), we have

Gloy = | nE),(E)IE (21)
and, by (20) and (21),

I* in(e) 248 = El | fy nEWE)E 2, (22)

This shows that a linear combination of the n,(E) is
orthogonal to all Y}(E), if and only if it vanishes iden-
tically.

H we now denote by 91 the linear subspace spanned by
the functions ¢} and by 9, it orthogonal complement,
then any n; can be written as

n,=§,+¢, where ¢, cWMand{, e IM,.

The £, are linearly independent. Indeed, if a nontrivial
linear combination of the £, is orthogonal to all the
Y} (and therefore equal to zero), the corresponding
linear combination of the n, is orthogonal to 9N, thus
by formula (22}, it vanishes too. Hence the linear
manifold M contains “6” linear independent vectors
and its dimension “#” cannot be smaller than “5.” In
the case where > b there are  — b vectors belong-
ing to 9N which are orthogonal to the £, and to the 5,.
Consequently there are » — b linear combinations of
the Y7 which are orthogonal to all the n,. Thus we
have /# — b particular solutions of Eq. (10) belonging to
class III. These solutions are independent of each
other and of those belonging to classes I and II.

Now we can conclude that the vectors belonging to the
discrete subspace of H are n, — k belonging to class I,
a belonging to class II and # — b belonging to class
IO. Then we have
n—ng=—h+a+h—>b=a—b. (23)
Thus the difference between the number of the dis-
crete eigenvectors of H and that of the discrete eigen-
vectors of H, is equal to the difference y =a — b be-
tween the number of the independent scolutions of the
homogeneous equations (13) and (14). These equa-
tions, can be put in the form

o0 * ’
p(E) — [T E LB peaE = o, (13
o R(E,E") , , ,
nE) + fo E_—E Tic mE")E' = 0, (147)
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The number x is given by the theory of the singular
integral equations as we shall see in Sec. 4,

4. DEDUCTION OF THE THEOREM

In this section we prove that the relation (23) is
equivalent to the Levinson theorem [formula(2)]. This
follows directly by applying the theory of the s.i.e.to
Eqgs.(13’) and (14’). However this needs some

slight extension of the known theory, in which the inte-
gration path consists of a finite number of smooth
contours and the considered solutions are only those
Hélder- continuous,10 In our case the integration path
is the real axis and the solutions of interest are
square integrable functions. However, the theory can
be extended following step by step the treatment of
Ref. 10 and changing only some details.11

So as not to break the continuity of our treatment, we
shall give only the general results of the extended
theory and apply them to our case.

Let us indicate by ®(«a, g) the class of functions of
real variable f(t) which satisfy the Holder conditionl®
with index 8 and vanish for large I¢| faster than |¢]-¢;
that is

Ff() — (¢ = C 1t — '8, (24)

A0 = ¢/ + |ele), (25)
where 0 < 3, @< 1. We say that a two-variable func-
tion %(¢, ') belongs to the class G¥a, 8)[k(t, ') ¢ R2
{a, B)], if it satisfies conditions (24) and (25) simul-
taneously in the two variables f and ¢'.

The equation

k2, 1)

=t Y =0

(KQt) = ¢lb) + WL? f:’ at’ (26)

if k(¢, ') € ®2(@,B8) and 1 — 2k(¢, {) = 0 is an s.i.e. The
adjoint equation is

(KT = ap) +%1_i f_:ooo at' B, 1)

T+ e M) =0

(27

Let us also consider the s.i.e. (of the dominant type)0

k¥, 1) e u(t’)
7t — ~ ) ’ _
(KpuXt) = ule) + =22 [ " ar 52— =0 (28)
and the corresponding adjoint
- 1 e, R ) " —
By = At) + o [ dt' = vt = 0. (29)

The main results of the theory of the s.i.e.are

() The difference between the number of linearly in-
dependent solutions of Egs.(26) and (27) is equal to
that between the number of solutions of (28) and (29).

(I) This difference is equal to the index y of the op-

erator K:

X = %{mg[l + 2k(c0, )] — log[1 + 2k( — o, — owo]-1},
(30)

The only difference among (13), (14’) and (26), (27)
lies in the integration path. However, if k(t,¢') = 0
for ¢ or ¢’ < 0, it is evident that Egs. (26) and (27) have
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nonzero solutions only on the positive real axis. In
this case the index of Eq.(26) can be written in the
form

X= -2-17;; {log[1 + 2k(w, «)]1 — log[1 + 2&(0, 0)]-1}. (31)

On the other hand, R(E,E’) can be considered as a
function defined on the whole real axis, vanishing if
E or E’ are negative. Thus Egs. (13’) and (14’) can
be extended fo the entire axis. From these remarks
it follows that the above theorems can be directly
applied to Egs. (13’) and (14’) if R(E, E’) belongs to
the class ®2(a,p) and 1 — 21f R(E,E) = 0. Now the
last condition when R(E,E’) € ®2(a, ) is implied by
(5) [indeed, 1 — 27i R(E,E) = e2i(E) = 0.

Therefore, we conclude that if R(E, E’) € ®2%(a,B), the
difference between the number of the discrete indepen-
dent eigenstates of H and H, is
n—ny =y = (1/2ni){log[1l + 2miR*(c, w)]
— log{1 + 27iRX(0, 0}]}
= [6(0) — &(x)]/7.

which proves Eq. (2)

(32)

We remark that the required conditions of continuity
imply that R(E, E’) must be Hlder-continuous at the
threshold. For this reason our treatment does not
include the case in which the matrix R is a threshold
singularity. In the last case the usual form of Levin-
son's theorem is notoriously not true.!2

5. FINAL REMARKS

We have proved Levinson's theorem by assuming
appropriate conditions of continuity on the matrix
elements of the reaction operator R(E, E’). It may be
interesting to connect these conditions to some pro-
perties of the potential, Namely, we may investigate
under which conditions on the potential there exists

C. M. BECCHI AND R, COLLINA

a reaction matrix with the desired properties. This
problem is widely discussed in a book by Friedrichs?
and in other papers therein quoted.8,13 In particular,
Rejto® shows that if the potential belongs to the class
2(a, B), then the reaction matrix exists and usually
belongs to the same class. For the deduction of this
result and for an analysis of the possible exceptions
we refer to the literature.

Finally we briefly consider how our treatment could
be extended to the case of the scattering in any finite
number N, of two body channels. In this case the
eigenvectors of the unperturbed Hamiltonian H, are
labelled by a discrete channel index (i = 1,...,N )
besides the energy. So the matrix elements of the
reaction operator R(E, E’) [formulas (4) and (5)] are
themselves matrices in a N.-dimensional space, and
the coefficients p(E) and x, of Eq.(10) are vectors in
the same space. Equations (11),(13’) and {14') become
systems of singular integral equations. Taking this
into account, the proof of Levinson's theorem can be
given in the same way as before. By applying the
result of the theory of systems of s.i.e., the theorem
becomes

(1/2mi) IogdetlSij(O) |— logdeHSij(OC)S} =1 — g,
(33)
where Sij(E) =8;— 2m‘R2.j {(E,E} are the scattering
matrix elements; ¢ and j are channel labels.

However, in this case of Ref. 11, the continuity condi-
tions on the matrix elements R are slightly more re~-
strictive than those considered above. Indeed (24) and
(25) are replaced by the Holder-continuity condition
at infinity,

F@y =) s Cc lt—vl/ 11 —atlel1— i) e
O=sa <1,

where (34)

and we consider functions R(E, E'} for which (34) is
simultaneously valid in the two variables.
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By following the work of Biedenharn we have redefined the k-particles generalized exchange operators (g.e.o.'s)
and studied their properties. By a straightforward but cumbersome calculation we have derived the expression,
in terms of the SU(n) Casimir operators, of the 2-, 3-, or 4-particle g.e.o. acting on the A-particle states which
span an irreducible representation of the grown SU(n). A striking and interesting result is that the eigenvalues of
each of these g.e.o0.'s do not depend on the » in SU(x) but only on the Young pattern associated with the irreducible
representation considered. For a given g.e.o., the eigenvalues corresponding to two conjugate Young patterns are
the same except for the sign which depends on the parity of the g.e.o. considered. Three appendices deal with
some related problems and, more specifically, Appendix C contains a method of obtaining the eigenvalues of

Gel'fand invariants in a new and simple way.

I. INTRODUCTION

The interest attributed by physicists tothe Lie groups
has been continuously growing since the pioneer
works of Weyl,1.2 Wigner,3 and Racah.4In particular,
unitary groups have been used successfully in various
domains of physics, although the physical reasons for
their introduction have not always been completely
explained. The use of unitary groups in physical prob-
lems has in turn given rise to a lot of works devoted
to the study of these groups considered as entities.S
In this paper, we shall use the group U(r) to define, to
investigate the properties of, and to calculate the
eigenvalues of the so-called generalized exchange
operators (g.e.o.'s). This research opening was sug-
gested by Biedenharn,6 who defined a g.e.o. P27 %
for k particles and relative to U{r) as an extension of
the two-particle exchange operator. [Note added in
proof: Dr.Klaus Lezuo (University of Mainz) had in-
dependently carried out research rather similar to
that in this paper. I should like to thank Professor

L. C. Biedenharn for his calling the Lezuo paper to
my attention.] The two-particle exchange operator
has proved to be very useful in nuclear physics (cf.
the spin exchange operator or Bartlett forces,? the
space exchange operator or Majorana forces,8 and
the charge exchange operator or Heisenberg poten-
tial®). These two-particle exchange operators are a
simple transcription of two-body forces. In a similar
way, the k-particle g.e.o.'s (k> 2) derive from k-
body forces. For a long time, the existence of many-
body forces among nucleons has been postulated.0
Recently, some papers!l have been devoted to three-
body forces in an attempt to define their importance
relative to two-body forces and Harter,12 using a
Young diagram, derived sum rules for £-body opera-
tor spectra.

The material will be organized as follows. In Sec. 2,
we study the properties of the g.e.o. P2 % defined
in a somewhat different manner to the one of Bieden-
harn.6 In Sec. 3, we extend this definition to produce
an operator P2 for A particles (A > k). Section 4 is
devoted to the three particular cases P4, P4 and P4.
By a direct derivation, we get P4, P4, and P4 as func-
tions of the invariant operators for SU(rn). For each
of the operators P4, P4,and P4, we then obtain the
eigenvalues relative to an A-particle state which
carries an irreducible representation of SU(#). Mak-
ing use of the Young diagram corresponding to the
representation, we show that the eigenvalues of P4,
P4, and P4 do not depend on » in SU(z). In Sec. 5, we
write the g.e.o.'s in Weyl basis. As is well-known,
the Weyl basis makes the study of U(n) easier. The
study of our g.e.o.'s is simplified with this basis.
The Weyl basis, is, however, less convenient for phy-
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sical problems such as the one suggested by Bieden-
harnl3,14 and used in the first three parts of this
paper. In particular, Biedenharn's basis enables us to
render apparent, through the weight operators H,,
quantities of physical interest, while Weyl's basis
does not.

Finally, three appendices deal with problems connect-
ed with the main body of the paper, although they are
more or less self-contained. Appendix A discusses
the algebra whose elements are the structure con-
stants and the coupling coefficients for U(n). Appen-
dix B is devoted with sums of type
A
20

# e
47 2y

x @,

n

(@) y (@)
XX

Last of all, Appendix C gives a general expression
for the eigenvalues of Gel'fand's invariants,15

For the purpose of unifying the notation, we follow the
same definitions and notations as those used in a pre-
vious paper,16 with one exception: Summation of the
generators X, (or x,) always includes the number
operator H (or k). As a consequence, the coupling
coefficient [ABC] is now defined by

(x4 x5, = [ABC]x,. (I1.1)
In other words, we extend the metric for SU(n), to the
one of U(n), by letting g, , = 68 with g, = 89.

II. DEFINITION AND SIGNIFICANCE OF THE SU(n)
k-PARTICLE G.E.O. ACTING ON THE k-
PARTICLE STATES

We shall define such an operator by the following
formula:

k1

Pa%2 "% = on [ABC - E]

ABC = E

X xj“l)xé“?)xé”a) e xbf“k), (. 1)
which differs from that of Biedenharn®é by the norm
and the coefficient [ABC - -+ E]. The interests of our
definition will appear below.

In Eq.(II. 1) a;,ay, ...,a, stand for the k-particles,
whereas x,,x,, ...,xp are the generators of the funda-
mental representation [1, 0] of SU(x) and, finally,

[ABC - - E] is the completely symmetric coefficient
in all indices A, B, ..., E obtained from the coefficient
[AB—M]M--+]--+[+--E]. More precisely, [AB] (or
£, and [ABC|, which correspond to 2 = 2 and % = 3,
respectively, are completely symmetric by defini-
tion.17 For k = 4,the coefficient [ABC - -- E] can be
defined via the following recurrency formula:
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= {2/k(k — 1)} Z}f (4,4, — M]
TAL AL AAuy A

It should be emphazised that the summation in Eq.
(I1. 1) has to be extended over all the values of the
indices AB -+ - E including the value 0 which corres-
ponds to the unit generator.

(4,4,

X [MA, - (1. 2)

Let us denote, for the particle a;, by ¢*(a,) the mth
state (1 < m < n) of the fundamental representation
of SU(n). The generator x, (x, =k, or e_) acting on
pm gives

hom = (2n)1/2)pm, (zn)"l/%jmqs;.

(II.3)

The index n is superfluous and we shall omit it in
what follows.

Catin®u =

Let us now examine the significance of Py1“' %
operating on a tensorial product of such one-particle
functions. For & = 2, Eq. (II. 1) gives

P3% = 2n Z)x(“l) @), (11. 4)
and by making use of Eq. (II. 3) we get
P3%¢™(a))o " ay) = ¢™2ay)0 ™ @y), (IL.5)

as is well-known; i.e.,P;}a2 simply exchanges the
particles a; and a,.

For k& = 3, first using the definition relation of the
coupling coefficient [ABC |, written here in the form

% x4, = (IL. 6)

[ABC] xS,
and, secondly, by taking advantage of the useful rela-
tion

1

(a ) (a) (a3) i
DGRy = 5 5 enoa), @
where ¢, . is the » X n matrix consisting of unity in

m 3
the (m,7) position and zeros elsewhere, we should

obtain
Pglazag(i) ml(al)(bmz(ag)d) ms(a3)
= é{¢m2(a1)¢m3(a2)¢m1(a3)

+ ™3 (ay)0 " ay)d "2 ag)) (1. 8)
As a matter of fact, this operator induces on the
three particles all the permutations which do not
leave any of them unchanged. To be more precise,
those permutations are, in cyclic notation, (123) and
(132),i.e., form the 3-cycle class of the symmetric
group S,.

For & = 4, we shall use the following relation defini-
tion for the coupling coefficient:

(a,)

[, 28,07 %), = [AB — M) [MCDLg s (. 9)

and with Eq. (II. 7) we thus get

2, [AB

ABMCD

— M][MCD]

X xe a0 ™ (a0 " Ha )6 " ag)e e y)

=(2n)’3{¢) 4(a]_) 1(“2)¢ 2(“3)‘1’ 3(04)

J. Math. Phys., Vol. 13, No. 10, October 1972

AL PARTENSKY

+ ¢"2(ay)0 " ay)p " as)p "Ha,)
+ ¢ms(a1)¢ml(az)¢m4(a3)¢mz(a4)
+¢"2(a;)p " ay)d "Hag)0 ™ (a,)}.

Here we do not get all the permutations leading none
of the particle unchanged, because the coefficient
|[AB — M| [MCD)] is not completely symmetric in all
indices. This point leads us to define our g.e.o.by
introducing a coefficient [ABCD] completely sym-
metric in all indices. Thus, for P;1%2°3% we obtain

(II. 10)

"2(ay)d "3(az)d ™ ay)
= 1o "4(a;)0 ™ (ay)9 " 2az)d " ay)
+ ¢ "2(ay)0 "(a ) "M ag)d " a )
"3(a;)0 "1 ay)o " ag)d "2 (a,)
+ 0" 2(ay)0 "3 (a,)0 " (ay)0 "1 (a,)
+ 0™ (ay)9 " ay)d " ag)d "2 a,)

m3(“1)¢m4(a2)¢m2(a3)¢ml(a4)}-
The significance of the P ;1°2“3% operator isnow clear.
It induces on the 4-particles the six permutations
(1234), (1243), (1324), (1342), (1423), (1432) which be-
long to the 4-cycle class of S;. By an inductive pro-
cess, we might generalize the results obtained for
k =2,3,and 4. The significance of a k-particle g.e.o.
pPa%” "% for SU(n) (r = k) acting on a k-particle state
function corresponds to the permutations on the k-
objects belonging to the class defined by the cycles
of length k.

PZx“z“z“4¢m1(al)¢

(1. 11)

M. g.e.0.AND A PARTICLES

A. Definition of the SU(n) k-Particle g.e.o. Acting
on the A-Particle States (4 = &)

We shall define it through
k! A

PA = A Palaz...ak’
FLAA-D . A -k + 1) gpapiie *
(I11. 1)
which is a generalization of Eq. (II.1). (One must

verify, of course, that, for the particular case A = %,
we have P = P2%"% ) By expanding Eq. (Ill. 1), we

get
&1 A
P}f: 2n -3 1 E
AA -1 ...A—k+1) . w>a, ABC..E

[ABC... E]x;“ﬁxg'z’ X

(1M. 2)

It is clear that the quantity 75,, . [AB... E]

xﬁ“l)xg@). . (ak) is completely symmetric in indices
AysQgs ety ak This provides interesting consequen-
ces as it will be seen in Appendix A.

B. Eigenvalues of g.e.o.in the Particular Case
Relative to a Maximum Weight State

Let us suppose that the ath particle is in the state of
higher weight denoted by ¢1. We thus have
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(a;) i) @), 1
hoa)= 12N ela,), eMol,) = 0.
(10I. 3)
By coupling such one-particle functions, we would

get the A-particle functions 4. The transcription of
Eq. (II1. 3) for Y4 yields

wa = ﬁ1¢%(al). (I11. 4)
al‘

By remembering that all the x's of Eq. (IIl. 2) com-
mute, we only have to consider that part of P# which

contains products of type h(al)h @) h(a’*) so that

A A 2n* k! A
P = 2
O A(A—l)...(A~k+1)al>El>ak i
ik ... )R & l'Il oXa).
al‘

We easily get

n-1
Z)o [k .. A a0 = <2>(k/2)-1 (III. 5)
ijk ... n
and finally
PAYA = Y4, (ILI. 6)

In other words, the eigenvalue of P# relative to a
symmetric tensorial product of maximum weight is
unity. This is an a posteriori justification for the
normalization coefficient introduced in Eq. (III. 1).

IV. EIGENVALUES OF P4, P4,AND P}

A. Expression of the g.e.0.P4, P4,and P4 in Terms
of Invariants

Before we undertake the explicit calculation of the
eigenvalues for P4, P4, and P4, we mention two pre-
liminary remarks:

(1) If in the definition of the invariant operators (cf.
Refs. 13 and 16) we allow the summation to include
the index zero, we thus define operators, denoted as
Ik, for the group U(n), which are expressible in terms
of the invariant operators I, of SU(n), and of the
operators H, for U(1). In what follows, we use the
three first operators

102 =1, + HE,

Iy =1, + V2 /M H I, + (JZ/n)H3,

Iy=1,+Q2/n2)I% + (&/2/n)H I, + (12/n2)H2I,
+ (2/n2) H.

(Iv.1)

(2) From the fundamental representation of algebra
spanned by one-particle generators, we may span a
more general representation by defining polyparticle
generators:

A
Xy = 23 xga;). av.2)
a1:1

1. Operator P4

The general definition of P# gives in that particular
case

A (“1) (a
P Xg
2 - A(A —1) alziz 2z
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After the utilization of Eq.(A9) from Appendix A,
this formula reads

P} - i—z(z )

A
x5y xgal)x(_ag)>.
AA —1) B =1 g,71 a =1

Introduction of the relation (III. 2) in P4 leads to

Pg ={2n/AA — VHI, — (0/V2)H,}

or

Py ={an/AA — 1)}{I, + HZ — (2 /N2)Hy}. (IV.3)

The eigenvalue of P4 then follows from that of I,,16

and that of H,, (i.e. A/n\/—) In abbreviated form we
have

P4 ={2n/A(A — 1)} (I, + A2/2n2 — A/2), (IV.4)
a well-known result.
2. Operator P$

By following the same procedure as P4 [and using
Eq. (A9)] we easily get

A 2n2
py=—">"7""
AA —1)A —2)
4 & @)«
<13—3 > [ABC] 2 2 sl @) x
a1~111241
n2 +1
+ —— H
n2 0>,

where § renders in all the indices A, B,and C sym-
metric. Owing to the symmetry of [ABC], we can
write

3 [AB ] Z) Z) $(xY (a) (al))x(caz)
ABC a4 =1 a2
=7 [ABC] E E (“1) (a,) (az)
ABC a =1 a2

Or by using Eq. (B1) of Appendix B, we have

25 [ABC] E Z)

(a)(a)(a) 1. 2
ABC “_2—(12 tHY)
@71 a1

(Iv.5)

so that P4 is expressible as a function of 13,12, and
H. The transcnptmn of this result in terms of I,,
12, and H g, via (IV.1),gives (in abbreviated form)

2n2 3 A 1>
I, +3 (5 =21
—2) 3 (nz 2/ 2

AA — 1A
3 2 2
A 3A ne +1

2n4 an2 2n2

P4 =

Ag. (Iv.6)

3. Operalor P}

By following the same procedure as for Pg‘, we have
to calculate here quantities of type [ABCD|xx,x,x,.
The calculation of such quantitites is achieved by
using the general formula

> [ABCD][ABM] = 1 (2 + 60 + 69 + 269)[MCD],

48 av.n
which is derived from Eq. (B11) of Appendix B. In
the detail, we thus get
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[ABCD] @6, _ 114 5@y er)y e

+ (V2 /67n) (2h x5 + p e

+ h(ag) (al)x(_(f}{)),
[ABCD)x{Px @yl )

={(n2 + 2)/6n2}x @ + LpDp D,

[ABCD]xf(‘al)xgl)x(cal)xl()az) ={(n2 + 3)/6 nz}xf(xal)x(—aj)

+ 3 h$p (D, (Iv.8)

We further have

AEC)D [ABCDX, X X X, =1, — 51, + 5 HE
Y [ABCD)x @ — (2 + 5)/12n2) 10
ABCD

{Iv.9)

Introducing Eqgs. (IV.8) and (IV.9) in the expression
for P4, we get

A 2n3
PA =
4
A(A — 1)A — 2)(A — 3)
° o Tn2 + 20 — 16A ¢
><<14 —ol, + T A
4n2
2 2
s 1742 uA) @Iv. 10)
8n2 2n2
or finally
3 2 _
P4 = 2n < % 2(n )13
A(A —1)(A —2)A - 3)
4 Tnd + 20n2 — 40n2A + 24A2 I
2
4nt
LAt —6n243 + (6n4 + 5n2)A2 — (n6 + 5n4)A>
2n6 )

av.11)
The same procedure might be extended to Pg with
k = 5,leading then to cumbersome and fastidious
calculations.

B. Expression of the Eigenvalue of Each g.e.0.as a
Function of the Young Pattern Characterizing the

IR [pqtq " by ]

In Egs. (IV.4),(IV.6),and (IV.11) giving each g.e.o.
as a function of the invariant operators for U(n),

{(rn arbitrary, but fixed) the figure » appears explicitly.

We shall see in what follows that the eigenvalue for
each of our g.e.o.'s does not depend on the index #,
but only on the higher weight of the considered
irreducible representation.

To make clear this point, it is sufficient to express
the eigenvalues of P4, P4, and P4 in terms of the p's
relative to [u,,p,,.. ,u ] [u] This is achieved by
the following transformation:

(ul H] [p)) = = Z) Dy av.12)
where, of course,
A= f) By - (Iv.13)
1=1

Thus, we get

J. Math. Phys., Vol. 13, No. 10, October 1972

PARTENSKY

Pyllub ={1/44 — DH{p? — 20p, + AH[wD

P4l{pD ={1/A4(4 — 1A — 2)}{p3 — 31p2 %u
+ 312, —3lp, + 24 —3A2}[p

k) ={1/A4-1@ - 2)4 —:%)}«{uZ —2(20 —
+ 61 —1) —4A + T]u2
—2(22 — 31 —4A + Ny,

—4A2 +6AH[u) (IV.14)

Inthose equations the summations over ! have tobe as-
sumed; from a certain rank p, = 0, so that the sum

over [ has to be extended on all the I's for which
p, = 0.

C. Relation between the Eigenvalues Corresponding
to the Associated IR's Pattern [n] and [[1]

As is well known, the Young pattern associated with a
given pattern is obtained from the first one by ex-
changing its rows and columns, so that, given the
Young pattern characterized by the partition

[u] = [“17 “2’\ e ’“p]'

The associated pattern corresponds to

[U] = [ﬁly lIz’ o -:II};])

where
[ﬁ]:[l...l,l—l...l——1,...,k...k,...,1... 1].
N N —— ——
Hy Hp-17H; FpHp+1 HiTHo
(Iv.15)
Owing to the identity
Z)k“u‘*— E Z) gk — (k — 1)8], (IV. 16)
k=1 ¢g=1

it is a simple matter of calculation to get

PA|[a]) = — P4l [uD,
PA|[p]) = P4l [uD),
P4l [u]) = — P4l [uD.

(Iv.17)

Consequently, the eigenvalues of P4, P4, and P4 rela-
tive to two associated Young patterns are in the ratios
—1, +1,and —1, respectively, so that the eigenvalues
for P4 and P4 relative to a self-associated Young
pattern are zero. As a check of Eq. (IIl. 6) we easily
obtained 1 for the eigenvalues of P4, P4, and P4 rela-

tive to the eigenfunction characterized by [4, ) ]. By
applying Eq. (IV.17) the eigenvalues of P4, P4,and P}
relative to [14], the associated partition of the preced-
ing one,are —1, +1 and —1, respectively.

V. GENERALIZED EXCHANGE OPERATORS
EXPRESSED IN WEYL'S BASIS

The above definition of the g.e.0.'s involves the
group U(r) rather than the group SU (). Further, the
eigenvalue problem of those operators is more easily
tractable when resolved via the use of Young diagram
{pq, “2’ e ,ul] Consequently, we shall rewrite the
g.e.0.'s by using the n2 Weyl generators Ez;’ which
obey the commutation relation

(E,;» By = 0,E,

i =8, Ey;e

(v.1)
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Let us denote by ¢,. those operators in the fundamen-
tal representation. (The so-called z X n matrix units,
in which 1 appears in row ¢ and column j, and 0
appears elsewhere). The basis vectors of this repre-
sentation are the function ¢, and we have

lij¢m = 5jm¢i' (V.2)

In this basis, formula (II. 1) reads

-1 »roen )<e(”2) .. (a")>s

(B — 1! iiy,g, 12\ N
(v.3)
The parenthesis lower-indexed by S means that the
inside quantity is fully symmetrical on all the per-
mutations of the symbols a,,a,,...,a,. The develop-
ment of ( f”’i) 5“3) . (a’i))s then contains (¢ — 1)!
terms. 3t

P:l 2y ay

The significance of the P;1%" % operating on a ten-
sorial product of one-particle function ¢™ is quite
clear. Indeed, owing to Eq. (V. 2), we derive

T e

i iy 172273
= ¢mk(al)¢ml(a2)¢m2(a3) e

By using the last equation and the symmetry on the
indices ay,a,,...,4, occurring in Eq.(V.3) we deduce

that the effect of P,'“2” “# operating on a k-particle
state function corresponds to the permutations on the
k-objects belonging to the class defined by the cycle
of length %.

(a,_) (a) m
te L ek o i (ay)e May) 9 ™u(a,)

o™ a,).  (V.4)

In a similar way, it is possible to rewrite P# as func-
tion of the ¢;;. Formula (III. 2) gives

A k
P, =
AA—-1)...A—k+1)
n A
X E (al) (ll (ak)
iliz.*ik a1>a§1m>ak i 12( iyt " )S (Vv.5)
or
Pl= 1
AA—-1...4A -k +1)
A
(a)) (-’12) (2) (V.6)
X llzz>1 i, q >E...1>ak (ez 1% ) otz " elkll)s .
Let us write
A (a)
=27 eijl. v.n
a1:1

Equation (A8) of Appendix A, the relation commuta-
tion (V.1) and the following relation,

e, = ¢,

ij 3% (v.8)

specific to the fundamental representation, enables
us to express Pf from the Gel'fand invariants:

n
Ik(") = - .El. Eil iin2i3 T Eikil'
‘Ll 12 ...lk
The eigenvalue of P4 is then easily obtained from
those of Gel'fand invariants (cf. Appendix C).

(v.9)
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APPENDIX A
(’11) (a R
x?l

Let us consider the quantity xy 7’ where
each variable x; depends on the upper indices q;. We
shall write (x(fl)x(z'lz) e x,(l”"))S the polynomial obtained
by adding the n! terms resulting from all the permu-
tations on the indices 1,2,...7 of x(lal)x(;?) (a
Let us suppose now that each g, can take A ( n)
distinct values. We then have the following identities:
A @ @), .. @) - @), (@) )
DD e R P N ..x:an s

a1¢a2¢...¢an @ >dy> >y
A 7-1 Gyapml @poy” ; N @
=27 2 ... E Z)(x(a1 @)y
a =n a2:n-1 Ay =
A n
= 2 x(fl)x(z“z) o X I F, s (A1)
.8, .58, i< 7
where F, , stands for 1 — Oaiaj (Ga,aj being the Kro-
necker symbol) F, , has two important properties,
viz., v
2 =
F”i"j) Tagap (A2)
éaiajFaiaJ = 0
Let us define:
FO =11 (1 - 5”;’“1-)' (A3)

i<j

Clearly F @ can be written as a determinant of order
n, It is merely sufficient to multiply the jth column of

6altz1 ————— Galan
—_— 5aiaj__ R
éanal _____ 6”n“n
by
n (1-s,,)
k=j+1 %%

and to use the properties (A2) to get

F® = detls,, I. (A4)
i
The development of the obtained determinant as
n) =
F P}‘E)s x (P)5 alapfazapz w Oy (A5)
12 .n

[where P = ( B, ) and x (P) denotes the parity of

p] can be wrltten in'a somewhat more “condensed”
form.

For that purpose let us define
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o) _
G“i”i - 6“1':1’

6(1):%1 e =q (A6)
;% 0 ifai::aj’

“% - %% |0 otherwise
For each partition [A] = [Aq,Xy,...,),] of n,
My =22 00020, 2 00 +2y+ ...+, =0),

let us define the elements

A (A-1) (A1) (-1
I 502 5...804  (an)

: ;e a; a;
1,0 13 ] i 1
1 ‘2 A Al AtAgy n

(with x, = 0 and A,,; = 0).

Due to the symmetry of the indices each element
0 has the multiplicity

Ay — DIy, — DIy — DI,

The parity x (P) being a class function we can write
(Ab) as:

FO= T 00y ~ D10y = DL O, — 116, (48)

where the sum over [A] runs on all partitions of »
and, for a given partition {A] of #, the summation has
to be extended to all ¢ which give different éim.

For the symmetric groups S,, S, and Sy, (A8) reads

F@®=1-5,,,

B)=1—-
F 1 (6“1“2 + 6"1“3 + 6“2“3) * 26"1“12“3’
) =1 —
F 1 (6“1,,2 +0,4 t 04,
+ + + (49)
5“2‘13 6‘12“4 6“3"4)
+ 2(6“1“2“3 6‘11"2“4 6“2“3“4 + 5“1"3“4)
* (6“1426”3"4 * 6“1"36 % * 6"1“46“2"3) o 66“1“2"3“4'

The relation (A8) enables us to express (Al) with
relations where all the summation indices run from
1to A.

To close this appendix, we offer two expressions
which are straightforward applications of the for-
mulas (Al) and (A8)

(1) In Eq. (A1), let us put all the xi(ai) equal to 1. We
then easily get

A
21 l(al)l(EZ)_,,l(a")F(n):A(A—l)...(A'—n+1)

al,az,... ,an (Alo)
or
9-1 @p-71 a1
)% LD 19 =), (A11)
a=n a2=n-1 a,_y=2 2,1

where (4) is the binomial coefficient used in the nor-
malization of our g.e.o0.'s. This decomposition of
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(#) is interesting of itself: By an iterative process it
enables us to compute any sum of the type };7_ x<,
where a and ¢ are positive integers.

(2) The introduction of Eq.(A8) in Eq.(A10) yields
the striking formula:

E(_lzk”zk
W) ) V].!VZ!"'
=AA—-1)...4—n+1),

n!
v

n
A=Yk
v, 1112"2 n'n

(A12)

where VisVy ..., v, denote a cycle structure of S,
(i.e.,23; iv,=n) and the summation on (v) has to be
extended on all the cycle structure of S,. In the
machinery of the symmetric groups S,,, the terms

n!

Zov
(— 1) %2, and Y, v
V1!V2!...Vn!1U12U2...nU” k k

are, respectively, the parity, the number of elements,
and the number of disjoint cycles for the class
(1"1,2%2, ... ,n"n).

APPENDIX B

As is well known, the structure constants allow us to
set up the adjoint representation. The purpose of this
appendix is to construct an algebra from the struc-
ture constants and the coupling coefficients for U(n).
This will provide us with useful relations between the
elements of this algebra.

It is a simple calculation to prove that
2 (AAB) (BB4) = (1 — 63068)655,
AB _ S (B1)
23 [AAB)[BBA] = (1 + 6468)635.
AB

Let us now define the matrices G, and &, by the ele-
ments:

IaA‘BC - (ABC)!

(B2)
I(BA|BC = [ABC].
We then have the symmetries
|G’A‘BC == IG’AI-C—B’ (B3)

l(BA|BC = l(BALC-B’

from which it follows that G, and &, are linearly inde-
pendent. Further,the symmetry of the matrices @,
and B, induces the useful following relation:

%, % X1 2%
TrM; M, ...Mj_l M]
YA &, o o, @
= M e e, (B0

where Mf‘i stands for G, or ®,, according to whether
a is 1 or 0, respectively.

The introduction of these matrices in Eqgs. (Bl) yields

1@y @ _pla-p=TrGCQg=(1 —84558)573,

(BS5)
| By ®_pla -5 =TrBBp=(1 +5458)5,2.

Let us go now to the algebra spanned by our matrices.

By rewriting the Jacobi identity verified by the struc-

ture constants in terms of the G's, we get
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[@4, G5l = (ABC) Q. (B6)

From the remarkable identity

X [X5s XL — X [Xes X41), = [[X Xp)- X
we easily obtain

[BCM][AME] — [CAM][BMF] = (ABM) (MCE)
Or, in terms of the @'s,

[®,, ®5]. = (ABC)R. (B7)

Finally, explicating the remarkable identity

(X (X5 XcL)- + X5, [Xor XL] + [Xes Xy Xp]- = 0,

we find, by rearranging the letters and using the sym-

metry property of coefficients,

— [CBP](ED4) + (EBD)[CDA] = — [DBA] (ECD),
[BCPI(ADE) + [ACP](BDE) = [ABD] (DCE),

In matrix notation, these equations read

[@,, Bg). = (ABCO)G, (B8)

®,@, + B,Q, = [ABC|Q,. (B9)

From these basic commutation relations, we are now
in a position to derive some useful relations involv-
ing products of a higher number of matrices @, and/
or B,. As a first example, by manipulating Eq. (B5)
we get
1By By Byl op + 1By By Byl
= ‘(BM(B—M|CE|(BA| ED + [(BA‘CEI(BM(B—MIED
= (1 +6568)0EI® |z, + (1 +6E62)02 6,1,
=(2+85+068)I8, ¢,
which after introduction of Eq.(B7) reads
ZI(BM(BA(B-M|CD + (MEA)IG?’M@E + G’M(BE'CD
=(2+8§5+D)®1.,.

The second term of the lhs of this Eq. is easily shown
to be
(ABS)(@,®, + ®B,Gp) = (1 —35) &, (B10)

[multiply (B8) by (ABP) and sum over A and B], so
that

2|®y B 8Byl =1 +64+08+069I®,],, (Bl1)

can be rewritten as

2Tr®, BB, = (1 + 84 + 68 +65)[ABC].  (B12)
In a similar way, we would obtain

2Tr@, 3,4, = (ABC), (B13)

2Tr®, G, @, = (ABC), (B14)

2Tr®, G0, = (1 + 064 — 068 —6§) [ABC]. (B15)

1509

As a second example, by multiplying both sides of
(BT) by B, and @, and taking the trace, we get

2Tr[®,, By] B Gy, = (AB — M) [MCD](1 + 5§ —63).
The symmetry property (B4) yields

4Tr®, ®,®. Gy = (AB — M) [MCD] + [AB — M](MCD)
+ (V2 /n){(BCD)64 + (ACD)5 8 + (ABD)6§
— (ABC)3}.

The same type of calculation would lead to

(B16)

4Tr®, B,®B,®, = [AB — M][MCD] + [AD — M][MCB]
—[AC — M][MBD] + (2/n2){6 862 + 6;P6 8 + 67C07P
(VZ/n){64[BCD] + 68[ACD] + 6S[ADB] + 63 [ACB]}.

APPENDIX C: EIGENVALUES OF THE GEL'FAND
INVARIANTS FOR U(x)

The determination of the eigenvalues of the Gel'fand
invariants2 has given rise to several papers. We
shall restrict ourselves to the paper by Popov and
Perelomov!8 and to the one by Louck and Bieden-
harn.19 (For more details see the references quoted
in those two articles.) Those authors give a complete
answer to this problem. The aim of this appendix is
to give a simpler derivation of these eigenvalues.

Following Louck and Biedenharn, let us define from
the generators of U(n), the vector operator Vl.j(q) thus:

V(1) = E,

j s
n (C1)
Vi{2) = z'Z:>1 B E j»
1
n
Vi].(q) = L Eli E“lEiliz - Eiq—1j’
izt
which verify the commutation relations
[Eijy Vkl((Z)] = ajk Vzl(fl) - 61’[ ij(KI)- (CZ)

For a given representation, let |#) be the vector of
highest weight. We then have

E; |lm) =m,|m) (C3)
whereas
E;lm) =0 withi <j. (C4)
Let us now investigate the quantity
n
P = Ef&"’(i)V”(q)erD, (C5)

where f{)(¢) is a scalar function depending on i. By
using Eqs. (C3) and (C4) and

n
Vii(CI) = Z)l Vij(q - I)E}i,
j=

Eq.(C5) reads
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P = Zi Fo6) gminv qg — 1) +‘Z“,1 [Vu(q — 1),Eji] | )
= _Zif&")(i) m, Vg — 1) +El ©6;;Vislg — 1)
1= ]>1,
v — ] . (cs)
We note that
n n i-1
.Z)‘l f&”)(i)GiiV q — 1)‘m> = Zi Zi f&”)(j)Vii(q - 1)|771>
j>i i=1 j=
so that
iiﬂ")(z)V (@)m) =Zn) 2t T+ 1))
_Elfgl)(])s V”(q - 1)"'71>’ (C7)
j=

from which we get the recurrent relation

i

—itn 1) PO =D F90) (€8)
=1

fgf,)l(l) = (m,
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ending by
260 =1,

Let us now go to the Gel'fand invariant

(C9)

n
10 =2 V,le)
i=1
It is then straightforward to see that its eigenvalue is

=33 my, FO0), (c10)
i=1

where f{(i) is completely determined by Egs. (C8)
and (C9). By introducing the hook length

Pin =m,, — i+mn, (C11)
g.(C8) reads
-1
f((]’i)l(l) - Pinfén)(i) - Z}- f,(ln)(]) (C12)
j:

1 H.Weyl, The Theory of Groups and Quantum Mechanics,transla-
ted by H. P. Robertson (Methuen, London, 1931).

2 H.Weyl, The Classical Groups (Princeton U.P., Princeton, N.J.,
1946).

3 E.P.Wigner, Group Theory and Iis Applicalion [0 the Quantum
Mechanics of Alomic Speclva,translated by J. J. Griffin (Acade-
mic, New York, 1959).

4 G.Racah, Lectures notes, Institute for Advanced Study, Princeton,
New Jersey, 1951 (unpublished).

5 J.D. Louck, Amer. J. Phys. 38, 3 (1970), and references quoted
here.

6 L.C.Biedenharn,in Leciures in Theorelical Physics, Boulder,
1962 (Interscience, New York, 1963), Vol. 5.

7 J.H. Bartlett, Jr., Phys. Rev. 49, 102 (1936).

8 E.Majorana, Z. Phys. 82,137 (1933).

9 W, Heisenberg, Z. Phys. 77,1 (1932).

10 H, Primakoff and T. Holstein, Phys. Rev. 55, 218 (1938);

L.Janossy, Proc. Cambridge Phil. Soc. 35, 616 (1939).

11 R.K. Bhaduri, Y. Nogami, and C.K. Ross, Phys. Rev. C 2, 2082
(1970); B. A. Loiseau, Y. Nogami, and C.K. Ross, Nucl. Phys. A165,
601 (1971); B. H.J. McKellar and R. Rajaraman, Phys. Rev.C 3,
1877 (1971); P.C. Y. Yip, Y. Nogami, and C. K. Ross, Nucl. Phys.
Al176, 505 (1971).

12 W.G. Harter, Phys. Rev. A 3, 1891 (1971).

13 L.C. Biedenharn, J. Math. Phys. 4, 436 (1963).

14 G, E. Baird and L. C. Biedenharn, J. Math. Phys. 4, 1449 (1963).

15 1. M. Gel'fand, Mat. Sh. 26, 103 (1950).

16 A, Partensky, J. Math, Phys. 13, 621 (1972).

17 Cf. Ref. 16 and Appendix B.

18 V. 8. Popov and A. M. Perelomov, Yad. Fiz. 7, 460 (1968) [Sov.J.
Nucl. Phys. 17, 290 (1968)].

19 J.D. Louck and L. C. Biedenharn, J. Math. Phys. 11, 2368 (1970),
see Appendix B.

Steady-State Sound Propagation in Continuous, Statistically Isotropic Media

Jerome A, Neubert
Naval Undersea Research and Development Centev, Pasadena Laboratory, Pasadena, California 91107
(Received 6 April 1972)

A stochastic Eulerian-Lagrangian procedure is applied to steady-state sound propagation from a small, colli-
mated acoustic source to an omnidirectional point receiver imbedded in an infinite, continuous, statistically iso-
tropic medium. An analytic procedure is developed for obtaining the Lagrangian measure function B(x, £|s)
from its characteristic function ¢ (k, ¢ |s) for stochastic-Fermat media. The results include a coefficient of in-
tensity variation V that evinces a frequency-dependent, phase-dominance region and a frequency-independent,
amplitude-dominance region. The methods employed in this study are new to the problem of sound propagation
through continuous stochastic media and avoid three common difficulties: (1) range limitations due to cumula-
tive phase effects, (2) discrete scattering assumptions, and (3) restriction to an Eulerian path.

INTRODUCTION

In a previous paper,l it was shown that, for very low
turbulent Mach numbers u/c and monochromatic
transmissions, steady-state sound propagation in a
turbulent fluid can be adequately represented by the
stochastic Helmholtz equation

V2p + kEu2p =0, (1)
where p is the pressure wave, &, is the free-space
wavenumber, and p is the refractive index, if the

acoustic wavelength A statisfies the condition
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where A, is the Taylor microscale for velocity fluc-
tuatlons u is the rms turbulent velocity, ¢ is the
sound propagatlon velocity, and o, is the Prandtl num-
ber. For the purposes of this study, it will be assum-
ed that Eq. (1) is valid for steady-state sound propa-
gation through continuous, statistically isotropic
media and that p describes the stochastic nature of
the media.

Assume that p is statistically homogeneous and has
the mean value
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P = Zi Fo6) gminv qg — 1) +‘Z“,1 [Vu(q — 1),Eji] | )
= _Zif&")(i) m, Vg — 1) +El ©6;;Vislg — 1)
1= ]>1,
v — ] . (cs)
We note that
n n i-1
.Z)‘l f&”)(i)GiiV q — 1)‘m> = Zi Zi f&”)(j)Vii(q - 1)|771>
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so that
iiﬂ")(z)V (@)m) =Zn) 2t T+ 1))
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j=
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i
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ending by
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It is then straightforward to see that its eigenvalue is
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1 H.Weyl, The Theory of Groups and Quantum Mechanics,transla-
ted by H. P. Robertson (Methuen, London, 1931).
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1946).
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mic, New York, 1959).

4 G.Racah, Lectures notes, Institute for Advanced Study, Princeton,
New Jersey, 1951 (unpublished).

5 J.D. Louck, Amer. J. Phys. 38, 3 (1970), and references quoted
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Steady-State Sound Propagation in Continuous, Statistically Isotropic Media
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A stochastic Eulerian-Lagrangian procedure is applied to steady-state sound propagation from a small, colli-
mated acoustic source to an omnidirectional point receiver imbedded in an infinite, continuous, statistically iso-
tropic medium. An analytic procedure is developed for obtaining the Lagrangian measure function B(x, £|s)
from its characteristic function ¢ (k, ¢ |s) for stochastic-Fermat media. The results include a coefficient of in-
tensity variation V that evinces a frequency-dependent, phase-dominance region and a frequency-independent,
amplitude-dominance region. The methods employed in this study are new to the problem of sound propagation
through continuous stochastic media and avoid three common difficulties: (1) range limitations due to cumula-
tive phase effects, (2) discrete scattering assumptions, and (3) restriction to an Eulerian path.

INTRODUCTION

In a previous paper,l it was shown that, for very low
turbulent Mach numbers u/c and monochromatic
transmissions, steady-state sound propagation in a
turbulent fluid can be adequately represented by the
stochastic Helmholtz equation

V2p + kEu2p =0, (1)
where p is the pressure wave, &, is the free-space
wavenumber, and p is the refractive index, if the

acoustic wavelength A statisfies the condition
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where A, is the Taylor microscale for velocity fluc-
tuatlons u is the rms turbulent velocity, ¢ is the
sound propagatlon velocity, and o, is the Prandtl num-
ber. For the purposes of this study, it will be assum-
ed that Eq. (1) is valid for steady-state sound propa-
gation through continuous, statistically isotropic
media and that p describes the stochastic nature of
the media.

Assume that p is statistically homogeneous and has
the mean value
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(W =& =1. (3)
It is convenient to represent u by
p=px)=1+anx) =1+ an, 4)

where an is the fluctuation of y about its mean value
and @ is the rms fluctuation of u,

a= [((u—1)9P/2 = [(u2) —1]/2 =0, (5)
so that

(m =nx) =0 (6)
and

(n2) =(n2x) = 1. (M

It is mathematically convenient and physically accu-
rate?~8 to assume that

a<1; (8)

p(X) is then only weakly inhomogeneous.

In Ref. 2, it was concluded that a two-variable expan-
sion is sufficient for representing sound propagation
through a continuous, weakly inhomogeneous medium
and that the Debye asymptotic expansion®,2,3

px) = [A®) + (1/ikg) AP ®) + ... 1e*0"™  (9)
where Y, A, A ... are real-valued functions of x
and time £, is a proper two-variable expansion. Ap-
plying Eq. (9) to Eq. (1) and separating into real and
imaginary parts yields, to order2 ag, J‘/ﬂkg for a
turbulent fluid, the eikonal equation,

VY VY —p2 =0, (10)
and the transport equation,

2VA VY + AVZY =0, (11)
where R, is the turbulent Reynolds number

R, =ur,/v, (12)

and v is the kinematic viscosity. Equation (10) will
be assumed throughout this paper, although other ex-
tremum relations can also be treated in an exactly
analogous fashion.

By standard procedures,3:9-11 Eq. (10) produces the
Fermat relation

d / dX;
and ds ( ds) s
VIX(s, £)] = ¥ (s) =y(&) + [ ds'u(s), (14)

where s is the curvilinear path distance from the
initial point £ = X(0, £) on the initial surface S, to the
terminal point X = X(s, £). Note that u(s) and z,b(s) are
Lagrangian functionals since they must be integrated
along the particular path X(s, £), dictated by the par-
ticular Eulerian field p(x) and the pertinent initial
conditions, from £ to X for each given s.12 Equations
(10) and (11) render2,3,5,13,14 the Lagrangian rela-
tion for the sound-pressure wave after having tra-
versed a curvilinear distance s from £ to X(s, &)

over the continuous field u(x):
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X (s, £)] = A(s)e™ )
L s ds'_
(15)
1 s ds' [ 9% s

= pol£) exp l:—§ fo “(z,) <“%>,i + ik, fo ds’p.(s’)]
(16)

= pO(E) exp <_% s f ds"p H(S”
+ ik, fo ds u(s’)), (17)

where

DolE) = A(E)e™ oV, (18)

The occurrence of Eq. (13) implies that stochastic-
Fermat media are under consideration.

In one dimension, Eq. (16) produces2-5 the coefficient
of intensity fluctuation [see Eq. (84)]

V2~ eZazkgLex 1, (19)
where L, is the Eulerian integral scale

L, = lim [ doy(1 —p1/x)P.(py) (20)
and

P,(p,) = (n(x"n(x" ), (21a)

py = |x' —x"]. (21p)
Equation (19) reduces to

V2~ 2002k3L ,x (22)
when the condition

1> 202k3L % (23)

is imposed.

In Ref. 2, it was implied that Mintzer® had reduced his
stochastic Eulerian-Lagrangian sound propagation
problem15 to its Eulerian equivalent by considering
the refractive index fluctuations along the source-to-

receiver line since L, equals fow dp, N(p,) of Sec.IV

when the latter exists. In addition, it was demonstrat-
ed that there exists no 2,-independent behavior for
large k, in one dimension, although Bergmann,16
Mintzer, 6 and Potter and Murphy!7 all indicate such
behavior occurs in three dimensions. Therefore,
this k,-independent behavior (if it does occur in an
infinite, continuous, statistically isotropic medium) is
either a three-dimensional (i.e., geometric) effect or
is due to some mechanism other than turbulence
(e.g., discrete impurities). This paper addresses it-
self to the former effect.

In this paper, the stochastic Eulerian—Lagrangian
approach of Ref. 15 is applied to the Lagrangian pres-
sure wave relation of Eq. (17) for steady-state sound
propagation from a small, collimated acoustic source
to an omnidirectional point receiver imbedded in an
infinite, continuous, statistically isotropic, stochastic-
Fermat medium. An analytic procedure for obtaining
the Lagrangian measure functionl3 B(x, £ |s) from its
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characteristic function ¢(k, £ | s) is illustrated by con-
sidering a plane transducer face perpendicular to the
x axis and located at the origin for a Cartesian co-
ordinate system. The initial path angles at every
point £ on this initial surface S, are represented by
0(£), do(£). Specifying the initial pressure amplitude
b (&) and path angles 6(£), ¢o(£) for Eq. (17) permits
the inclusion of beam patterns for the transducer;
however, this study shall be restricted to the case of
a uniform, collimated beam by choosing

p(g) = py, constant and real, (24)
0o(8) =8, =7/2, (25a)
Po(€) = ¢5 =0, (25b)

so that the vector expressing the initial path orienta-
tion is given by

dX; ax ay az

[H?] (O)jl [ds (0)’ds ), rds (0)} (26)
= [sinf, cos¢,, sind, sing,, cosd ) (26'a)
= [1,0,0] (26'b)

It will become apparent in Sec.I that this choice of
geometric orientation will greatly simplify the form
and facilitate the intepretation of B(x; — &,|s); this
does not alter its physical content, The complex, in-
terwoven development of Sec.I is typical of the invol-
ved asymptotic Lagrangian evaluations3s5,18 that
often result when the theory of Refs. 15,18, and 5 is
applied to real world sound propagation problems.
The main preoccupation of Sec.II is the evaluation of
{(p(x)) from p[X(s, £)] via Eq. (14) of Ref. 15. In the
course of this evaluation, it is shown that a saddle-
point treatment (cf. Appendix D) of the resulting in-
tegral provides an adequate approximation of {p(x))
for this type of problem. In Sec.III, (|p(x)|2) is de-
termined by a similar, double saddle-point technique
and Sec.IV develops a useful relation for the coef-
ficient of intensity fluctuation V for steady-state sound
propagation through an infinite, continuous stochastic
medium. A brief comparison of this result with the
classical treatments of Bergmann!é and Mintzer6,7
is also presented.

I. DETERMINATION OF THE LAGRANGIAN MEA-
SURE FUNCTION

Once the physical problem has been clearly stated,
the Lagrangian measure function B(x; — &;|s) can be
determined!5;5 from its Lagrangian characteristic
function ¢(k, ¢ |s) which, in Cartesian coordinates, is
defined by

ok, £|s) = E{e™%P} (27)
- exp(ikj fos ds’% (s')) % (27')
where
dX]
22 () = T [X(s,8)], (28)
s dX,
X, =& =X,(s,8) — g = | s’ U, (29)
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Xy~ =X —§=X(s,8) — &= [*as B(s),
(29a)

Xy =& =Y —n=¥(s,8)—n = [ as' % (s"). (29b)
ds

3—§3=Z—CEZ(S,§)—§=IO ds’ ds(s()zg)

Here,k; = k,, ky, k3 are dummy variables, and only

stochastic quantities, such as f ds’ (dX; /ds)(s'),
have pertinence in ¢>(k t|s) sinte determ1n1st1c fac-
tors are canceled out in Eq. (40). Note that the X (s, &)
take on all their possible values in Eq. (27) and later
in Eq. (40), B(x; — &;|s) picks the desired value for
each. Therefore, the Lagrangian ensemble, rather
than subensemble, expectation18:5 must be applied in

q. (27) since B(x; — £,1s) must be permitted to treat
all possible values of X (s, &) in order to be capable
of determining the measure per unit $ per unit & of
the Lagrangian subensemble under consideration in
Eq. (40) for each £, s,x. For analytical convenience,
a plane transducer S, at £ = 0 and the initial orienta-
tion of Eq. (26b) will be chosen.

Define the following quantities using Eq. (26b) and
the stochastic-Fermat relation of Eq. (13):

uy =u [X(s, £)} = % (s) —m, (30a)
_[#0) w(0) |7 ax s q(87)
_[u(s) —EE;S—)H 75 (0) + jo ds o) (31a)
_[w(0) (0)| s 48
—[m—E§mJ ot (322)
uy = Up[X(s, &)]E‘?—Y( s) —m, (30b)
_ [u0) u(0) ] ay , Hoo(s")
[ ~E i) & @+ § e g e
_rs , H,z(sl)
—fo SO (32b)
uy = uglX(s, §)] =22 (s) — my (30c)
_[wo) u(0) , i,3(8") (31¢)
‘[u_(s_) —E%u(S)H )+ f “uls) ¢
s ., P—,3(S )
= S (32¢)
wherel8,5
p(s) = p(X(s, £)] (33)
12(0) = p[X(s = 0,&)] = u&), (33')
my = B (o) (342)
_ pi0)| dx
_Ea ()%d 0) (35a)
=1-a2 [ do(s —0)[R(s) ~O(a)]  (362)
R(0) =R(s',s") = E{n (s i(s")}, o=]|s' —s"
(37)
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my = E%(?SX (s)é (34b)
=0, (36b)

e my = E%-Z-f— (s)% (34¢)
= 0. (36¢)

Note that the geometric condition of Eq. (26b) gives

m, = m4 as expected for a randomly isotropic medi-
medium. However, the Lagrangian ensemble expectation
E{(dX/ds)(s)} deviates from E{(dX/ds)(0)} as explain-
ed in Refs. 18 and 5. In the nonstochastic limit, i.e.,
a—0,

(38a)

x =E{X(s, £)} = fos ds'E % (s')% =s,

y—n=B{ris o -t = [as B 4L '} =0, Gav)

z—-C = E{Z(S,E) -—C} = fos dS“E%% (S')i = 0, (380)

as required in a uniform medium where u(x) = 1.

The characteristic function can now be expressed,
via Eq. (15) of Ref. 15 and Eqgs. (27)~(36c), in the form
form15,5

ok, t|s) = E (27’a)

s ax;
exp(ikj fo dS’—d-s—J(S’)>f
~ exp(—3k;k; fos ds’ fos ds"E{u,(s Ju;(s")}
+ ik, fo ds’mj(s’)>. (39)

Note that u,(s’) and uj(s”) are along the same X(s, £)
path for each field realization pg(x); they are assum-
ed to satisfy some suitable set of sufficiency condi-
tions19:5:15 for the validity of Eqs. (39) and (44). The
x dependence is implicit in ¢(k, £|s) but becomes ex-
plicit in B(x; — &;|s): see Eq. (40). Since s is fixed
and, therefore, nonstochastic, the integrals in Eq. (39)
are Lagrangian stochastic integrals.18,5 Thus, the
Lagrangian measure function, which is actually a
joint probability density for this statistically isotropic
case, is given by

B(x; — £;1s) = B(x,y —n,2 —¢|s)

= (2m) > [T dk ¢k, £]s)e . (40)

Equation (14) of Ref. 15 can now be expressed by

(Fx) = J,"ds [ dnag E{F[X(s, )} B,y =7,
z —Cls).

This relation denotes a weighted synthesis of all the
paths from S which terminate at x.

(41)

This analysis will be restricted to stochastic-Fermat
paths (the theory of Lagrangian stochastic analysis
for Fermat paths was developed in Refs. 3, 5,15 and
18). Applying Eq. (39) to Eq. (40) yields

Bx,y —n,z2 —C|s)

=1 ibx—iB(y-r) -
dkydkg,dky (K, o tax Tiky(y ) - iks(2-5)
873 ._[ff 1dkydk3 ok, £s) (40")

1513
1 e
~ o f{)f dk dky dk, exp[—%klkj U,
- ikl(x - fos Wl1ds/>Je—ik2(y"n)~ik3(z—g) (42)
_ exp[— 3 Ut (x; — & — mq,)(¥; — £ — my,))] (43)
a 2nv2n([U,]
~y(x —s + 302s2R A [s)y(y —nls)y(z —Cls)  (44)
= y(x,&ls), (45)
where
U, = J) ds' [ ds" Efus)uy(s")} . (46)

The Lagrangian spreading matrix1s [Uij], whose com-
ponents are given by Eq. (46), is now expressed in
terms of its principal axes due to the convenient
choice of orientation expressed by Eq. (26b) and the
statistical isotropy of u(x); see Egs. (A23) through
(A25). The determinant of [Uj;] is represented by

[ U;; |l [see Egs. (A14)-(A15)] and the components of
the inverse matrix of [U;;] are denoted by U;}! [see
Egs. (A17a)-(A19)]. The transformation to Eq. (43)
follows when [U;;] is positive-definite and the com-
ponents m; are given in Eqs. (A13a)-(A13c). Equa-
tion (44) follows asymptotically after considerable de-
tailed calculation; see Appendix A, especially Eqs.
(A39)-(A41).

Equation (45) then permits Eq. (41) to be expressed
asymptotically as

(Fep~ [T ds [ dna E{F[K(s, )]}y gls).  (41)

It can be shown20,21 that, for a positive parameter b,
inside an integral including x = 0

lim 1 exp (— ——>— o(x)
b=0 \orh 2b2 ’

i.e., this limit behaves like a delta function. Thence,15

(48)

E—Iﬂ) y(x —s + 3 a2s2R A [s) = d(x — s), (49a)
lirrz) y(y —nls) =6(y —n), (49b)
1irré7(z —¢ls) =06(z —¢). (49c)
Thus,
[ dny(y —nls) —s ["° dn oy —n)
Mo a0 Ny
1, lyl=mn,
:3 0, | >, (50a)
L2 devta —t1s) 53 [0 dt oz =)
0 @ [}
{1 lz| = ¢,
_%0’ 2] > tos (50D)

and, from Eqs. (49a)—(49c) and (45), Eq. (47) yields

lim (F(x)) ~ fow ds f_no dn f_co de 6(x — s)s(y —n)
=0 Mo [

x 8(z — OF[X(s,8)] (51
:SF(le,C), —HOSWSTIO,—COSCS§O(51)
! 0, otherwise,
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when the initial surface S; is a rectangle 21, by 2¢,.
Equation (51) means that in the nonstochastic limit,
i.e.,a— 0,y(x, £|s) behaves like a delta function, i.e.,

lim y(x, £1s) = 0(x — s)0(y —m)blz — ),
o ~>

so that Eq. (47) yields the necessary nonstochastic
result which would occur in a uniform, nondissipative
medium,15

(52)

II. DETERMINATION OF (p(x))

In this section, the sound pressure wave expectation
(p(x)) is calculated by applying the saddle-point
method (see Appendix D) which seems natural for
treating sound propagation problems via Eq. (47). To
obtain {p(x)} [see Eq. (57)], E{p[X(s, £)]} is first
found by the analytical procedures of Refs.18 and 5.
Applying the Lagrangian subensemble expectation of
Sec.V of Ref. 18 to Eq. (17) for u statistically iso-
tropic and employing Eq. (15) of Ref. 15 gives

E{p[X(s, £)]}
=po(&)E %exp(iko fos ds’u(s”)

1 s (s ” [J’”(S”) 2
— ZJ;) ds fO ds W) (53)
2 : s P~ (ot
~ bolk) exp(— zkk; Vi; + ik, [T ds'Di(s)  (54)
- po(g)e—az(kzofs-s3Q'°§/12)+ik0(1+a2sﬁ)s (55)
—2 polE)e™, (56)

remembering Eqs. (8) and (26b), where i,j = 1, 2,
with &y = kg, k, = i/2. Equation (15) of Ref. 15 and
Egs. (B1)-(B6) produce Eq. (54) which goes asympto-
tically to Eq. (55) via Eq. (B7), (B9), (B14), (B20), (B23),
and (B26). The development of Eq. (55) is quite in-
volved and is given in detail in Appendix B. Equation
(56) represents the proper nonstochastic limit [see
Eq. (51)] and can be obtained from both Egs. (53) and
(55). It is apparent from Eq. (55) that the phase fac-
tor,18 represented by L, dominates |E{p[X(s, £)[}|
when s2Q ,E /123 L <1 and that the amplitude fac-
tor,18 represented by E, dominates when s2Q,E/
12rZL >> 1; this behavior is a direct consequence of
the choice of a two-variable expansion2 in Eq. (9) and
will be discussed further in Sec.IV. Note that, due to
the statistical isotropy of u(x), Eq. (55) does not de-
pend on £ except through p,(£).

Although E{p[X(s, £)]} of Eq.(55) may seem to be

an unusual sound pressure relation, the traditional,
i.e., nonstochastic Eulerian,2-3 behavior should not
be expected for this (asymptotic) Lagrangian (suben-
semble) expectation since Eq. (47) has not yet been
applied. Note, for example, that due to the varying s
power dependence of the exponential, the diffusion-
like character of E‘{p[x(s, £)]} changes with s. In-
itially, E{p(X(s, £)]} decreases in magnitude from its
initial value p,(¢) with s until k3L = QEs2/12;in this
region, the phase factor is dominant. Thereafter,
E{p[X(s, £)]} increases with s since the amplitude
fluctuations dominate. This behavior is directly at-
tributable to the application of a two-variable expan-
sion? for p(x). Note also that E{p[X(s, £)]} decreases
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with &, [but see Eq. (86)]. None of this “unorthodox”
behavior represents a physical contradiction since
y{x, £|s), defined in Eq. (45), controls the ultimate
value of (p(X)); see, for example, Eq.(57). It will be
observed later that these apparent anomalies resolve
themselves when E{p[X(s, £)]} (and E{p[X(s,, £,)]p*
[X(s5, £5)]} in Sec. 111 is related to the Eulerian ex-
pectation {p(X)) (|p12) in Sec.II) via Eq.(47).

Note that in order to obtain the Lagrangian subensem-
ble expectation E{p[X(s, £)]} via Egs. (53)-(55), tradi-
tional knowledge of the details of the geometric spread-~
ing factor and the divergence from this spreading due
to the inhomogeneities of the medium, which are mani-
s
fested by {— + fo [ds'/u(s")] (udX,/ds) ;(s')} of Eq. (16)
for each realization u,3,5 had to be sacrificed. In
place of these more physically intuitive (Eulerian)
concepts, E{ p[X(s, £)]} has been expressed (asymp-
totically) in terms of the Lagrangian phase and ampli-
tude integral scales and, therefore, the relative im-
portance of the amplitude (transport) and phase (eiko-
nal) factors can still be discerned. This loss of tra-
ditional (Eulerian) physical detail is unavoidable when
treating an intrinsically Lagrangian stochastic pheno-
menon in its natural Lagrangian form. To compensate
for this, care has been taken to express E{p[X(s, £)]}
explicitly in terms of k, (“large”), o (“small”), and s
(variable but “large”) as well as the Lagrangian in-
tegral scales. In general, this permits consideration
of these terms in order to simplify the resulting
mathematical relations and, thereby, facilitate the
analytical treatment of complex physical problems.

When Eq. (24), which represents a uniform source, is
applied to Eq. (55), E{p[X(s, £)]} has no explicit de~-
pendence, in a statistically isotropic medium, on its
initial £ position and can be represented by E{p} (s).
Therefore, the Eulerian ensemble expectation of the
sound pressure wave, when both the uniform, collimat-
ed source and point receiver are imbedded in an infi-
nite, continuous statistically isotropic medium, is
given asymptotically by

()~ 7 ds [ dndt E{p}(s)v(x, £]s) (57)

= fow ds E{p}(s)y(x — s + 3 a2s2RAls)
x [10anyy —mle) [ 2 de vz —gls) (58)

ik x
—> p,e .
a—>0p0

(59)
Equation (47) gives Eq. (57), where y (x, £ | s) alone
determines the ¢ dependence of the integrand, and Eq.
(44) produces Eq. (58), where, for analytical simplicity,
the acoustic source S, is assumed to be a rectangular
transducer of dimensions 27, by 2¢,. Note that the
required null-scattering result occurs naturally in

the nonstochastic limit of Eq. (59) via Eqs. (49a)~(49c).

z
The integrals f':(’ an y(y —nls) and f_go d¢ y{z — € ls)
o (4]

in Eq. (58) are tabulated functions (ervor functions22)
so, for analytic convenience (otherwise, numerical in-
tegration techniques are necessary to perform the s
interval integration), this treatment will be restricted
to terminal locations such that, for a given S,
lz|>¢,.

Iyl > n,, (60)
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This means that only energy diverted away from the
direct source-to-receiver path will be considered.
[In practice, Egs. (60) and (81) imply a very small
surface S, with x located off-axis at large x.] Equa-
tion (60) permits

[:° any(y—mnls) f§° dc v(z —t|s)
0 £

= Syy(yls) v(zls), (61)
where, from Eqs. (A40), (A41), and (60),

y(y Is)y(zls)
2 3
_ e-(y2+22)/2a2R0A3s3/21,—a ROABS

= P2 e R AT = (0 ls),  (69)
where

p2=y2 + 22, (63)
Therefore,
(p(x)) ~ poSo fow ds ¢ @ R3Es-s° G E/12) ik (s a®s D)s

Clg-s + L 2 2 3
¢ (x s+2a252R0 A)2/2a Ry(2A3+a?sR)By)s

X

[2122R (2A ; + a2sR B )s3]1/2

e’ 2/202R)A,s3 (64
21a2R jA 583

via Eqgs. (58), (61), (62), (55), (24), and (A39). Since

0 <a <1, the factor y(x — s + za2s2R A [s)y(p|s)
dominates the integral; in fact, it can be viewed as a
sort of path guiding or subensemble selecting func-
tion. Analytically, this suggests a saddle-point evalu-
ation (see Appendix D) and physically it has the fol-
lowing interpretation: the initial £ and terminal x
locations determine the distribution of s values and
then the factor y(x — s + 3a2s2R (A |s)y(p|s) weighs
E{p}(s) to give {p(x)) via Eq.(64).

III. DETERMINATION OF (lpl 2)
Paralleling the analysis of Sec.II, {|p/2) can be cal-

culated for the same physical situation by incorporat-
ing the concept of the Lagrangian subensemble cross-

path integral scale which was developed in Sec.V of
Ref. 18, Thus,

E{P[X(Sp 51)]p*[x(32s, 52)]} = E{P(Sl)l’*s(sz)}
= p3B {exp (ko [ ds} w(sy) — ik [ 2 dsyuisy)
#,3:(57)

1 rsv ., 51,
XeXp(—"z—fO dSlj(‘)ldslm

_l S2 ’ Sé " “.ii(sg)>€
5 J " dsy [ ds; mes (65)

~ 2 _ 1 ix 3 51,2 ’ "
péexp ( 2kl W + ik, fo ds} , Vj> (66)
~ p3 2 @2 eG0 R (8)+s3Q (6)T(8) /12]

o2 aX(r2is-s3,E/12)

X (when s; = s, = s,) (67)
;?Opg (when s; =s,), (68)

remembering Egs. (8) and (26b), where 7,7 = 1,2, 3,4
with By = kg, ks = — kg, ky = k, = i/2. (The mathe-
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$
matical interpretation of the operator fo 1 dsl,z will
soon be clear.) Equations (65) and (C1)-(C11) pro-
duce Eq. (66), which goes asymptotically to Eq. (67)
via Egs. (C12)-(C21), (C26), and (C43). The develop-
ment of Eq.(67) is quite involved and is given in de-
tail in Appendix C. Equation (68) represents the pro-
per deterministic limit [see Eq. (51)], and can be ob-
tained from both Egs. (65) and (67). Note that, due to
Eq. (24) and the statistical isotropy of u(x), Eq. (67)
does not depend explicitly on the initial point £.

The Eulerian sound intensity ensemble expectation
{|p(x)|2), when both the uniform, collimated, rectangu-
lar transducer and omnidirectional point receiver
are imbedded in an infinite, continuous, statistically
isotropic medium, can now be determined. Since the
Lagrangian subensemble crosspath expectation
E{p(sl)p*(sz)} involves two paths in almost all rea-
lizations, Egs. (41) and (47), respectively, produce
(px)2
oC -
= Jy dsy J)" dsy J, dey J, dy Bip(si)p¥isy)}
X B(xay '—771,2 - C1 ’Sl)
X B(xay —n25z _Czlsz) (69)

~ fooo dS1 fooo d82 fso dgl fso d&z E{p(sl)P*(sz)}
Xy £ lsy)y(x, £, 1s5)  (70)
— pE (71)

o0
= [T dsy y(pls)ylx —s;1sy) [ dsyv(plsy)
X yle = spls) [y dey [, dgy Blpls)p¥(sy)}

(72)
21
~ Ketwon.l” & Js, &1 I dt
xezazugsoﬁa(a)ﬁ(a»sgéa(a)f(a)/wJ (73)
1
= 2 =
[Kb(s, oD, ] s fSOdG

X g2 a2k ds (P (8)H (6)+ 3§ ,(8) I(6) /12) ('74)

=~ Kp(x, o), 2 (1 + 202 &
0

x  dolkgso P, + sgéaj/m]) (75)

= Kplx, o). 2 (1 + 202[kgs AP, + SSQGJ/IZ]),

where (76)
b=t —&,, (1M
_ 1
Fo=g )i 4 F0), (78)
and

QI = o [, d6 3,610, (78b)
0

Equation (45) renders Eq. (70) from Eq. (69) and then
Egs. (49a2)—(52) yield Eq. (71). Equations (D2a) and
(D2c¢) reduce Eq. (A39) to

y(x —s|s) = e“("_S)2/4"‘2'20"3’*53/(4#0:2ROA3s3)1/2 (79)
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so that Eqs. (44), (60), (62), and (79) produce Eq. (72),
Equations (D1)-(D4), (67), and (D9’') then yield Eq. (73),
via a saddle-point evaluation of each integral in Eq.
(72) which is exactly similar to that which produced
Eq. (D9); note that the two saddle points are identical
and given by Eq. (D4). Introducing the change of vari-
ables £, — £, =0, £, + £, = 2A to Eq.(73) and car-
rying out the integration with respect to A gives Eq.
(74). The condition

202[kgs,L + s3@,E/12] < 1, (80)
reduces Eq. (74) to Eq. (75) via Eqs. (C37) and (C54),
This condition serves to restrict o, k,, and 7; it will
be discussed further in Sec.IV. Assuming that the
maximum lateral dimension of S, say Pg, obeys

po< 3L, (81)
H(5) = L, via Eq. (C36); although Eq. (81) will be as-
sumed throughout the remainder of this analysis, the
symbol H (=L) will be employed for purposes of iden-
tification. Equations (78a) and (78b) represent con-
venient averages over the total transducer surface.
Because of Eqgs. (C37’) and (C54), respectively,

1>E>0 (82)

and

Q,E>QT = 0. (83)
Note that if L = B,(6)H(5), k, would completely dis-
appear from Eq. (73) in contrast with experimental
evidence [see Sec. IV and Baerg and Schwarz23] so
that Egs. (C37) and (82) are well justified. The rela-
tive importance of k, and s, is investigated further
in Refs. 5 and 24,

The fact that functionals on two different paths in each
realization must be correlated via E{p(sl)p*(sz)} in
Eq. (69), in order to obtain an intensity type relation
like (| |2),should be no surprise since, in the usual
“ray-bundle” approach3,10,11 for estimating acoustic
intensity, the divergence between two different rays
as a function of their curvilinear distance in space is
considered. In the present analysis, each pair of paths
that leaves the initial surface S, at 6,(¢) = 7/2, is
correlated while in the other approach, a ray bundle

is created by allowing a slight span of initial angles
Af, from a single point £. It makes no physical sense
to speak of intensity along a single path;in fact, it is
often convenient to remove the dependence on the
mean value [(p),|2 from stochastic intensity relations
as is done in Sec.1V.

IV. THE COEFFICIENT OF INTENSITY FLUC-
TUATION V

When studying sound propagation through extended
stochastic regions, the coefficient of intensity fluc-
tuation V, where

vz = (pl2 — Kp)2)/ Kp)2,

has often proved to be a useful measure of the random
fluctuation of the signal strength,2.3,5,6,16-18,24
Substituting Eq. (76) into Eq. (84) yields

(84)

V2~ 202[k2HP s, + s3Q,J/12] (85)
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> 202[kZHP,x[2 — (1 — 6 tan2©)1/2)

+ QI x3[2 — (1 — 6 tan20)1/2]3/12]  (86)

( 202RZHP x[2 — (1 — 6 tan?@)1/2], 02 <K 1,
5 (86a)
2 20:2(Q,J/12)x3[2— (1 — 6 tan20)1/2]3,
g2 2> 1,
(86b)

where
0= x[2 — (1 — 6 tan2@)V/2 /R [HP,/(@,7/12) /2. (87)

Equation (D5) produces Eq. (86) which has a phase-
dominance region, Eq. (86a), and an amplitude-domi-
nance region, Eq. (86b), as determined by the para-
meter o of Eq. (87); remember the © restriction of
Eq. (D8).

Via Eq. (D5d), Egs. (86)-(87) reduce, respectively, to

V2~ 202[kZPHr + (Q,J/12)r3] (88)
5’ 202k3B, 7, 03 <1, (882)
)2012(5“7/12)73, 02> 1, (88b)
where
0o = v/ko[PH/(@Q,/12)]1/2 (87")
and
0< < &, (89)
Also, Eq. (80) reduces to
2023 Lr < 1, 03 K 1, (90)

via Eq. (D5d); Eq. (23) is the one-dimensional analog
of Eq. (90).

Equations (88a) and (88b) are very similar to, re-
spectively, the results

vz = 2a2kgr [ dpy Nip,) (91)
and L o

V2= 2a2r3 gy [ dpy [VEVANQ)],., (92)
where

N(p) = (n(x)n(x + p); (93)

p = (p? +p3 + p3R)P/2 (94)

is the separation of the points, x,x + p,and p, is
taken along the source-to-receiver line, Equation
(91) was found by Mintzer,6:7 and Eq. (92) was de-
rived by Bergmannl6 from Eqs. (10) and (11) via a
variational approach (see also Sec. VI of Ref. 18).

V. CONCLUSION

The stochastic Eulerian-Lagrangian methods of Refs.
15 and 18 applied to steady-state sound propagation
from a small, collimated acoustic source to an omni-
directional point receiver imbedded in an infinite,
continuous, statistically isotropic, stochastic-Fermat
medium have predicted that V becomes frequency in-
dependent for the low-frequency, amplitude-domi-
nance region, Eq. (88b), in contrast to the frequency
independence at high-frequency predicted by Potter
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and Murphyl? (however, consider Ref. 24). Finally, it
should be emphasized that the methods presented in
this study are new to the problem of sound propaga-
tion through continuous stochastic media (however,
see Lumleyl9) and avoid three principal difficulties
that have plagued earlier4,678,16,17 gtudies in this
area, namely,

(1) range limitations due to cumulative phase
effects,

(2) discrete scattering assumptions, and

(3) restriction to an Eulerian path.

APPENDIX A: THE CALCULATION OF y(x, £ | s)

The detailed calculation of the asymptotic Lagrangian
measure function y(x, £ | s), Eq. (45), for stochastic-
Fermat media follows. Consider

ax,; _ u(0) dx; s, b(s)
rai o R e (A
from Eq.(13),
s dx,;
ws) —m(0) = [ ds’ 1 y(s') g5 (s, 8)
aX; s (s’
= w0) 5 [ as' %
+ fos ds’ %ST) fos' ds” p,(s"), (A2)
and thencel8,5
M(O)‘ s , s’ "
3#1(?) :1—a2f0 ds fo ds
X E{n, (s')n;(s") —O(a)} (A3)
=1-—a?2sR, fos do <1 _g)l}%{ﬁ(o) + O(a3s) (A4)
0
~ 1 —a2sR A, (A5)
where
o=s —s" (A6)
Defining
R(0) = R(s',8") = E {n,;(s")n.,(s"}}, (A7)

via Eq. (14) of Ref. 18, gives Eq. (A4) which goes
asymptotically to Eq. (A5), where the Lagrangian in-
tegral scale corresponding to the Lagrangian auto-
path correlation R(o) is defined by

A= tim [*do (1 —%)%(;l), (A8)
with the intensity factor

Ry = E{n (&)n ,(£)} (A9')

=(n;(En (E); (A9)

A is assumed to exist and cannot be a function of s.
In Eq. (42),

fos myds'= %{(0) fos ds' E 3@— é

u(s’) (A10)
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= s — ba2s?R, [’ do<l —?-59- + Z—i)%f'—)
+ O(a3s2) O(An)
~ s —3a2s2R A. (A12)

In Eq. (43),

Mgy S = fosmlds' (A13a)
~ s —a2s2R A/2, (A12)
Moy = 0, (A13b)
Myg = 0; (A13c)

see Eqs. (36b) and (36¢).

Since [Uij] is in terms of its principle axes, the deter-

minant | U,-]-“ can be reduced as follows:

[U11 Uyz Uss

Ui = | Upy Usa Uss (A14)
Ui Uszp Usg

=U11 Uz Us; (14')

~ a6s9R3(2A ; + a2sR,B,) A%, (A15)

where Eq. (A15) follows asymptotically via Eqs. (A23)
and (A24);A,R, and B, are given by Eqgs. (A8), (A9),
and (A37), respectively, For notational simplicity,
let

A;=2A. (A16)

Equations (A23)-(A25) and (A14’} give the compo-
nents of Ui"].1 to be

U,,U 1
([l Uiy
~ 1 , (A18a)
a2s3Ry(2A 5 + @2sR,B,)
Uy = ulss 1 (A170)
HU,]” U22
~— 1l (A18b)
a2s3R A,
U U 1
sl = S R (Al7¢c)
U Uss
1
@2s3R A, ’ (Al8c)
Ujt=0 fori=j. (a19)

The Lagrangian stochastic integrals U;; must be
evaluated with considerable carel8,5:

U, = fos ds, fosdsz E{u,(sy)u; (s,)} (46)
= fos ds, j;)s ds, E % |:f0$1 das’ u'i(s,l)

1 “(31)
J. Math. Phys., Vol. 13, No. 10, October 1972
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+ (5 —E%‘”)é) o)

<L as S (5

usz

RN
= [ asy [} asy[B) 7 asy BV [ as,
<ot olaten —laent) (it
o]
~ a2s3R, |:6ijA3 +(A; + a2sRB,) c;—f’ (0)
dX]'
s (0)], (A22)
so that
Ujr~ a2s3Ry(2A 5 + a2sR,B,), (A23)
Ugy = Uzz~ @2s3R A, (A24)
Uj =0 fori=j. (A25)

Equations (31a)-(31c) and Eq. (51) of Ref. 18 yield
Eqgs. (A20) and (A21), respectively. The asymptotic
result of Eq. (A22) follows, after some complicated
analysis of the type illustrated in Sec. IV of Ref. 18,
from Egs. (A27) and (A32). Equations (A22) and (26Db)
produce Eqs. (A23)—(A25). Equation (A26) in Eq. (A21)
gives Uy = U,, and Eq. (A25); this shows that the
matrix [U;] is expressed in terms of its principal

axes, as mentioned earlier, and is a direct consequence

of statistical isotropy, via Eqgs, (51) and (55) of Ref. 18,
and the convenient choice of the initial path orienta-
tion, represented by Eq. (26b). The presence of the
null cross-correlations, i.e.,U;; = 0 for ¢ = j, permits
the expeditious reduction of Eq. (43) to Eq. (44). This
decoupling of the joint spacial probability density
greatly facilitates the analysis of Sections II and III.

The steps from Eq. (A21) to Eq. (A22) are now given
in detail employing the procedures developed in Refs.
18 and 5. The first term in Eq. (A21) is treated as
follows:

s s si o, Balsh) s,
fo ds, fo ds, E%fo s3 s, fo
= a25,;53R

o
~ [fo ol

~ a28,;;s3R,Aj.

o ’J‘,I(SIZ)E
2 u(sy)

1 R(o)
NS 26
233) 3R, O(as3):] (A26)

(A27)
Equation (55) of Ref. 18 produces Eq. (A26), where
(A28)

N Y ! I3
0=158]—8, S=s¢8]+ s,

s; = %(S + o), 32 = 2(5 — o), (A29)
which goes asymptotically to Eq. (A27) with
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30 303)R(0)
A, = lim do + —
3= Jm 9‘ f < 2s | 459 R, (A30)
2
= §A (Als)

The second term in Egs. (A21) is developed as
follows:

s s (0) 1(0)
fO dsl fO dSz Eg <m Eg ﬁ(—s—1)£>
(LO) gu(OH E

U-(Sz) Ws
= o2 fosdsl fosdsz<o *ds) fsz ds},

1 ' ! d

X [’s‘R(Sl —sp) + 0(01)] i 75 O 75 o 30

+az [Pasy [as; [ as; [ asy

X |:Rz(sl, Sy, Sy, S5} —R(s}] — s{)R(sy — s3)

- o]

~ a2s3R (A5 + a2sR,B,).

X

(A31)

(A32)

Invoking Egs. (A2), (8), (A7), and (A33), plus Egs. (51)
and (55) of Ref. 18, yields Eq. (A31). Applying Eq.
(A27) to the first term in Eq. (A31) yields, asymptoti-
cally, the first term in Eq.(A32). In Section 3. 15 of
Lumley,1? it is shown that if R(o) behaves suitably
as 0 = © [e.g., an ergodic process provides a suit-
able R(0)],

Rz(slasl’sza E{na;(s ( ;)",J(Sé)n,](sg)} (A33)
~ R(sy —s])R(sy — s3) + 3R(s] — sp)R(s]
+5R(s| — sp)R(sp —s!), (A34)

via Eq. (55) of Ref, 18. Thence,

f ds fdszf dslf ds{f dszf dsy

X[ 2(31,31, ,82) ——R(S ——S")R(S — 8¢ )]
%fo 1fd32f dslf dsyR(s] — s5)
X Sl(Jls’fszds’R st —s )

[=)

0
S S,
+ % A dslfoais2 _[)zdszf ds{R(s}H — i)

S

S,
x [*dsy [°dsyR(s; — s} (A35)

~ s4R2B,, (A36)
which gives the second term in Eg. (A32), where the
appropriate integral scale is given by

1 ds ds ,
By = 11003 |:fos—slf0s szsfo dslfszdslz

R(sj —s5) 1 R(s] —s3)
X—Tro*——z—~f 1f '2‘_—“—

s ds sds2 s dsi Sy d !
fo Tfo T'() s

=

S/Z fsz ds//
s Yo 1
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R_;_z_)] (A37)

(A38)

via Eq. (A8); B, is assumed to exist and cannot be a
function of s. Note that the second term in Eq. (A31)
must reach its asymptotic form much more slowly
than the first term because of the additional a2s fac-
tor.

Equations (A27) and (A32) give Eq. (A22) which ren-
ders Eqs.(A14')-(Al19). Therefore, Eq. (43) goes
asymptotically to Eq. (44), where

ylx —s + 3a2s2R Als)

~(x-s+ %azszRoA /2 a2R0 244+ azsRoB4 )33/

[2102R (244 + 0 2sR (B ,)s3]1/2, (A39)
y(y—nls) = e_(y"")z/Z“ZROAssa/(zﬂazR0A333)1/2,
and (A40)
-(z-r)2 2 3
v(@ —tls) = & @SN onazp A sz,
(A41)

via Egs.(A13a)-(A19).

Equation (45) displays several properties that are
characteristic of diffusionlike phenomena, Because
the equation which governs the paths generated in
each realization g, i.e., Eq. (13), is known in prin-
ciple, this study can proceed further than many other
diffusionlike analyses. Equations (A39)-(A41) and
(49a)-(49c), respectively, indicate that when o = 0,
there exists (asymptotically) a Lagrangian spread of
possible X, Y, Z values about their respective null-
scattering (or @ = 0) values of s, 7, ¢ [see Eq. (51)]
and that these spreads reduce to zero as o —> 0. This
is in agreement with the discussion in Sec.IV of Ref.
18; see especially Eq. (69) of Ref. 18 which should be
compared with Eqs. (A39)-(A41). By specifying the
terminal location (observation point) x for @ # 0 and
integrating over all possible values of s, 7, {, the
(asymptotic) Lagrangian measure of all those X(s, &)
paths which reach x from the initial surface S, can be
determined for steady-state, collimated sound trans-
mission,i.e.,

M{IJB|X(S’£) ~ X, N e [_ 710, Tlo],C € ['— CO}CQ]!
56[0,00)}

:f0°° ds f_';"o dn f_ioodCB(xi—ﬁi|s) (A42)

~[as f ”n‘; dn f_‘g"o g y(x, £ s), (A43)

via Eq. (45) and Eq. (6) of Ref. 15.

For a given initial point £ and terminal point x, one
would expect an optimum value of s, say s, to exist
in the sense that a maximum number of realizations
from {uﬁ} give X(s, &) » x. This property is charac-
terized by a maximum in the (asymptotic) Lagrangian
measure function y(x, £|s), Therefore, the behavior of
y(x, £|s) with respect to s is now examined for x, ¢
fixed. First, note that

1519
¥x, £ls)
I -
sm s
FIG.1. Lagrangian measure function y(x, £]s) vs s.
y(x, €| s) W 0, (Ad44a)

as it must since no realization p,; can produce
X(s, £) = x paths that reach [x2 + (y —1)2 +

(z —£)2]1/2 > 0 for s = 0. The value of y(x, £|s) then
increases with s which means that more and more
realization ug can produce X(s, ) ~ x paths. Even-
tually, an optimum value of s = s,, should be obtained
where

[;E 'y(X, §'S):| S 0.

Thereafter, y(x, £| s) should decrease with s until

(A44Db)

y& Els)—=>0 (Ad4c)

while the spread of possible terminal locations in-
creases without limit; see Eq. (69) of Ref.18. This
behavior is illustrated in Fig, 1.

APPENDIX B: THE CALCULATION OF E{p[X(s, £)]}

The detailed asymptotic evaluation of the Lagrangian
subensemble autopath relation for E{p[X(s, {)]}, Eq.
(55), follows. In Eq. (54), the Lagrangian subensemble
autopath stochastic integrals18,5 are given by

S S -
v, = fo ds’ fo ds" Efo(s"ws™}, 4,5 =1,2, (Bl

where
vy = 0,[X(s7,8)] = pls) — vy (B2')
=afn(s') — Efn(s}),  (B2)

vy =v,[X(s",£)] = fos ds”u—d%;—(,sr)—— Vo (B3")
s’ n(s")  _n (s”)
=a [ ds [u(S’) M) ] + (B3

s’y = p[X(s’,£)] =1 + an(s’), 0=a < 1,(B4)

vy = E{u[X(s’, )]} = E{u(s")} (B5)
=1+ @2 fos’ do(s’ — o)[ﬁ(o) — O(a)] (B5")

[cf. Eq.(36a) and Eq. (93) of Ref.18],and
vy =By [ ds"%is(—,sr) . (B6)
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Note that v, v, are stochastic variables measured
relative to their expectations so that the E{v (s’ )v (s}
are correlations of centered random variables;

R(0) is the subensemble equivalent of R (o) of Eq.(37).

In Eq. (54), via Eq. (B5’),

fos ds' vi(s') =s + a2s2R } fsdg< _ 20, __>

s s2
R (0) + O0(a3s2) (BT7)
0
~s +3a2s2R A, (B7)
where .
- 2
A=lim fsdo<1—@+°—>R~(° (B8)
§=% Y0 s s2/ R,
= lim f do 35 R, ’

if the latter exists;A is the subensemble equivalent
of Eq.(A8). Furthermore,
- n'“(sﬂ)

-~ S SI
f: ds’ Vz(sl) = j(;) ds’ j(; ds” E%W

(B9)

~a2B.b,s
[cf. Eq. (60) of Ref.18], where
- . s ., (s/ . s//
a2b1=£1_’121;)d( s )<1———s—>
(TR N e
: B10
is assumed to exist and must be independent of s, and
B, = E{p ,,(&)/n&)} (B11')
= <I~‘,“(§)/u(§)> (B11)

Since sB;b, < s3Q,E, in the sense that B;b, and

QOE are bounded while s is not, exp(— a2B bls)
makes a negligible contribution to Eq. (55).

The Lagrangian subensemble autopath stochastic inte-
grals V;; are evaluated asymptotically as follows by
the methods of Refs. 18 and 5. Define the phase cor-
relation
B(s),s},8,%) =

E{[n(sy) — E{n(s})}]

X [n(sy) — Efn(sy)}]}  (B12)

=P(O,§,X), (B12")

where Eq. (90) of Ref. 18 gives Eq.(B12’). Therefore,

~ 8 s -~

Vii=a? [ dsy [ dsp Plsy,sp,€,%) (B13)

= 202sP, [ do (1 - 9>M (B13")
0 s P,

~ 2a2s[, (B14)

where the Lagrangian subensemble phase inlegral
scale L is defined by
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_ s p
L=1im [ do (1 —-> P(O) (B15)
=L, (B15)
and where the scaling factor is
P, = E{n2(8)} (B16")
= (n2(€) =1, (B16)

cf. Egs. (A8) and (A9). The phase integral scale L,
which is assumed to exist and must be independent of
§,is a Lagrangian subensemble measure of the curvi-
linear range of strong phase correlation of the pres-
sure wavefronts. Because of the path curvature that
occurs for almost every y, the Lagrangian subensem-
ble integral scale L and its corresponding full en-
semble integral scale L are both longer than the
corresponding Eulerian integral scale L, of Eq. (20)
and L = L, can occur only when o = 0; cf. Eq.(21) of
Ref. 18. L1kew1se since the path curvature for L is
less than that for L (see Figs. 2 and 3 of Ref. 18)

L>F. (B17)

Define the phase-amplitude intevaction corvelation by

y$5,8,%) = E{[n(s}) — E{n(s))}]
X [n'“.(sg) —E{n‘

Plz(
(so)il  (B18)

(B18’)

:Plz(o;gyx)) 0 =87 —Sg,

where Eq. (90) of Ref. 18 gives Eq.(B18’). There-
fore,18:3

’

~ S S S,
— — 2 ’ ’ 2 "
Vie=Vy =0 fo ds} fo ds) fo dsg

x E{ln(s}) — E{n(s))}]

x [n.ii(sg) - E{"”(S%)}] - O(a)} (B19)
=a2s2C, fos do (1 — g>£1_2(f’_£’_x) _ 0(a3s?) (B20')
S

0
~ a2s2C ,C,, (B20)
where the phase-amplitude interaction integral scale
C, is defined by

s P
éz = lim f do (1 — g) 1.2(0) (B21)
s—00 Y0 s CO
and where the scaling factor is
Co= E{n®m &)} (B22")
= (n&n ;,(&). (B22)

The integral scale 62 is assumed to exist and cannot
be dependent on s. For convenience, define

D= E(Ro‘a - éocz)’ (B23)
which, in Eq. (55), represents a weak frequency shift
factor.

Define the amplitude correlation by

sp.€,x) = E{ln ;,(s7) — E{n (s}

sy,
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X [n;(s5) — E{n sy} (B24)
:Q(O’,E,X),

where Eq. (90) of Ref. 18 gives Eq.(B24’). There-
fore,18,5

0 =87 ~s%, (B24")

’ !
Voy = a2 fosds’1 fsl dsj fsds'2 foszdsg

X E{n ;(s7) — E{n ,--sg)}]

X [n;;(s5) — E{n ;(s5)}] — o(a)} (B25)
%.’,g’ x) _ O(a3s3) (B26’)

Qo
~ % a2s3Q E. (B26)

Equation (B26’) goes asymptotically to Eq. (B26),
where the Lagrangian subensemble amplitude integral
scale E is defined by

Ezii_)rgf()sd(J(l—i—;—zz-kz—Zg)Q(%}—i’x) (B27)
and where the scaling factor is

Qo= E{n ,(®)n &)} (B28")

=(n ;(E)n (E). (B28)

The amplitude integral scale E, which is assumed to
exist and must be independent of s,is a Lagrangian
subensemble measure of the curvilinear range of
strong amplitude correlation of the pressure wave-
fronts.

APPENDIX C: THE CALCULATION OF
E{p(s1)p*(sy)}

The detailed asymptotic evaluatlon of the Lagrangian
subensemble relation for E{p(s;)p*(s,)} [Eq. (67)]

follows. In Eq. (66), the Lagrang1an subsemble Cross-
path stochastic integrals185 are given by

~ _ 51,2 31’2 -~
W;; = fo asj o fo dsj , E{wi(sll,z)wj(sflt,Z)}’

4,j=1,2,3,4, (C1)

where [compare with Eqgs. (B1)-(B6)]
wy =w,[X(s],8)] = plsy) — 171 (C2a")
= afn(s}) — E{n(s'l)}], (C2)
wy = wo[X(sy,81)] = fos dsy ( )_ vy (C3)

s [alst) n.ii(s”)

=k dsl[ mea) _E; AN } ©¥
u(sy) = uX(s, €)1 =1 +an(sy), 0O0=a <1, (C4)
wy =wy[X(sy,£,)] = ulsy) — vy (C5")
= a[n(sp) — E{n(sp)}, (C5)
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w, = w,[X(s}, £,)]= f ds %T) v, (C6)
=a f ds [ ”(sg) % 53) ] (C6)
nisy) = u[X(sh £)]= 1 +an(sy), O=a<<1, (C7)
v, = E{p[X(sy, )T = E{u(s)} (c8")
=1+02 fs" do(s} — o) [R(0) — O(@)],  (C8)
7= B asy L, (c9)
vy = E{u[X(sy, &)} = E{uisy)} (C10")
=1+a? fosé do(sy, — [R(@) — 0(@)],  (C10)

and y (s”)
= fo ds} —u@)— : (c11)

Note that w,,w,,w,,w, are stochastic variables
measured relative to their expectations so that the
E{wi(s’l,z)wj(sg, 2)} are correlations of centered ran-

dom variables; R (o) is the subensemble equivalent of

R (o) of Eq.(37).

In Eqgs. (66) and (67),

[ dsy By(sy) ~ sy + SazsiRoA, (€12)
8. ~ ~ -
fol dsy vy(sy) ~ a2Bb,s,, (C13)
[ dsy Bylsy) ~ 5, + ba2s3R, 4, (C14)
and
S, -~ ~ -~
foz dsy, v,(sy) ~ a2B,b;s,, (C15)

from Egs. (C8)-(C11) and (B7)-(B11). The Lagrangian
subensemble, autopath, stochastic integrals in Egs.
(66) and (67) are

Wi, ~ 2a2s,L (C16)
and _

W,q ~ 202s,L, (€17
via Egs. (C1), (C2), (C5), and (B14),

Wi, =Wy ~a2s2CC, (C18)
and _ - o

Wy =Wys~a2s3C,C,, (C19)
via Egs. (C1)-(C7) and (B20), and

W,, ~ §02s2Q E (C20)
and _ -

Wy, ~ 302s3Q,F, (Cc21)

via Egs. (C1), (C4), (C7), and (B26).

The Lagrangian subensemble crosspath stochastic
integrals Wy = W3y, Wiy = Wyy, Wyz = W3y, and
W,, = W,, are evaluated asymptotically as follows
by the methods of Refs. 18 and 5. Define the cross-
path phase correlation,via Egs. (C2) and (C5), by
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P(s), s 84,85,%) = E{n(s}) — E{n(s}]
X [n(sy) — E{n(sp)}]} (C22)
:P(G,S,Ely‘fz;x)x (022,)

where Eq. (103) of Ref.18 gives Eq.(C22’). There-
fore, Egs. (C1), (C2), (C5), and (C22) yield

S, S, -~
Wiy =W, = a2 fO‘ ds} fo“‘ dsy, P(sy,s5,8,,85,%)

(C23)
202 P (0 Sod 1 25470
P A2Sglg ,So,El,Ez,x)fo UZ—SfU das
P(U, S,§1,§2,X) (C24)
PO(O,SO,EI,Ez,X)
= (% o\ Plo,&,x
o> 20280, [P do 1(~s—> £0:8,%) (ca5)
0 0
~ 2a2s,P, (6)H(5) (C26)
50 2a2s,L, (ca2m
where
—~ 2 -~
P0(0,30,£1;£2,X)E 2% fo So dSP(O;S, El,Ez,x)
° (C28)
~ By(0,5,,0) = P,(6). (C29)

Since the saddle-point evaluation of {|p(x)!2),given

in Appendix D, results in s; = s, = s, (the saddle-
point), Eq. (C24) and, consequently, Eq. (C26), suffices
for this study; the more general situation is given by
Egs. (107) and (111) of Ref.18. When 6 — 0, Eq. (C24)
reduces to Eq. (C25), i.e., Eq. (B13’}), and Eq. (C26)
reduces to Eq. (C27), i.e., Eq. (B14). Equation (C24)
goes asymptotically to Eq. (C26), where the Lagran-
gian subensemble crosspath phase integral scale H(5),

- 2s,~0 D

A(6) = Lim_ fos" do i 0 g5 £40,5,8) (C30)
So 25, P(0,5,,0)
—> I, (C31)
[ ud ]

[cf.Egs.(102) and (116) of Ref. 18] is assumed to

exist and must be independent of s, and where P (5)
represents the curvilinear average of PO(O, S 615 over
the s, range of experimental intevest (see Appendix B
of Ref. 18). Note that the intensity factor at s, = 0 is

By(6) = E{n[X(0, &,)]n[X(0, §,)]} (C32)
= (n(&)n(,)) 2 B, (o) (C33)
= Po=1 (C34)
—5;? 0. (C35)
Since, via Eqgs.(113a) and (96a) of Ref.18,
1 25570 ﬁ(o" S) 5) P(U) C36’
2(sy, —0) j; as P,(0,5,,0) 20 P, » )

H(5) is probably nearly equal to L for all s, of inter-
est and § less than, say 3L,i.e.,
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Ho)~ L, &<3L, (C36)
[cf. Egs.(121a) and (121) of Ref.18]. However, via

Egs. (C32)-(C35),

1>P8)R B,(8)>0, (5>0,5,>0) (C37)
so that
L>P(0)HG) =0 (56>0,5,>0) (C37)

in Eq.(67). In Sec.IV, P (6)/(6) proves to be a domi-
nant factor in the coefficient of intensity fluctuation V
in the phase-dominance region via Eq. (75).

Since k) =k, = — k5 while k, = i/2 = k,, the factors
involving fVl 4 and W 41 cancel the factors involving
W,4 and Wy, from Eq. (67) when s; = s, = s,. Since
this is the only case considered in this study, the
Lagrangian subensemble crosspath phase-amplitude
integral scale contribution will not be considered.

Define the crosspath amplitude correlaiion,via Eqs.
(C3) and (C8), by

Qsyr 55081, 85,0 = E{ln i(s7) — E{n (s DY)
X [n,ii(sg) - E{n .”(SIZI)}]}
= Q(U;S;E]_,gz,x),

where Eq. (103) of Ref. 18 gives Eq.(C38’). There-
fore, applying Egs. (C3) and (C6) to Eq. (C1) produces

’ ’

S. S, S, S,
= " o [ 1 2 2 .,
Woy =Wy, =0 _() ds’lf0 ds{fo dséfo ds},

{C38)

(C38")

X [Q(sY, 8%, &, £5,%) — O(a)] (C39)

S " n so " "

§,75,=Sy o fOO dfl(so —s1) fo dsglsg —s3)
X Q(S{ysg’gl,gza X) - 0(0333) (C40)

5=0
X Q(sy,s4,&,%) —O(@2s3) (C41)
-~ S,
= 0253 Q5(0,50, &1, £5,%)% fo"do
X (1 _ o _o% @)
2s, 2s2 438
x 63(0',80,51,52,){)/@3(0,50,§1,§2,X)
— O(a2s3) (C42)
~ 2253 §,(6)J(0) (C43)
parnd %a%%éoE. (C44)
Defining
2s3  0s2 o2s EAN
<_3—Q—_39—__3-9_ +_2_> Qg(orso’glygz)x)
25,0
= fc K ds[s — 3(S +0)][s — (S —0)]
X Q(0,S,&,,&,,%) (C45)
~ 533Q5(0,5,0) (C46)

[cf. Eq.(B26’) and Eqgs.(102) through (104) of Ref.18]
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yields Eq.(C42) by standard procedures. Equation
(C42) goes asymptotically to Eq. (C43), where the
Lagrangian subensemble crosspath amplitude integ-
ral scale J(3),

- G a2 303\ @.(0,s,,5)
J(8) = lim fs"do( ————— +—>7‘°’—’——°——
sg%0 “0 259 253 4s3/ Q3(0,5,0)

(C47)

=0 E, (C48)

[cf. Eq.(116) of Ref.18] is assumed to exist and can-
not be dependent on s, and where @,(0) represents
the curvilinear average of QS(O,SO, &) over the Sy
range of experimental interest. Note that the inten-
sity factor at s, =0 is

Q,6) = E{n ,[X(0,&))]n ,[X(0,£,)]} (C49)
={(n ;(E)n ;,(E;)) 2 Q,(6) (C50)
= 9 (C51)
== 0 (C52)

Since, via Eqgs. (113a) and (96a) of Ref. 18,

@3(0,54,0)/@5(0,5,,0) == 80/, (C53")

J(5) is probably nearly equal to E for all s, of interest
and § less than, say, 3E,i.e.,

Jo)=E, &< 3E, (C53)
[cf. Eqgs. (121a) and (121) of Ref.18]. However, via
Eqs.(C49) through (C52), '

Q,>Q,0)29,6)=0 (5>0,50>0) (C54)
so that
Q,E>Q,06)J0)=0 (6>0,5,>0) (C54)

in Eq.(67). In Sec.IV, Qz (6)J(5) proves to be a domi-
nant factor in the coefficient of intensity fluctuation
V in the amplitude-dominance region.

APPENDIX D: SADDLE-POINT APPROXIMATIONS

The saddle-point approximationl0:22 gives

ce] / 2 2

57 dsg(9)e” % ~ [— anaz /(s )1 P g (s e 0,
(D1)

where g(s) is a relatively slowly changing function

compared to exp[f(s)/a?2] near the saddle point s .

The saddle-point evaluation-of Eq. (64) proceeds as
follows. Assume

za2sR A < 1, (D2a)

a2sD < 1, (D2b)

3a2sR B,/A; = §a2sR A < 1, (D2¢)
via Eqgs. (A16) and (A38), and define

fls)= —[(s —x)2 + 2p2]/4R jA 53 (D3)

so that
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0= gis] =[—2(sy —%)sg T 3(sg —x)2 + 6p2]/
X 4R A 88 (D3)

gives the saddle-point value of s:

Sg=2x —(x2 —6p)L/2 (D4)
P—_:B—> x (D4a)
~x +3p2/x, p<KLyx, (D4b)
=x[2 — (1 — 6 tan20)1/2] (D5)
Pyonald (D5a)
5T/z> © (D5b)
=~ x + 3x tan20, © <5°, (D5c)
x>y 04, (D5d)

The assumption of Egs. (D2a)-(D2c) simplify the form
of Eq.(64) so that Eq.(D3’) is no worse to solve than
a quadratic. They can be justified as follows for a
turbulent fluid [see, also, the discussion of (4.6-16) of
Ref.5]. This is demonstrated by the order of magni-
tude techniques employed in Ref. 1. Since the turbu-
lent microscale A, is related to A, by1,2,5,24,25

A2 =22/, (D6a)

where o, ~ 7 in turbulent water,185
Ry=Ry=(n [(E)n [(£) = 3(n2)/2Z ~ 21/X2.(D6b)

Equation (56) of Ref.1 provides

L,/A; ~ R,/10 (Déc)

so that
3a2sR A < 1002(L,/A2)s (D6d)
~ i5 @%RA(s/L,) (D6e)

with A < L, the turbulent macroscale defined in Eq.
(44) of Ref.1 (probably A < L,). Since

3a2sCC, < 3a2sR A (D6f)
[via Egs. (B21) and (B8)] and
$02sR A < jo2sR A (D6g)

(via Sec.V of Ref. 18), Eqs. (D2a)-(D2c) follow for

s S L,/(aR,)?
or _
s S A2/(1002L,),

(D6h)
(D6i)

remembering Eq. (B23). For the Stone and Mintzer
experiments,26:27 wherels»5 o >~ 1.6 X 10~4 and

R, =~ 58, Eq.{(D6h) permits s to be as large as 104L,.
In the case of the turbulent upper ocean discussed in
Ref.1, where a ~ 10-% and L, /A2 ® 1m™1, Eq.(D6i)
provides for s < 106m. In Eq. (D5), the scattering
angle © has been defined by
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tan® =p/x (D7)
so that

X =7 cosO, (D7a)
where

y = (x2 + p2)1/2 (Do)

is the source-to-receiver range. Since p — 0 and

6 — 0 when o - 0, Egs. (D4a) and (D5a) give the
required nonstochastic limit and Egs. (D4) and (D5)
show how the saddle-point curvilinear distance s,
varies from its value x in a nonstochastic, uniform
medium by a factor that depends on the scattering
geometry via tan ©. When Eqgs. (D2a)-(D2c) are not
imposed, s, depends on the statistical nature of the
medium, via @ and R, A, as well as the scattering
geometry. Equation (D5b) shows that this saddle-
point approximation is limited to © < 7/2, while Eq.
(60) imposes the limit © > 0, since Eq. (55) increases
without limit as sy — o« due to the dominance of
exp(ozzQ0 s3/12) for large s, i.e.,

0<oe<m/2 (D8)
The saddle-point estimate of Eq. (64), under the
assumption of Eqs. (D2a)-(D2c), is, therefore,
a2 \1/2
() ~ oS (——)
TON\=1"(s)
e-ocZ (kgfso-sgéof/12)+ikoso ef(so)/(xz (D9)
21ra2R0A3sg(41ra2R0A338)1/2
= (plx,p)), (D9")
——> 0. (D10)

JEROME A. NEUBERT

Equation (D1) produces Eg. {D9), where, despite the
considerable analytical simplification that has pre-
ceded in this analysis, f(s,) of Eq.(D3) and

” = _a_fi _
f (so) = [asz]so =

§% —6syx + 6(x2 + 2p2)

—2R0A330

(D11)

are complicated functions of ¥ and p when Eq. (D4) is
applied. However, these factors will cancel out later
in Sec.IV. Equation (D10) follows from Eq. (D9) be-
cause of the simplifying conditions behind Eq. (D1)
disallow consideration of the null-deviation path re-
sult in the nonstochastic limit; the correct nonstoch-
astic limit of Eq. (59) must follow from Eq. (58) since
the saddle-point attack requires a > 0 as well as

o < 1. It is noted that the peak of exp[f(s,)/a?]
broadens as S, increases. However, it can be shown
that the saddle-point approximation is quite good by
demonstrating that

{[r"(s)/R(s)](2a2R jAs3)}1/2 < 1,
where

e 252 T
h(s) =€ ® kOLS/Zna2R0A3s3;

this proves A(s) slowly changing over the spread,
202R jA,s3, of exp[f(s)/a2]. For a2k Ls < 1,

[h"(s)/h(s)] (22 2R A ;s3)

~ 4a?R(Ags S 8 X 1075(s/L,) < 1
when s S 104L, for the Stone and Mintzer26:27 experi-
ment.2 Likewise, for the turbulent upper ocean case
discussed in Ref. 2,
[h"(s)/h(s)] (2a2R ;A;s3) ~ 8 X 107 7(s/1 meter) < 1
for s < 105m.
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Recurrence Formula for the Veneziano Model N-Point Functions

Koichi Mano
Air Force Cumbridge Research Laboratories, Bedford, Massachuselts 01730
(Received 1 May 1972)

A recurrence formula is derived for a function which reduces to the Veneziano model (n + 3)-point function. It
is shown that the formula is equivalent to,but is more self-contained than,the Hopkinson and Plahte formula
in that it does not require the prescription for the parameters involved.

The extension to the n-point functions of the Vene-
ziano's four-point function was accomplished either
by generalizing the integral representation for the
beta function which comprises the essential ingre-
dient of the four-point function!.2 or by generating a
recurrence formula for the n-point function.3 In the
latter approach, the authors attempted to justify the
formula for arbitrary value of n after showing,
through introduction of the integral representation
for the beta function, that the formula produces the
already known integral expressions for the cases of
n =5,6,and 7. The recurrence formula which has
apparently been discovered on a heuristic basis is
not necessarily very transparent, as the authors
themselves admit it, especially in connection with the
definition of their variables x;;.

Recently it was pointed out that the generalized
Veneziano amplitudes may be regarded as the boun-
dary values of a class of generalized hypergeometric
functions that are Radon transforms of products of
linear forms.4 In a work by the present author which
shows that the amplitudes possess a structure simi-
lar to that of the Lauricella's hypergeometric func-
tions,5 he has made an iterative use of a recurrence
formula for the amplitude.6

The purpose of this note is to point out that the
author's recurrence formula obtains itself in a quite
natural manner such that for a special choice of the
variables, it reproduces the formula proposed in Ref.
3 without requiring any prescription for the para-
meters involved therein.

To begin our discussion, let us consider a function V,
of variables w;; defined as below:
Vil@o1, @ogye e e s @ops @115 @agye e e s Uy

Qoq,Qnpyecey @y q3037,000,03 , 05ees;

1,15 Ap-1,25 Yy ‘woz,”’os,- <oy Wops

Wygeoo s Wipiess;Wyn,)

= fl fl 3l du,u, 011 — g jHi-1
0o 77 Yo =l L i
i i1 Xk, i=k1
X }921 — U, “’i~k,i]r:10 Uiyt vicka (1)

When the parameters o;; are regarded as functions
of the momenta p,, i =1,2,...,n + 3, of the external
particles, it will be seen that V forw,, =1 can
readily be related to the known integral representa-
tion for the (# + 3)-point function.?

In carrying out the multiple integrations in Eq. (1),
use has been made in Ref. 6 of the following recur-
rence formula:

| (T T s 2 M S e Y
10025 v W03 Wy gy e Wy e e 3 g )
(aon,Bn n—l)
= B(OZOrL’ aln) E

(aOn + aln’Bn,n—l)
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x (_ az,ﬂ"l’rz,n‘l). o (_ anl’ynl)
(1,7’2%_1)' ©t (I’Tnl)

X (Wyg ) " Wyg )32 L (1,

X Vealagy T Bupse oy 001 ¥ Bpp1i Gy e ey

O 153 0,1 Wozy e o s Wo 13 Wigs ™+ * W et
T ;“'n-s,n—ﬂ- (2)

In Eq. (2) the summation is over the integers between
0 and « of the indexes 7,,, B stands for the beta
function, (@, 7) under the summation symbol is writ-
ten for I’ (a + 7)/T'(a),and g, , are given by

qu: E

=23 n
¥y - for {P_ PR (3)
k, 1 = b1
NPT L g=1.2....p

Our task in what follows is to show that whenw,;, = 1,

Eq. (2) reduces to the recurrence formula for the
N-point function By(x) in Ref. 3 as given below:

By(x) = > [Nl:lz - 1)’“i.N-1<:"'N“1>:l

ki N0 L7 L1

N-3
x B4<xN—2,N-1’xN-1,N +232 ki,N—l) By1(x"), (4)

where
= i = - 2
Xy =—alsy)  with s, = +piq t---+p)?,
2, = Xy T X, 7 %ige1 T X, -1

and x/, are defined according to certain rules (given
in a tabular form) which will not be reproduced here.
More noteworthy of the present formula is the fact
that Eq. (2) is self-contained such that in contrast to
Ref. 3, there is required no prescription for defining
the parameters of the function V,_, which corresponds
to By, of Eq. (4).

In order to achieve the above we have to establish the
relation between our parameters g;; and those of Ref.
3. For this purpose let us note first that the external
lines are labeled 1,2,...,n + 3 both for the (r + 3)-
point function in Ref. 1 and for V, in the present
paper, while they are labeled 0,1,...,n + 2 for the
(n + 3)-point function B, ; of Ref.7. Further, we note
that the integration variables uy,uy,...,u,in Ref. 7
and the present paper may be made to correspond to
U19,U13y e 0esUy 1 Of Ref, 1. With this in mind one
can compare Eq. (1) with the corresponding expres-
sion that follows from the representation for B, ,(x)
of Ref. 1 through rearrangement of the integrand.
Namely, by introducing x,; = — &;, — 1 from Ref. 1,
where we write a;; for a;; = a(s;;) of Ref. 1, it be-
comes possible to express our ¢;; in terms of a,,,..

If we further write &ij =— Eij with £,, = 0 and

Cii =8y~ 8~ i1+ 810 (5)

where £;, and €, stand for x;; and z,

y ij» respectively, of
Ref. 3, it follows that
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O, = g iy
00 Piind for i=1,2,...,n (6)
0y; = £i01,442

and
% =8t for B=2,3,....n
andi=1,2,...,n— k + 1. (7

That the integral in Eq. (1) reduces for w;,, =1to B,
of Ref.7 can be seen from the observation that our
pipi=1,2,...,n+ 3 correspond to p,,i =0,1,...,

n + 2 of Ref. 7 and through specialization of the rela-
tion a(s;;) = a’s;; + &) of Ref. 1 to the form bs;; + a
as is done in Ref. 7.

Although we have connected our parameters to those
of Ref. 3 in Eqs. (6) and (7), the precise correspon-
dence between Eqgs. (2) and (4) cannot be considered
complete until the arrangement of £,; in B,(£) of

Eq. (4) is unambiguously established. [In Ref. 3 this
arrangement has been left out unstated, which fact is
responsible in part for requiring the somewhat
troublesome rules for determining x’ in B,_;(x’')
which should have really been unnecessary, as will
be shown below. ]

Let us suppose that the correspondence between V,
in this paper and By,for N =n + 3, of Ref. 3 is given
by the following:

Vi(@gy,. Ugpqieess

R R R P S L PRI

O |00y - - 3 W3 o v+ 5%g)

<> B, 3(E12, 80350+ stz E130E240 0+ 0 s

581 i1 Sz pm2)- (8)

Then the transition from V, to B,,; and vice versa can
be effected on a firm basis by referring to Egs. (6)
and (7).

With the help of Eq. (8) we now can translate Eq. (2)
into a formula which is given in terms of the function
By:

§pni2s E14r 82500+ o €t iz - -

Bn+3(£12’ g23’ ey §n+1,n+2; §13, 524, ey

TR 3€1 1082 n02)

KOICHI MANO

(= 8o 2 n1)
(1’777.1)

Bn,n-l)

( Cn n+2’72 n-l)
=2
(1,7%,,1)"
XBy (€t ne2s E1,m1 T
X Byo(812 T Bus€agreves

* Bn,rrl’ g2,n+1)' (9)

gn,n-x-l; §13 + BnZ’

§24r+vesbpt netieeni b,

Note that we wrote B, for B, and use was made of the
following relation in obtaining Eq. (9):

B(aom aln) (aomﬁn,n-l)/(aOn + aln’Bn,n-l)

= B(aln’ Ao, + Bn,n—l)‘
That Eq.(9) is identical to Eq. (4) with N =#n + 3,

x — §,and 2z - {, can be checked easily. This estab-
lishes, therefore, that the order in which x;; appears

in By(x) of Eq.(4), which was not stated explicitly in
Ref. 3, should be exactly as is displayed in B, 5 of
Eq.(8)

We emphasize that the recurrence formula for the
(n + 3)-point function, Eq. (9), as derived from Eq. (2)
is complete as it stands and requires no rules for
defining the parameters of the function B,,,. In con-
nection with the table for x/; of By_;(x’) in Ref. 3, we
note that not all the entries’in the table are actually
needed for the recurrence formula. In fact, what is
needed is only that portion of the table for i = 1,
J<N—2andi> 1, j < N— 2because,as may be
seen from the arguments of B, in Eq. (9), we require
only gljfor]<N—2—n+land§ with i > 1 for
j <N—2=n+ 1. Moreover, there arlses no need
for including in the table the relation Xy, =%t

A 1 k. y-1,for j = N — 2, unless we unnecessarlly
rewrite the argument xN_l vt Zz k; y-1 in By of
Eq.(4) as xy yo t+ Ez ki n-1 = %1,y-2- Finally,it is
noted further that x; jfor i> 1l and j = N — 1 should
have not been 1nc1uded in the table since no such
variables are actually involved in the recurrence
formula for By (x).
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A general method is described for finding linear inequalities relating physical properties of an ensemble
which can exist only in a finite number of states. This algorithm is used to solve a few examples of the fixed-
N and variable-N Slater hull problem and the fixed-N Boson hull problem. Interpretations of the results are
made in terms of boundary conditions for fermion and boson reduced density matrices, pair distributions of
lattice vacancies, and pair distributions of spins in an Ising model.

INTRODUCTION

The distribution of particles among orbitals in a
wavefunction, the distribution of pairs of particles

among pairs of orbitals, the Ising model of magnetism,

the reaction rate of adsorbed atoms on a surface, and
the distribution of vacancies in a lattice are quite

dissimilar problems. In each of these cases, however,

if one asks what could conceivably happen rather than
what does happen, a similar mathematical problem
arises. Solution of this problem gives certain bounds
on the results which may be of interest in cases
where exact solutions are not available.

In order to formulate the mathematical problem, let
us envisage a system which can exist in only a finite
number of states labeled by K = 1,2,...,X. An
example of such a system would be a set of sites la-
beled by p = 1,2,...,7 where each site may exist

in a finite number of discrete states 2, =1,2,..., /ep.
The permitted configurations for this example can be
labeled by K = {kq, k,, ...,k } where restrictions in
the physics of the system may prevent certain com-
binations of the k£, from occurring.

If there exists a set of properties (operators in quan-
tum mechanics) {A*, @ = 1,2, ...,d} of interest, one
can arrange these into a column vector A*, Further,
if A, denotes the value of A* in configuration K, a
matrix A may be formed with the A, as columns.

In an ensemble each configuration will occur with

probability w, determined by the physical laws go-
verning the system. These probabilities determine
the ensemble average A of A* according to the rule

Aa:ZwKAa,K (1)
or K
A = Aw, (2)

where w is a column vector of the Wy

The problem to which this paper is addressed may
now be stated as follows. What, if anything, can be
said about A independent of any knowledge of the w,?
Or more precisely, what are the limitations on A so
that it is compatible with Eq. (2) subject only to the
conditions

wi =0 (3)
and
2wy =12 (4)

One restriction is immediately apparent. Since A is
an average of the A ,,

o

minfa_ }= 2 = max{x, .} (5)
K ' K !
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That there are usually other restrictions is also
apparent from the consideration that, if A, is at its
maximum value, then A, is restricted to lie in the
range spanned by the Ay k for which Ay g equals A;.
Two properties would be independent only if every
value of one property occurred for each value of the
other.

REDUCTION TO STANDARD FORM

The problem, as stated, is well known in the theory of
convex sets.l No general solution is possible; but
there are several algorithms available which will
solve any specific case of interest. In order to use
these algorithms, however, a slight modification of

A is usually necessary.

The set of values of A defined by (2) lie in a d-dimen-
sional convex polytope. That is, this set is convex so
that if A , and A, are two possible values of A, then
every A of the form

A=ax,+ba,

with ¢,b = 0O and ¢ + b = 1 is also a possible value
of A. Moreover, because this convex set is the closed
convex hull of the A , which are finite in number, it
is a polytope whose vertices are a subset of the A

Now suppose an additional variable A, , is introduced
in the A vector with x, ; , =1 for all ‘K. Then the
condition ) w, = 1 is equivalent to

Ag,q =1 (6)

Hence the convex set of interest may be regarded as
the intersection of the convex polyhedral cone de-~
fined by

Aw =2, (7
w=0 (8)

(where w=> 0 means every w, = 0) in a (d + 1)-di-
mensional space with the hyperplane », ., = 1. Since
A = 0 does not lie in the hyperplane x,_, = 1, this
convex cone is pointed with apex at the origin.2

The condition that A lies in the desired convex cone
may now be expressed as a set of linear inequalities
by a well-known theorem from linear programming!
which states that there exists a nonnegative solution
w satisfying

Aw =21 (9)
if and only if for every y satisfying

yTA= 0, (10)
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necessarily
yIa= 0. {11)

The necessity of this condition is obvious since mul-
tiplication of (7) by y7T gives

yTAw =y7a,

and yTA and w are both nonnegative. Sufficiency can
be established by noticing that yTA = 0 is the equa-
tion of a hyperplane which divides the (d + 1)-dimen-
sional space into two half spaces. Equations (10) and
(11) then state that each X ; is in the same half space
with A, If A lies outside the cone defined by the A .,
then it is always possible to construct a hyperplane
with all of the A, on one side and A on the other. The
y defining this plane would then satisfy yTA= 0 and
y7x < 0 contrary to the hypothesis.

If a y exists such that yTA = 0, then both y and — y
satisfy (10). Equation (11) then becomes

yIa = 0. (12)
This is equivalent to saying that if

>, Ve & = 0

for all K, then the ensemble average must also satis-
fy this equality. Thus, if some of the A% are linearly
dependent, they may be eliminated since the corres-
ponding A, must be given by a known linear combina-
tion of the independent A's. Let us assume, henceforth
that this reduction has been made. If A was originally
of rank s,then d + 1— s of the A, can be eliminated.
After the reduction the dimension of A is s, and the
number X of configurations K is not less than s,
Further, at least one subset consisting of s of the X
columns of A are linearly independent, and one such
subset may be assumed to be the first s columns of
A. The problem is thus reduced to the form

Aw =12 (13)

where A is an s X X matrix (X = s) and the first s
columns of A are linearly independent. The convex
cone of these A with apex at the origin is pointed and
of full dimension (i.e., it occupies a nonzero volume
in this s-dimensional space). Even though many of
the A , may be interior to this cone and, hence, not
essential to its definition, no method exists for elimi-
nation of these A ,, in advance of solving the problem.

ALGORITHMS

The actual algorithm used for the calculations pre-
sented here will be published separately. The general
considerations involved in constructing an algorithm
are of some interest, however,

If two vectors y, and y, satisfy (10), then so does
a,y, + a,¥, with a;,a, = 0. Hence the vectors y also
form a convex polyhedral cone (called the polar to
the x-cone). Since yZA = 0 and yZx = 0 imply (a;y; +
a2y2)T)L = 0, only the extreme rays of the y cone
generate nonredundant inequalities (extreme rays may
be defined by the condition that they are not express-
ible as nonnegative linear combinations of other rays
of the y cone). Hence a complete set of nonredundant
conditions on A can be found by computing the ex-
treme rays of the y cone.
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It is easily seen that the extreme rays of the y cone
are normal to the (s — 1)-dimensional faces, i.e.,
facets, of the X cone. In other words, there is one
nonredundant inequality corresponding to each facet
of the A cone. The inequality associated with a par-
ticular facet simply says that A lies on the same side
of that facet as do all of the A;. Thus this procedure
restricts A by requiring that it be interior to all of
the facets of the X cone.

A heuristic algorithm for finding all of the facets of
the A cone would be to construct the hyperplanes de-
fined by each s — 1 independent columns of A together
with the origin. Even though the intersection of most
such hyperplanes with the A cone would be interior to
this convex cone, a search through all ( s £ 1) such
hyperplanes would produce all the facets. Polytopes,
and thus convex polyhedral cones, are known with the
number of facets as low as s [(s — 1) — simplices] to
as large as ~2 (¥-g2°1) for cyclic polytopes.2 If the
A . are chosen as random numbers, then almost all
cones have 2 + (s — 2) (X — s + 1) facets. Since the
number of facets is clearly a negligible fraction of
the number of s — 1 subsets of the columns of A, this
algorithm is not feasible.

Viewing the extreme rays of the y cone as normals to
the facets of the » cone suggests that the column vec-
tor 7 = ATy should be given further consideration
since 7 = 0 and 77, = 0 if the facet contains A .. It is
easily established that y is extreme if and only if
there exists no other y’ such that {i|n;, = 0} c

{iIn; = 0}. That is, y is extreme if the set Z =

{iln, = 0} is maximal. 1,375

A variant of the double—description algorithm based
on the maximal property of Z is the most efficient
known algorithm for constructing the facets.4,5 This
method proceeds by calculating the n corresponding to
extreme y rays. The main defect of this algorithm is
that it generates all of the n vectors simultaneously
so that the memory capacity of computers becomes a
severe limitation when the number of extreme rays
exceeds 105, Also, any symmetry present in A cannot
be used to simplify the problem.

A third algorithm which allows sequential calculation
of the facets of the X cone has been devised.57 This
is based on the fact that each (s — 2)-dimensional
“edge” of a facet is common to exactly one adjacent
facet. Rotation around the edges of a facet will pro-
duce a list of adjacent facets. Rotation around the
edges of these will produce still more facets. Con-
tinuation of this process eventually yields all facets.
While this process is redundant since each facet will
be generated as many times as it has adjacent facets,
the algorithm has the advantage that the facets are
found sequentially so that some can be found even if
all cannot. Also, if symmetry ispresent sothatfacets
fall into equivalence classes, only adjacent facets to
one facet from each equivalence class need be found
in order to guarantee finding representative facets
from all equivalence classes.

APPLICATIONS
A, The N-Representability Problem for Fermions

A wavefunction for a system of N indistinguishable
fermions may be approximated by a finite linear com-
bination of Slater determinants. These determinants
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may be represented in terms of a set of » orthonor-
mal spin-orbitals as

¢g = (NI)‘I/Zdet{(bkl d)kz ¢kN}’ (14)
where

K={1s kb <hky <ky =7}
or as

bp = Imny o0 m), (15)

where n;, = 1 if i € K and 0 otherwise. The reduced
second-order density matrix I', and first-order den-
sity p v for a wavefunction ¢ are defined by

rlﬂ(l’z; 1,’2’) = <12V> f‘P(l,Z, 31 ""N)

xy(1,2,3,...,N)dX5 --dXy, (16)
p,=2(N—1)1 [T,(1,21,2)dX,, (17
where
Y =27 Cpdy (18)
and
2lcg 12 =1, (19)

If the Hamiltonian for the system is a linear combina-
tion of only one-body and two-body operators, the
energy is easily expressed in terms of T',. If the
boundary conditions for T, were known, an arbitrary
function I obeying these boundary conditions could be
substituted into the energy expression and varied to
obtain an upper bound on the ground state energy.

The problem of determining these boundary conditions
is known as the pure-state N-representability prob-
lem,

Less stringent boundary conditions result from con-
sidering an ensemble rather than pure states. For

H =2 h(3) +12 gli,j)
and l ]

G, j) = g(i,j) + (N— 1) {rG) + k(5]
it is well known that

E, =(ylHlY)
becomes

E,=TrGT, = [ [(GT,);_y 4X1dX;5.
2:2'

The ensemble average of E over states of the same
N gives

Ey =2 w,WlHI),
where the probability of finding the system in state
Yisw, (0= w, = I;Zw w, = 1). In terms of the en-
semble density,
I‘N:%) w, Ty (20)

this energy may be expressed as
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E, = TrGT,.

Since the minimum of E, is the same as the minimum
of E, (both equal the lowest eigenvalue of H), it suf-
fices to restrict a trial I" to obey ensemble conditions
in calculating the ground state energy. These boun-
dary conditions are known as the N-representability
conditions.8.9

A further generalization is possible if E v is express-
ed as

Ew = Trgl, + Trhp,.

Since this expression has no explicit N dependence,
the ensemble average can be carried out over wave-
functions of variable N, This gives

E = Trgl + Trhp,
where the sums

r:warw, (21)
¥

p= ? w wp P (22)
extend over wavefunctions of differing values of N.
For some systems the minimum of E will coincide
with the desired minimum of E,. In every case the
family of functions satsifying the representability
conditions for variable- N ensembles contains the
fixed- N ensemble and pure-state densities.

The density matrices for the form (18) may all be
expressed in the form

r ::L‘:j kz<)z Lini®i; (1, 2)¢(17, 27), (23)
where

.(1,2) =2-12[¢ (16 (2) — $,(Dg(2)].  (24)
For I, the I};,, can be evaluated as
Tiju = ? JE CKCSGE?( K-i=j)€ (J)k'l(J‘k_l)e Ei‘,:;‘lj)), (25)

By ; ;
where €} fzfrv is the generalized Kronecker delta
Leee

defined as 0 if the set of subscripts differ from the
set of superscripts and as (— 1)? if P transpositions
are required to arrange the two setsinidentical order.

Alternatively, for T,
Tyjpy = W Iak*al*ajaihl/),

where a, is the usual annihilation operator associat-
ed with orbital ;. The representability of a density
matrix clearly depends only on the T; bl rather than
on any particular properties of ¢ e Since the I‘ijkl
are expressible as average values of the operators
a,'a;"a;a;, the formalism introduced previously
applies'to these quantities. Hence, the I},,, form a
convex set whose interior may be described by a set
of inequalities.

The difficulty with finding the boundary conditions on
the Fijkl in this formulation arise because the “con-
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figurations” in this ensemble are the wavefunctions

¥ and, hence, are nondenumerable. Actually, from the
introductory discussion it is clear that only the ex-
treme rays A, of the A cone need be denumerable
(provided some way were available of enumerating
just these and omitting all A, lying in the interior

of the cone). Enough progress has been made in
enumerating these extreme rays to show that they are
nondenumerable,19

Nevertheless some progress can be made. For every
Hermitian operator 3,

M =2, m,a,taaa, (26)

ijkl i

with maximum eigenvalue m , and minimum  _,
= TrMT'=s m,

gives two linear constraints on the Iz, For example,

for ij = ki,
I PO gt
M = 3(a,'a, aa; +a;'a, a,a,)

has eigenfunctions

(i) ¢gz¢, ijcKkrkl¢KI={K—i—j+k+]I}
and
(ii) ®,, L not appearing as J or K in (i).

Some eigenfunctions of type (i) have eigenvalues + 3
while the rest of these and all of type (ii) have eigen-
value 0. Hence, the real part of T, Re(T,;, ), is

ijkl
bounded by

— i< Re(l‘i].kl) < 1, (27

Similarly
— Li(g.tgt —a.i
M=zilay’afaa;,— a;'a

j*alak)

gives a bound on the imaginary part of T;;,,,
(28)

For ij = kI, a,%a,"a,a; becomes a product of number
operators n; = a;%a;. Clearly M = 0,1, has eigen-
values 1 and 0, so that

0=T;,,;,= 1. (29)

ijij —

The matrix elements T, of I'y may be shown to be
bounded collectively as Well as individually. If one
defines

Tl Ty = /T%(1,2;172")T,(1",2";1'2)dX] d X3,
then

Tt Ty =Zk‘,l Q ijun ¢ij(1,2)¢§,z(1’,2'),

ij

where

Qijer =21 TTpg Tpqu -

bq

Hence

Tr(Tf- Ty) = 25 IT,,, 12

ijki
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But I'y, may beregarded as the kernel of an Hermitian
integral operator.ll This allows it to be written in
diagonal form as

N_Zyz

where the y, are its eigenvalues and the f; are its
elgenfunctlons Since I, is positive definite by de-
finition, y, = 0,

(1,2) 1,27, (30)

Also
N
Then
Trl} Ty =2y
= <E7’i>2 =20 v
i#j
= <E')/i>2'
Hence
N 2
2 <
21T 12 = <2> . (32)

If the fact that y = N is taken into account,'2 a stron-
ger result

N
BT 2= (3]

is easily derived. Thus if the I';;,, are regarded as
coordinates in a finite- dlmensmnal unitary space,
T'), is a bounded convex set which may be taken as
closed. Moreover, this bound is independent of the
dimension (5)2 of the space. The variable-N ensem-
ble T is unbounded, however, in the limit of large 7.
Since for fixed finite », N =< 7 for all states in the
ensemble, the varaible- N ensemble is bounded by

¥
i%e:l IFZ ul?= 1’(2)’

There is a close connection between the A cone and
the operator

(33)

(34)

M =2 m A%, (35)

In fact the conditions

LM, = m,

for all m, generate the complete set of inequalities
defining the cone.3 Further, the extreme rays of the

A cone are contained in the family of eigenfunctions
of M corresponding to nondegenerate minimum eigen-
values for all possible choices of m, .

For the M of Eq.(26) this family of eigenfunctions is
nondenumerable. Some progress in finding necessary
conditions in the T';;,, can be made, however, if a
restricted form of M can be found with the property
that the family of its nondegenerate ground state ei-
genfunctions is denumerable. Trivial examples of
this were used previously to find bounds on Fz;kl

The most interesting restricted form of M found to
date is the so-called Slater hull.® If M is restricted
to the form (where n, =a}a;)
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M :Z mijninjx (36)
the ¢, themselves form the whole set of nondegener-
ate ground state eigenfunctions. Thus the X cone with
Ay =T, = (n, M ) has as its extreme rays

Nk = Coglnm;log. (37)

The algorithm described previously can be used to
generate explicit conditions of the form

2 vir; = 0, (38)
i<j
Za=(5) (39)

from this A matrix.

The relation between the Slater hull {I's} and {I',}
and {F } may be restated as follows. For any set of
= 1"z ;1; which obey the Slate hull boundary condi-
tlons (38), it is possible to construct an element of
{r,}and {F o} with these values of A,;. Conversely,
all elements of {y}and {T} have diagonal elements
which obey the Slater hull conditions. Thus the in-
equalities (38) contain all of the restrictions on the
X, which can be stated without reference to the off-

diagonal elements Ft Bl

These assertions are easily demonstrated.13 By
definition

Ty =2 w,Ty, (40)

where Iy is the density matrix of ¢ . Since the in-
equalities (37) guarantee that for the given Ay a set
of w, = 0 do exist and (39) guaranteeszK = 1, any
solution to (38) and (39) may be written in the form
(40). But a I'g of this form is by definition an element
of {T'y}. Further all wavefunctions of the form

Y =2Vwy e Koy,
where the o are real arbitrary numbers give
Tijij :EwKAij.K = Ay
Conversely,if ¢ =7,C, ¢, then
T, =Tlc,ln,

Ifw, = |C, |2, then I'g will have the same diagonal
elements as T o Similarly, if

=2w,T
v
then
2
1_71] ? ?ch R I )\ij K
_Zw Al] K
where w, =2 w |C, . Since the w, obey the de-

finitions of probablhtles Fs :Z}wKFK will have the
same diagonal elements as I',

In other words, while {T'y},{I},and {I' } differ in
the full (§)*-dimensional space of the I‘”kl, the pro-
jection of each of these onto the (%)-dimensional
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space of the I';;;; is identical. Further,aunitarytrans-
formation among the basis spin—orbitals ¢, generates
a rotation of axes in the Fukl space.l4 Such a trans-

formation defines a new {I'{ 5} whose projection onto

the T'};;; space coincides W1th the projections of {I'y}

and {I',}. Such transformations could be used to ge-
nerate additional inequalities for the elements of T'j,
and T’ v which would involve their off-diagonal ele-
ments.

A special case of such transformations is permutation
of the orbitals. Since a permutation merely relabels
the orbitals, the inequalities (38) must transform

into themselves under permutations of the orbital
labels. This may be stated more mathematically by
noting that a permutation ® on the orbitals ¢, gener-
ates a permutation P on the ¢, and a permutation @

on the ¢ . Hence, PA = AQ. I
ATy =1
then
QTATYy =QTn or AT(PTy)=(QTn).
Hence vy’ =PTy satisfies ATy =179', (41)
where 7’ =QT1.

Clearly if y is normal to a facet of the A cone, then
so is y’ since ' will also have an extremal set of
zero elements.

Thus for each of the » ! permutations of the permuta-
tion group of » objects, the inequality generated from
P’y will be included in (38) if y is included. The vec-
tors y may, therefore, be grouped into equivalence
classes!s {y,|P,7y = y,} under ®,. The dimension

of each class will be no larger than 7 . Geometrically
this corresponds to the fact that in the Slater hull
each direction in space is equivalent asareall extreme
rays of the cone. The facets of the cone are not all
alike, however, and the number of different kinds of
facets is the number of equivalence classes.

A further simplification can be made by noting that
the configurations for N particles in 7 orbitals are
in one-to-one correspondence with the configurations
for - N particles in » orbitals. This correspondence
is most naturally established by the particle-~hole
transformation which associates

bxy = Ingny--om,)
with

bg pon=I1—ny,1—ny -, 1—m).
If for the » — N case one examines the properties

N, = (1= n)1— ) (42)
(the pair occupation number for holes), then

’
ALK o-N

= (K, — Nl1 — 1)1 —n)|K,7 — N)
= <K,1’|77i77]~|K,7’>

= (43)

ij, K.N
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so that A, _, is identical to A, . Thus the inequalities
2 Yijahijn =0
i<j
must become

2 Yij, v ijr-N =0 (44)

i<j

under this transformation. Equation (44) may be re-
written in the standard form

2 Yijor-Nijp-n = 0 (45)

i<j
by the substitutions

MM — DA}y = (MM — 1)) — MM — D(n; + n,)

+M(M — 1)y, (46)
n =Z;77i1
MM —1) =(nln— 1))
=223 (nmp,
k<l
or
(M(M — 1)) = 2k}Dl Mot wo (1)
= Z} (77 k"l,') ’
k#i
or
<(M'— 1)771):? )tki,M +kZ; Aik,M' (48)
<{ >q

Thus the inequalities for » — N particles may be easi-
ly derived from those for N particles.

B. Results for the Slater Hull Problem

The matrix elements of A for the Slater hull as given
by Eq.(37) are easily evaluated by inspection. The
(%) configurations may be ordered by defining K < L
provided that the first element of by < by -+ < Ry,
which differs from I; <1, --- <, satisfies 2, <[ .

Thus for three particles in four orbitals, the configu-
rations can be ordered as |1110), |1101), | 1001),
[0111). Similarly the A,; can be ordered listing X,
before a,, if # < kor if i = k and j < I. Thus for ¥ = 4,
the order would be

(4,7 = (1,2) (1, 3) (1,4) (2,3) (2,4) (3, 4).

Then for » = 4 and N = 3,

1100
1010
0110

A<l 1001
0101
0011

All other values of » and N may be handled just as
simply.

For N=0or 1, A = 0 and reduction to standard form
gives one independent variable (from A d+1) with the
results
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A, = 0.

(49)

For these two cases the variables
A; = <77i> =Py

cannot be derived from the X, by Eq. (48). For larger
values of N, Eq.(48) shows that ; are linearly depen-~
dent on the ;.. Hence they need not be included in
forming A since they would be eliminated in the re-
duction to standard form by the equality

(N— 1, =25 0y + 20 X4

k<i k>i

Also for N= 2,
N)-1
Ad+1:1:<2> Z;)‘kl

80 the supplementary variable A, ; is not needed.
For N = 0, inclusion of the X, in A still gives A = 0.
Reduction to standard form gives

A, =0

1

(50)

as well as Eq.(49). Mapping of the N = 0 case into
the N' = — N =7 case by the particle-hole trans-
formation gives

AI

i T I—2, — X (51)

Jr ij,r

A, =1—2a, =0 (52)
Solving these equations simultaneously gives the ex-
pected result

(53)
(54)

For N =1, inclusion of the X, in A gives A = ((1)). Since
Ay =1 =77 , no supplementary variable need be
included in reduction to standard form. Elimination
of the linearly dependent variables \;; gives Eq. (49).
The reduced A matrix A = 1 then gives the in-
equalities

Aip =0 (55)
with trace condition

2ry =1
Mapping these into N =% — 1 gives

1= N0 — 2,0 + 2y, =0 (56)
and

1—2x;,, =0 (57

which could be rewritten in standard form using (47)
and (48).

For N=2, A = 1, and the inequalities become sim-
ply

= 0. (58)

)‘ij,z >

Mapping Eq. (58) into N’ = » — 2 gives
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1—2x + A = 0. (59)

ir2 )\],1—2 ij,r-2
This result (59) was previously derived by Yoseloff
and Kuhn by a much more elaborate procedure.16

For v — 3= N= 3, A has more columns than rows.
Further, the rank R(A) of A is () so no equalities
among the a;, exist.

The fact that R(A) is maximal in these cases may
easily be shown by induction on . Forv = N + 2,
the induction hypothesis is certainly true because, as
has been indicated, Ay , , is the particle~hole map-
ping of the identity matrix of dimension (¥32). It
may be shown that (with a slight renumbering of the
rows and columns)

A _ Ar—l,N AY*I,N*l
=\ o 0 1n1

(60)
where @ is the A matrix for the variables A,. Because
R(A, ; ) is assumed to be maximal, it follows that

R(AT,N) :R(Arfl,N) + R(er»l,Nvl)

=3+ RO,q,51)-
But
bs1m  Os1ma
9s,M=< 0 1,1,...,1)'
Observing that 6,1 , is the particle-hole trans-
formation of an identity matrix and thus of maximum

rank M + 1,a secondary inductive argument yields
that R(65 ,) =S. Thus

RWA, ) =03 +7r—1

_ <g>

No analytic solution for this general case of N= 3 is
known although the form (60) of A suggests that some
form of recurrence relation should exist. Some speci-
fic examples of A have been solved, however. Kuhn
has published!? a solution for N= 3, = 6, More
recently Yoseloff!3 has solved the N= 3,7 = 7 case
and has obtained 19 equivalence classes for N = 3,

¥ = 8.

By application of the algorithm outlined we have veri-
fied the previous results for N=3,» =6, 7,8 and
have obtained partial solutions to the cases N= 3,

¥ =9and N=4,r = 8,9. The particle-hole trans-
formation was applied to obtain results for N = 4,

¥y =T, N=57r=8,9and N=6,r = 9, The number

of equivalence classes and inequalities found for each
of these cases is shown in Table I. Question marks
in Part B of this table indicate entries believed to be
correct even though the calculation could not be com-
pleted. For.each of these cases the number of equi-
valence classes was not increased by the last few
facets scanned for neighbors. For example, in the
N = 3,7 = 9 case the entire list of 143 classes was
found by computing neighbors to the first 58. Scans
were completed for 66 additional facets without pro-
ducing any new ones. For the N =4,» = 9 case no
claim is made to completeness as only 195 of the
1089 classes were scanned.

Part A of Table I is included to show the great re-
duction which arises from use of permutational sym-
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TABLE 1. Number of facets for the fermion fixed- N Slater hull,

A. Total number of facets.

v/N 2 3 4 5 6 7
4 6

5 10 10

6 15 70 15

7 21 896 896 21

8 28 5.2x 104 5.8x 105 5.2 x 104 28

9 36 1.2 %107 2,3x 108 2.3x 108 1.2x 107 36
B. Number of equivalence classes.

v/N 2 3 4 5 6 7
4

5 1 1

6 1 4 1

7 1 7 7 1

8 1 197 5772 19?7 1

9 1 1437 > 1089 > 1089 1437 1

TABLE II. Slater hull equivalence classes for N =4, =1,

Ay =0
A — 2,20
1—x; =23 tXy,20
=23 — Ay — A3+ A3 + X3 H Ay = 0
=1+ F Ay Ay F A=A — A3 — Ay =0
— 3+ 2 2 —Ajy FRgy T A37 T Ay5 T A5 T A6 =0
A=A — Az tAy; =0

metry. For the larger values of » and N, not only do
the number of equivalence classes increase rapidly;
but the fraction of them which have » ! distinct in-
equalities in the class also increases. Part A also
emphasizes the essential futility, in hindsight, of this
approach. It clearly would be impossible to use the
2 X 108 inequalities from the » = 9, N = 4 case for
any purpose,

Most of the actual inequalities obtained for the fixed-
N fermion case are not tabulated here. The simplest
of these (N = 3,» = 6,7, 8) are well known and the
rest, for the most part, are too numerous to publish.
For interested readers they have been tabulated else-
where.7 Table II gives the results for N=4,» = 7
which are relatively simple and, to our knowledge, not
previously published. An additional example from the
N =3, = 9 case is the inequality

OAq g Ay, 53— 4hy g T BNy 5 F 20y 5T 20y 7+ 20 g
Ao =My 3 T By 4, =Xy 5 —Ag6 TNy
+ 57\2,8 + 2)\2’9 + 5)\3.4 + 57\3.5 + 5>‘3,6 — A
— AS,S + 27\3’9— 4K4,5 + 27\4,6 + 2)\4'7 + 8A
+ 57\4,9 + 27\5,6 + 2?\5,7— 47\5.8 + 5)\5,9-~
+ 2, T Shg o + 2?\7’8— A7 9g— g o= 0,

3,7

4,8
drg

which is interesting as one of the two equivalence
classes in this case with the full 9! cardinality. This
inequality is illustrative of the highly nonintuitive
nature of the conditions imposed by the Pauli pripciple
on the pair occupation numbers.

The number of inequalities in Table I can be compared
with the number expected for various special poly-
hedral cones. For N = 4,7 = 9 the Slater hull cone
has () = 126 extreme rays in an () = 36-dimension-
al space. For a completely random selection of ex-
treme rays, one would expect ~3 100 facets (all
nonequivalent under permutations). The range for
special polyhedral cones would be from a low of 36
inequalities (one equivalence class, e.g., the positive
orthant) if the A i; were independent properties to a
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TABLE III. Factorable equivalence classes for the variable-N
Slater hull.
g q
<(E n;— 1)(2 n;— 2)3% 0 (111, 1)
i=1 i=1
(eachq = 2,3, -+, 7 occur for a particular » = 2)
7 7 . T\
<<Z} n; — 2)(2 n;— 3>> =0 (111, 2)
i=1 i=1 !
719 \ /4 \
(Eremnen-gh=s

(I, 2 and I1I. 3 occur for each g = 5,6, -, 7 for a particular v = 5)

(Broon-dnong)-
<<§§n"+”1+"2#3><$ni+n1+n2—4>>20

(I11. 4)

(111, 5)
A q N\
(\6; n;, + 20y — 3> (; n; + 20y — 4)/\ =0 (I11. 6)

(I11. 4, I11.. 5, I11. 6 occur for each q = 6,7, -+,
r = 6)

v for a particular

maximum of nearly 1020 for the cone obtained from
a cyclic polytope.

One serious deficiency, beyond their complexity, with
the fixed- N ensemble results is that the conditions

for one value of » and N are generally not even neces-
sary for any other values. Since every value of », N
must be treated separately, little is learned from one
case which will apply to any other.

C. Variable-N Ensemble and Variable-N Slater Hull

For variable- N ensembles, the A, ;= ={(n; M, Dy A=
(ny,and x, = 1 are lmearly 1ndependent varlables
Reasoning as for the fixed-N case leads one to con-
sider the convex hull of the 27 configurations ¢, =
|nyny--+n,), n;=0or 1,since each of these ¢,
gives a A; on an extreme ray of the A cone. Clearly
all T', Ty, and I', have diagonal elements which obey

the variable- N Slater hull conditions. Any set of A,
and A, ij which obey these Slater hull conditions can be
used to construct an element of I (but not necessarily
of 'y or rw) Thus these conditions are somewhat
weaker than for the fixed-N case.

One relation to the fixed- N case should be noted. If
for fixed 7, N one considers the properties A, =
my) anda; = (n,) for i < j < ¢, the resulting A ma-
trix will be identical to the variable- N Slater hull ma-
trix for ¢ orbitals provided all occupancies of the
first q orbitals are possible. That is,for ¢ < N and
g < v — N, the variable-N Slater hull conditions give
all of the information which can be stated about these
A, without explicit reference to any A;; with { > gq.
AS a result, it is not surprising that the variable-N
inequalities for any g are found as a subset of the
fixed- N inequalities for all N> g and» — N= q.

By the reasoning used in the previous paragraph it
is easy to establish that the inequalities found for
one value of 7 in the variable-N case are at least
necessary for all larger values. Further, the in-
equalities found so far have the property that each
equivalence class of inequalities found for one value
of » reappear as equivalence classes for all larger
values considered.
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Thus the variable- N inequalities are of considerable
interest since calculation of these for one » gives a
partial solution for all higher » and for some fixed-
N,r cases. The solutions obtained also give neces-
sary, even if not extreme, conditions for all density
matrices.

There is an additional symmetry feature present in
the variable- N case besides the obvious permutation-
al symmetry. The change of variables produced by
replacing n, by 1 —n, for i € {4,-++i ,} everywhere
that these 71, appear in the def1n1t10n of A;and A,

ij
leaves the A matrix unchanged except for a permu-
tation @ of the columns. Since these new variables
A’ are just linear combinations of the previous A, one
can write A’ = RA = AQ. Clearly, if v corresponds
to a facet of the A cone, so does Ry for each of the
27 possible operators E. Hence an equivalence class
may be defined as

{y'ly’ = RPy},

where R is generated by a partial particle-hole
transformation and P is generated by a permutation
® on orbital labels. A previous paper which reported
results for » = 2, 3, 4 overlooked this type of sym-
metry and included more results than necessary,?

A further simplification was conjectured in the pre-
vious work? by noting that the inequalities found for
¥ < 4 could all be factored into a form permutation-
ally equivalent to

It was hoped that all inequalities might factor into
this form. By judicious use of partial particle-hole
transformations, all expressions of this form can be
changed to a form chosen as the standard represen-
tative of this equivalence class

<<>§ n B) @ni—ﬁ— 1>> > 0,
where

0<pB=3lqg—1).

(62)

Unfortunately the conjecture of this previous paper

is not true. Calculations for » = 6 have revealed addi-
tional factored forms as well as many inequalities
which do not appear to factor. Table I gives repre-
sentative inequalities from all of the factorable equi-
valence classes with ¢ = 6. Each of these classes
was found to occur for all » = ¢. Each of these class-
es, the new ones generated by placing g = 7 in the
representative forms, and some additional new class-
es occur for » = 7. Table IV gives a list of the non-
factorable classes for » = ¢ = 6. No nonfactorable
classes occur for » = 5. The results shown in these
tables are certainly complete through » = 5 and are
probably complete for » = 6. A list which is possibly
complete for » = 7 (100 classes) is available else-
where.?

D. Pair Distributions of Particles in Lattice Sites

If N particles (or vacancies) are distributed in 7 lat-
tice sites, the distribution of pairs is described by
AU ={n in].) where the brackets imply ordinary en-
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TABLE IV, Nonfactorable equivalence classes for the » = 6 variable-N Slater hull2,
Yo 1 Vo V3 Va Y5 Ve Yiz Y13 Y14 Y15 Y16 Y23 Yaa Va5 Yae Y34 Yss  Yse Y4z Va6 Vse
6 -3 —-5 —4 -3 -3 -3 2 2 1 1 1 3 2 2 2 2 1 2 1 1 1
3 -1 -2 -1 -2 -2 =2 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1
5 — 4 — 3 -2 -3 -2 —4 2 1 2 2 3 1 1 1 2 1 0 2 1 2 1
3 -3 -2 -1 -2 =2 -2 2 1 2 2 2 1 1 1 1 1 0 1 1 1 1
2 -1 =2 -1 -1 -1 -1 1 0 0 1 1 1 1 1 1 1 0 1 1 0 0
9 -6 —8 —6 —4 —4 —4 5 3 2 2 2 5 3 3 3 2 2 2 1 1 1
6 -5 —-6 -3 —3 -3 -3 5 2 2 2 2 3 3 3 3 1 1 1 1 1 1
3 -3 -2 -3 -2 -2 -2 2 3 2 2 2 2 1 1 1 2 2 2 1 1 1
3 o -3 - -2 -2 -2 -1 1 0 1 0 1 2 2 2 1 1 1 1 1 0 1
5 -2 -4 -3 -3 -2 -2 2 1 1 1 0 2 2 2 1 1 1 1 1 1 0
6 -3 -t -1 -3 -3 —3 0 1 1 1 1 -1 0 1 1 1 0 0 1 1 1
3 -1 —2 0o —1 —2 —2 1 1 0 1 0 1 0 1 1 -1 0 0 1 1 1
ayg oy +2yij)\ij = 0.
semble averaging over the (%) configurations of the Tip + Ty t To3 = — 32 + 3 — 1, (72)
system. Bounds on the A, j are clearly the same as
for the fixed-N Slater hull problem. For large N ML—=2) + 799> Ty3 T Tog. (73)

and 7 these detailed bounds are of less interest than
those which are true for all » and N(N and 7 are not
known exactly anyway if v is of the size of 1023),
Hence the variable-N results for low values of g are
generally of most concern. These express necessary
conditions on the A, which must be obeyed by any
approximate scheme for constructing the )\ij.

For many ensembles of interest all sites are equiva-
lent and all A, are equal. The distances between sites
7 and j are not all the same, however, so all pairs are
not equivalent. In this case the g = 2 class of in-
equalities contains

A1y = 0, (63)
Aig = 21— 1, (64)
A= A, (65)

Combining these gives the weaker result 1= x = 0.
The first inequality may be interpreted to mean that
the probability of finding a pair of particles in sites 1
and 2 is nonnegative. The second inequality says the
probability of a pair of vacancies in these sites is
nonnegative. The last inequality says the probability
of a particle at one site and a vacancy at the other is
nonnegative.

Alternatively, these equations may be interpreted by
introducing the deviation from a random distribution

Ty = Ay — A2 (66)
to give

;= — A2, (67)

'rijz—(l—)\)z, (68)

M1—=2) =71, (69)
Clearly for A small this implies

A= 7= -2 (70)
and for A large

(1= =7,;=—(1-2)2 (71)

so that T4 approaches 0 for either A or 1 — A near
Zero.

The g = 3 class of inequalities is more complicated.

For £ > a > 4, the first of these is stronger than
those obtained for ¢ = 2. It is related to the fact that,
when 3\ requires more than one particle distributed
between three sites, all three x,, cannot be arbitrarily
small. Inequality (73) represent]s a slight strengthen-
ing of (69) to account for the fact that A, and x,
cannot both reach their upper bound of )\?1 — A) unless
A1, is simultaneously large.

Clearly for larger ¢, the restrictions modify finer de-
tails of the distribution while the interpretation gets
more difficult. For q = 4, for example, the resulting
set of restrictions are very difficult to visualize:

Tig T Teg ¥ Tog T 714 ¥ Toq 734

=232+ 1) (1—22), (74)

Tig ¥ Tyg + To3 — Tig — Toq — T34 = — max(h, 1—2),

(75)

Tig — Ty3— To3 — T1g— Taq T T34 = — 201 — 1), (76)

E. Ising Model

For the simplest Ising model

H:4i§Ji]sisj +2§Bsi, 1)
where the possible configurations are 27 states with
S; =+ 3. The interaction J;; is different for each type
of pairs of lattice sites i and j. If the variables u, =
(2S,) and p;; = (48;S)) are introduced,

E =2 Jd;;p; + 2By,
i<j i

Now if A; = (1 + p,) and A;; = §(u,; + p, + p, + 1),
then the configurations generate the variable- N Sla-
ter hull A matrix. If it is assumed that all yu; are
equal, the inequalities just discussed can be rewritten
in terms of p and the y;; as

1= po=—1+2[pl, (78)

oz = — 1+ fpgs + pyal, (79)

Big T b1zt Mg ¥ Hyg + g + kag= — 2 +4lpl,

(80)

Big t gz + pog — Hig— Hogg — Uzg=—2+ 2|I.Ll,
(81)
Hiz = M13 — Mag — Miga ™ Mg T Ugq = — 2. (82)
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For B = 0, p will usually be zero. In this case per-
fect alteration of spins on adjacent sites is possible
S0 j;; can reach — 1. As |l increases due to an
applied field, the spins align with the field and ey
must be greater than 2| u| — 1. For any set of three
sites, if two pairs have perfect anti-correlation

(12 = 13 =— 1), then necessarily p, and p, are
instantaneously parallel so p,5 = 1.

F. The N-representability Problem for Bosons

A wavefunction for a system of N indistinguishable
bosons may be approximated by a finite linear com-
bination of symmetrized product functions. These pro-
ducts may be represented in terms of a set of » spin-
orbitals as
¢ = (mylnglcoom, D V2Z(N)128¢, (1)+-,, (N),
(83)
where $ is the sum over all permutation operators
and the »n; are the occupation numbers of the orbitals.
If K is restricted to K = {1 = Ry < kyt e < 7}, the
¢, form an orthonormal set of size ("*1{}’ 1), and ¥
may be written as

Y =2,Cpby. (84)
With the definition of T used for fermions,

T =22 Typdi1,2)¢ (1,2, (85)
where e
¢ =2V2{p,(1)9,(2) + ¢,(Mp (2}, i<y  (85a)

¢ = ¢,(1)¢,(2). (85’b)
For r,

T, =§§)CKC3 €7 (86)

Tim = Izv)ﬁb (1,2)¢ .(1,2,3,...,N)p*(1'2'3: - - N)

X ¢, (120)d Xy -dXNdX’ldXé,
EKJzykl eke Ttk icja- ko (87)
eg = (niKan) V2 < (88a)
= (XK — 1)]V2 i=7j. (88b)

Most of the methods used for elucidating the structure
of fermion density matrices also apply to Bosons. For

r, or Fw, I‘ijij =Xy is bounded by
FNWN— 1) =x,;,=Gnn,— 1) = 0, (89a)
iN2> Ay=mm) =0, i =] (89Db)
Also
— 1N2=Re(l,;) =< IN2, <, k< L(ij) = (RD),
(90a)
— IN[AN(N—1)]*2< Re(T',,;,,) = s N[3 N(N— 1)]V2,
E<1 (90b)
NN—-1)=Relll..,)= 4NN —1), i=3j (90¢c)
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with similar bounds on Im(I';;,,). The set of Boson
density matrices I' is a bounded convex set with

2 0T, 02 = @2 (91)

i=j kx|

A Boson hull may be defined as the closed convex hull
of the A;; x associated with the ¢, for a finite-dimen-
sional spin—orbital basis. It is easily seen that I, and
Fw have diagonal elements which lie in the Boson

hull. Conversely, every element of the Boson hull
corresponds to some element of {T, } and {r,}

Clearly the Boson hull has the same permutational
properties as the Slater hull. Consequently, its facets
may be classified into equivalence classes. The par-
ticle—hole transformation, however, does not apply

to the Boson case.

G. Results for the Boson Hull Problem

The case of » = 2 provides one of the few examples
which can be solved analytically. K K (K =0, 1,2,
N) is the occupation number of ¢, in ¢, the rows
(A11,212,29,) of AT are given by

vt =[() s 0,(Y5 ) (02
Since all of the points lie in the plane
Ay YAy T g = (12\]>, (93)

it is useful to change variables to the set

[ =2y1 T Ayg +A22f<lzv), (94a)
=M — Ay (N— 1)1 (94b)
v:%[mlz—xll—xzz +(g’>], (94c)

which gives

Ny = tg uy,vy) =(0,K— SN, K(N—K)). (95)

Hence all of the configurations lie on the parabola
v=—u2+ 3 N2, (96)

The points enclosed by this parabolic boundary obey
the conditions

t =0, (97)
v=< 3N2Z —y2, (98)
v= 0, (99)

The polygon enclosed by the convex hull of the A is
given by

t =0,
v= 0,
v<=3$N2—2u— K+ N)K+ iN)—(K— 3N)2
for K=0,1,2,..., N — 1. (100)

Each of these latter inequalities is interior to the
parabola only for

K—itN=u=K+1— 3N, (101)
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and only in this range of u does the inequality in (100)
form a part of the boundary of this Boson hull, The
maximum error introduced by replacing the exact
boundary by the parabola is Av = § which occurs at

u =K+ 3 — 3 N. Since v would be expected to grow
like N2 for most real situations, the relative error
Av/v might become acceptable for large N eventhough
Av is constant.

The case N = 2 is also solvable in closed form for
any ». This gives simply

A= 0, (102)

ij t=7,

since A is a unit matrix in this case.

The algorithm discussed earlier has been applied to
the cases N = 3,4,5 and » = 3,4,5. Since no Boson
results have previously appeared in the literature,
some of these inequalities are given in Table V. As
for fermions, these inequalities generally apply only
to the », N case for which they were derived. Table
VI gives the number of equivalence classes found for
each r, N. Complete tabulations of these results are
available elsewhere,?

No results for variable N could be obtained by these
methods since the A matrix has an infinite number of
columns if N is unbounded. The variable-N results
would be interesting since it would give necessary
conditions for all », N. The conditions A, = 0 are
probably variable-N inequalities. These cannot be
all of the conditions, however, as the obvious result

Ny = 1m3)2) =20y + Ay — 20y + 2055 + Ay = 0
cannot be expressed as a positive combination of
A= 0

J

Fairly strong inequalities of the type found for fer-
mions may be constructed for bosons. If 8 and o,
are integers, then necessarily

<<E“i"i_5)<zami—ﬁ — 1>> =0

since this expression is nonnegative on every con-
figuration ¢, (2 @ A, , is an integer so it cannot lie
between 8 and 8 + 1). For g = [{a,n,)] where [x]
stands for the largest integer no larger than x, Eq.
(103) is fairly strong as

<<E"‘i”i - B>><<Eami y - 1>>s 0.

Examples of (103) are

(103)

2011 F A — 20y, + 20p, T A,
+(28+ 1)y —2r) +B8B+1) =0
and
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TABLE V. Boson hull equivalence classes.
(N = 2,any 7)
A1 =0 (v.1)
A2 =0 (v.2)
(N=3,r=2)V.1,V.2,and
Ap =2 (v.3)
(N=4,»=2)V.1,V.2,and
MApg—A;p =3 (V.4)
(N=5,=2)V.1,V.2,and
Mg — 2, =4 (v.5)
App =6 (V.6)
(N =3,=3)V.1,V.2 and
Mg+ 25 —Ap3 +225,=0 v.7)
Az Ay =2 (v.8)
(N=3,»=4) V.1,V.2,and
2A T2 A F 2R A Ay F 22,20 (V.9)

2033 F 200 PR3 — Ayt 20, F Ay —Apy 22020

(v.10)
g tAgg F Ay =2 (v.11)
Aot 2h0—Agg T A3 T 2,20 (v.12)
Mgt Ayt Agg T, =2 (V.13)

Ao F 2R FAog—Agg t2hy,=0

(N=4,r =3)V.1,V.2,and
I =M= 3 N3 F A, F 0,5+ 905,20
)«11—)\13+h23+3)\3320
22X F 2053231 =9
IA1 =23t A3+ 505520
B —2Xh15 T 2R, 25520

Ayo +)\13~)\1153

TABLE VI. Number of equivalence classes for Boson hull.
¥/N 2 3 4 5
2 2 3 3 4
3 2 4 8 15
4 2 8 41 244
5 2 17 589

201 F A+ 205 2 + 2y
—(28+ 1)y +2y) BB +1) =0

for all integer 8. For B =[x, — A,] and [A; + X,], re-
spectively, these inequalities are rather sharp. It is
likely that some of the extreme variable-N Boson
inequalities may be of the form (103).
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In this note the axially symmetric metric for stationary gravitational field, in a slightly general form, is dis-

cussed. The vacuum field equations for this metric are given. Specialization of this metric leads to a differ-
ent form of field equations previously discussed in literature. In particular,the Kerr metric is given in a new
form. A justification for interpreting the Kerr metric as an exterior solution corresponding to a spinning rod

or a rotating spherical body is given.

1. INTRODUCTION

Axially symmetric gravitational fields within the
framework of general relativity have been investi-
gated by various authors from the early days of the
theory. Earlier studies of stationary axisymmetric
fields were carried out to determine the relativistic
effects on the motion of a slowly rotating body. In
particular an attempt was made to understand the
nature of inertial forces,!

Recently, interest in the study of gravitational fields
with axial symmetry has been renewed due to dis-
covery of massive astrophysical bodies known as
quasars.2 These bodies release enormous amount of
energy,which is believed to be a general relativistic
effect of the collapsing star. When one looks for the
effect of rotation on the course of collapse and the
ultimate fate of the collapsed star, the study of axi-
symmetric fields becomes important.

There is yet another important reason for the study
of this class of fields. Aside from their important
role in the study of gravitational radiation,3 their
investigation is necessary for understanding the
basic structure of the general relativity itself. Today,
it is still a matter of controversy how to give a pre-
cise formulation of Mach's principle and whether
general relativity includes Mach's principle or needs
to be supplemented by boundary conditions or must
be modified in order to be consistent with this prin-
ciple.4

In view of the above discussion,we present in this
paper some of the properties of the stationary axi-
ally symmetric fields. We choose the stationary
metric in a slightly general form, which we believe
is a new approach to the problem. Special choices
of a harmonic function allow the metric with axial
symmetry to be expressed in different coordinate
systems. In particular, we have shown that the
Lewis—~Papapetrou canonical metric can be obtained
from our general metric.

In Sec.3 the formalism has been applied to the Kerr
solution, which is the only known exact solution of

the axially symmetric stationary problem represent-
ing the exterior field of a finite body. Discussion of
this section throws interesting light on the shape of
the material body whose external field is given by
the Kerr metric. This has been discussed in the last
section.

J. Math. Phys., Vol. 13, No. 10, October 1972

2. THE METRIC AND THE FIELD EQUATIONS

The metric of a stationary space—time with axial
symmetry may be taken as

ds? = e2u(dt + wd¢)2 — e2*-2u[(dx1)2 + (dx2)2]
— h2e-22dp2, (1)

where u,w,k,and % are functions of x1 and x2 only.
The justification for choosing the metric in this form
is based to some extent on the Newtonian concept of
axial symmetry.5 This line element shows that the
metric form is preserved under the simultaneous re-
flection of ¢ and ¢ coordinates,i.e.,

(¢ t) > (—¢, —1). (2)

Because of this symmetry the cross terms between
x1x2 and ¢t part of the metric are eliminated since,
for instance,dx1dt and dx2dt would change sign under
(2). Thus stationary flow is allowed in the ¢ direction
only,and flow in x1 and x2 directions is excluded.

The metric is,therefore, not the most general station-
ary line element. In addition to this reflection sym-
metry, the metric form is preserved under the con-
formal transformation of the x1x2 plane. This trans-
formation may be expressed as

Z=axb+ ix? = flxl +ix?) = f(2). (3)

Under this transformation u and % transform like
scalars (although their functional form will be
changed) and

U o, (4)

2k
e
0z 0z

In addition, one should also demand that the solutions
obtained from (1) be physically meaningful. This re-
quirement imposes two conditions on the metric co-
efficients, namely asymptotic flatness and elementary
flatness.®

The vacuum field equations for the metric (1) may be
easily set up by calculating the components of the
Ricci tensor. By a straightforward but tedious calcu-
lation we find that nonvanishing components of the
Ricci tensor have the following values:

Rog=—e%w28u 1y +uyo+ (u by +u k)
X (1/R) + zed=w? —w)/h2], (5)
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Ry, = k,11 thog—u 1y~ Uyt 2“,% - [h.l(k.l tuy)
+wiet/2h) —hyy =k ok 5 —uy)l/h,  (6)

Ryg=ky1+tkoy—u g —ugy+t2ud+[n lk,~u,)
—w3(ed%/2h) + hoy — holk o + u )/, (T)

Rip=2u ju,— [k,zh,l tkih,

+ (w qw 4e4%/2h) — h 1 ,|/h, (8)

Rgy=wR o — [2(u'1w.l + “,2’”,2)"’ 3w 41+ w 53)
— @  h, + w‘zh,z)/Zh]e’*“'“, (9)

Rz = 2wR o+ Ryo(h2e-48 — y2) + ik 1y + h g5)e 2k

(10)
We note that
RQ+R3=— (1/h)e2u-2k2), (11)
Now the field equations for empty space can be easily
set up. However, not all the components of the Ricci
tensor give independent field equations. These are

U gr gt [kt gh )
+ e4u(w.% + w’%)/2h]/h = 0, (12)

Wy T Wop 4(w']u.1 + w,z“,z)

- (w,lh,l + w'zh.z)/h = O, (13)
2wg—up) + (20 hy —kghy) F hgy— Ry
+etuw? —w3)/2k]/h=0, (14)
2u ju, — [k b, + Roh g —hygtw w,
X ed4u/2n)/h =0, (15)
Byy+h gy =0. (16)

The choice of a solution of (16) is not a restriction on
the general solution of the field equations but a co-
ordinate condition. This should be evident from the
fact that # is a scalar and it is also a harmonic func-
tion. Hence it can be chosen as the imaginary part

of the analytic transformation leading to a new co-
ordinate system. The most simple and common
choice of % is h = x',which leads to the canonical co-
ordinate system. If we call (x1,x2) = (p,2) (1) is
transformed to Lewis—Papapetrou metric6-8

ds? = e2u(dt + wd¢)2 — e2k-2u(dp2 + dz2)

— pze - 2ud¢2_ (17)
Equations (12)~(15) go over to well-known vacuum
field equations of stationary fields in canonical co-
ordinates.

3. ON COORDINATE TRANSFORMATION

Equations (12)-(15) in canonical coordinates have
been investigated by various authors, but the only
known exact solution which is also physically mean-
ingful is that given by Kerr.9-12 This solution des-
cribes the exterior field of some finite rotating body.
The solution is algebraically special and contains two

“Kon

parameters,m and “a”, which are identified with the
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mass and angular momentum per unit mass of the
source.l3 We now wish to show that the Kerr metric
may be transformed to the form (1) by a suitable
choice of the harmonic function %.

The Kerr metric is given by!3

ds2 =— (r2 + a2 cos26)[do2 + dr2/(v2 — 2mr + a?)]
— (2 + a?) sin20 d¢? + di2

— [2m7/(r2 + a2 cos26)] X (dt + asin20 d¢)?2;
(18)

we call » and 6 Kerr polar coordinates. Evidently in
these coordinates the form (1) is violated. The re-
lation between canonical coordinates p,z and polar
coordinates 7, 6 is given by

p? = (2 — 2my + a?) sin2g, (19)

z = (¥ —m) cosé. (20)

If we now relabel the » = const surfaces by the trans-
formation

y =R+ m+ (m2 — a2)/4R, (21)

we obtain

dr? = [1 — (m2 — a2)/4R2]2dR2,

(22)
r2—2mr + a2 =[1— (m?2 — a2)/4R 2]2R2,

and hence

dr? _dR? .
72—2mr+a2_F2— (23)
Thus Eq.(18) is transformed to the form

ds2 = —1{[R +m + (m2 — a2)/4R]2 + a2 cos26}
X (d62 + dR2/R2)
—{[R + m + m2 — a2)/4R]2 + a2}
X sin26 d¢? +dt 2
2m{R + m + (m2 — a2)/4R}
—{R + m + (m2 — a2)/4R}2 + a2 cos?0
X (dt + asin26 d¢)2,

(24)

It may be noted that, in case of vanishing “a”, (24)
reducesto Schwarzschild metricinisotropic coordin-
ates. Clearly,now a further transformation R = exp
(R) will restore (24) to the form (1). For this case,

h = [R— (m2 —a?)/4R] siné

= [eR — (m2 — a2)e R/4] sins. (25)

Evidently (25) is a solution of Eq. (16) if x1 = R and

x2 = 6. However, the two choices of # may be con-
sidered to be the same,i.e.,
h=p=[eE — (m2— a2)e-R/4] sine. (26)

The transformation from Lewis—Papapetrou canoni-
cal coordinates to polar coordinates is given by
Z+ip=Rei®+ (m2— g2)e-i9/4R (27)
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or
z2=[R + (m2— a2)/4R] cosé, (28
p = [R — (m2 — a2)/4R] sing, )

4. ON SOURCES OF THE KERR METRIC

It is well known from the investigations of Erez and
Rosenl4 that the Schwarzschild metric is generated
by a rod of length 2m with mass density 3. Also,
the Kerr solution (18) goes over to the Schwarzs-

E=Re'®plane

PN

FIG.1. Mapping from the Lewis-Papape-
trou manifold to the Kerr type manifold,
w=E§+R2/4E, k2 = m2 — a2,

W =2+ plane

R. M. MISRA, D. B.

PANDEY

child solution inthe limit of vanishing angular momen-
tum parameter “a”. This consideration leads to the
interpretation of the Kerr metric as the exterior
gravitational field of a rotating rod. However, it has
been shown by Cohen that,to the first order in “a”,
the source of Kerr metric may be taken a thin spher-
ical mass shell.!5 Further, Boyer and Price pointed
out that a slowly rotating solid of perfect fluid can
also be the source of Kerr metric to the same ap-
proximation in “q”,16

The transformation (27) throws interesting light on
the shape of the material body whose exterior field
is given by the Kerr metric. If we look upon the
transformation (27) as a mapping of the upper half

(p = 0) of the complex z + ip plane into R exp (i6)
complex plane, the line segment p = 0, — (M2 — g2)1/2
< z < (m2 — a2)1/2 get mapped into the semicircle of
radius 1/2(m2 — a2)1/2 (Fig. 1). It is this mapping
that explains why the Kerr solution is interpreted to
represent the exterior field of a spinning rod or a
rotating spherical body,
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Formal solution of the Schrédinger equation for nonrelativistic scattering by a spherically symmetrie static
potential —uV(r) leads to a power series in the real parameter u for the scattering amplitude (the Born series).

It is shown that if fow rIvp) ldr < «, faw r2|V(r)ldr < © and if —u| V()| is too weak to support a bound
state, then the Born series converges at all energies. The method gives a lower bound for the radius of conver-

gence of the Born series which is exact if V > 0.

1. INTRODUCTION

The Schridinger equation for nonrelativistic scatter-
ing by a spherically symmetric static potential
—uV({r),where u is a real parameter, may be written
as

(V2 + kz)lp = -—/J.Vl,l/-
The scattering solution is given by

Ylko,r) = expliky* r)

4 ekl =81 yiguieo,e)ds,  (1.1)
47 Ir — s

and the scattering amplitude F(k,k;) in a direction k
is given by

Fk,k) =f7—r fexp(—fik-r)V(ﬂz,l/(ko,T)dr, (1.2)
where lkf = lkOI = k.
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Formal solution of Eq. (1. 1) by iteration yields a
power series in p for Y(k,,r) and if this series is
substituted in Eq. (1. 2) we obtain the Born series
for F(k,k,). Several methods have been used to find
estimates for the radius of convergence of the Born
series at varying energies.1—5

In particular Davies3 and Huby4 have considered a
restricted class of potentials, namely those which
are bounded and which have finite range. Davies
showed that if the potential —[ uV(»)!| is too weak to
support a bound state, then the Born series conver-

es absolutely and uniformly for all k and k, (with
?k] = |ky|). Huby extended this result to the Born
series for the various partial wave scattering ampli-
tudes and phase shifts. The purpose of this note is
to extend Davies',and hence Huby's results to a
wider class of potentials.

We will prove the following
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Formal solution of the Schrédinger equation for nonrelativistic scattering by a spherically symmetrie static
potential —uV(r) leads to a power series in the real parameter u for the scattering amplitude (the Born series).

It is shown that if fow rIvp) ldr < «, faw r2|V(r)ldr < © and if —u| V()| is too weak to support a bound
state, then the Born series converges at all energies. The method gives a lower bound for the radius of conver-

gence of the Born series which is exact if V > 0.

1. INTRODUCTION

The Schridinger equation for nonrelativistic scatter-
ing by a spherically symmetric static potential
—uV({r),where u is a real parameter, may be written
as

(V2 + kz)lp = -—/J.Vl,l/-
The scattering solution is given by

Ylko,r) = expliky* r)

4 ekl =81 yiguieo,e)ds,  (1.1)
47 Ir — s

and the scattering amplitude F(k,k;) in a direction k
is given by

Fk,k) =f7—r fexp(—fik-r)V(ﬂz,l/(ko,T)dr, (1.2)
where lkf = lkOI = k.
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Formal solution of Eq. (1. 1) by iteration yields a
power series in p for Y(k,,r) and if this series is
substituted in Eq. (1. 2) we obtain the Born series
for F(k,k,). Several methods have been used to find
estimates for the radius of convergence of the Born
series at varying energies.1—5

In particular Davies3 and Huby4 have considered a
restricted class of potentials, namely those which
are bounded and which have finite range. Davies
showed that if the potential —[ uV(»)!| is too weak to
support a bound state, then the Born series conver-

es absolutely and uniformly for all k and k, (with
?k] = |ky|). Huby extended this result to the Born
series for the various partial wave scattering ampli-
tudes and phase shifts. The purpose of this note is
to extend Davies',and hence Huby's results to a
wider class of potentials.

We will prove the following
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Sufficient Conditions for Convergence

If V(r) is a piece-wise continuous function of r for
0 <7 <o,if

f:er(r)Idr<oo and f:rle('r)ldr< ©, (A)

and if —u| V(»)| is too weak to support a bound state
then the Born series converges for all k and k
(with |k| = Ikql).

The basic idea behind our method of proof is due to
Davies.3 We show that the Born series is majorized
by a series which can be expressed as the quotient

of two analytic functions of p,and we examine the
zeros of the denominator. The details are by no
means trivial and they can be found in Ref. 6. In view
of the leading term in the series (2. 1) below it is
clear that condition (A) is the best possible integra-
bility condition for Davies' method.

The method yields a lower bound for the radius of
convergence of the Born series for all energies,and
in Sec. 3 we give some examples of this bound. We
remark that if V = 0,then the lower bound is precise-
ly the radius of convergence of the Born series at
Zero energy.

2. DISCUSSION

Following Davies3 we remark that the Born series
for F(k,k,) is majorized by the series

-2% fq(r)dr + <2£71>2 fq(r)dr f—l——

q(s)ds + + -+,
ir —sl|

where we have written ¢(») = | V(»)|. Performing the
angular integrations, we obtain the series

M) = p [ r2q(r)dr
+ w2 f;o 7’q(’r)drf;° m (7, s)sq(s)ds

+ u3 f;o rq(r)dr f;o m(v, s)sq(s)ds

X f:m(s,t)tq(t)dt ¥
(2.1)
where m(7, s) denotes the smaller of » and s.
Let ¢(r, k, 1) denote the reduced wavefunction for S-

wave scattering by the potential —u|V(»)|. Then ¢
is the solution of the differential equation

" + [k2 + pg()]p =0, 0<7 <o,
for which
¢(0,k,u) =0 and ¢'(0,k, u) =1.

It is well known that for real nonzero values of k,

¢(1’7 By p) ~ (I/ZZk)[f(k’ p)e“" —f(—k, /J)e'ik”]

as v — o, where f(k, 1) is a function analytic in % for
Imk < 0. Moreover,the bound states for S-wave
scattering correspond exactly to the zeros of f(k, u)
in the half-plane Imk < 0.

It is shown in Ref. 6 that

o(r,0, u) ~»f(0, u) + 8f(0, p)

% (2.2)
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as?v - x,
Now let x(», 1) denote the solution of

X"+ pgr)x =0, O0<s7 <,
which is such that

X(r,w) ~ 7 + C(w) (2.3)
as ¥ — ©, Then X is the solution of the integral
equation

X, p) =7+ [ mr, $)g(s)X(s, pds (2.4)
and -

X, )~ 7+ 7 sq(s)x(s, w)ds (2.5)

as v — o,

If the solution of Eq.(2.4) found by formal iteration
is substituted in Eq. (2. 5) and the resulting series
integrated term by term,we find that C(u) = M(pu).
By comparing Eqgs. (2. 2) and (2. 3) it follows that

M(p) = L&B 170, ).
ok

It is easy to verify that £(0, u) and 9(0, n)/dk are
integral functions of a complex variable u.? More-
over,it is shown in Ref. 6 that the zeros of f(0, u) are
all real and positive,say 0 < p; < py < --- and that
if M) is the number of bound states for S-wave
scattering by the potential —ug(7),then

(2.6)

n(p) =n for p, < U< f,.g,

for n=0,1,2,... (where p, =0).

Clearly,the radius of convergence of M(p) is u;.
Therefore,if 0 < yu < u,,that is, if the potential
—uq(7r) is too weak to support a bound state, then the
series for M(u) [and hence the Born series for
F(k,k)] is absolutely and uniformly convergent with
respect to k and k.

3. APPLICATIONS

Let p denote the radius of convergence of the Born
series F(k,k). In this section we give some exam-
ples of the lower bound u, for p.

(1) 1¢
1, Osrv<a
q(r) =%
0, a<v,
then p,, iy, " " are the zeros of

I _1alafi) = {2/avi} 2 cosavic
and hence p 2 p, = (n/2a)2.8
(2) If g(7) = e 207 /(1 + e 2a7)2, ¢ > 0,
then the bound states are

Ep = — (Vi — 2a0m)2,
and hence p = u, = 2V,
(3) If g(») = e77,it is found that

J. Math. Phys., Vol. 13, No. 10, October 1972
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O(r,0, 1) = aJy(2Vpe ™2 ) + Y o(2ViLe7'2),

where J, and Y, are Bessel functions of the first and
second kind, respectively,

Vi) /W),

a = YO( 2
and

B =—d(2Vi) /(W)

P. J. BUSHELL

W =Jdo(2VR)YH(2V) — J4(2VR) Y o(2VE).
It follows that
F0, 1) = (V) /2Vuw

and hence that p = (a/2)2
tive zero of J.

,where a is the least posi-
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2 A.Klein and C. Zemach, Ann. Phys. (N.Y.) 7,440 (1959),
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4 R.Huby, Nucl. Phys. 45,473 (1963).

I. Manning, Phys. Rev. 139, B495 (1965).
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The role played by the energy-momentum conservation law in general relativity is examined. It is noted that
this law can be interpreted in two ways. It may be thought of as a condition determining the evolution of the
energy—-momentum tensor density in time, or it may be thought of as a condition determining the metric. In
the present paper, the second of these ways of thinking about the energy-momentum conservation law is ex-
plored. Einstein's nonvacuum gravitational field equations (which imply the conservation law) are examined.
It is shown that given any analytic symmetric contravariant energy—momentum tensor density as a function
of the space-time coordinates, a solution to the gravitational field equations always exists. Furthermore, this
solution is such that the law of conservation of energy—momentum is satisfied. The proof uses a coordinate
transformation method to exploit the covariance of the energy—momentum conservation law. Riquier's exis-
tence theorem enters as an important part of the proof, and a general discussion of Riquier's existence theorem
from a physical point of view is given. Both the geodesic nature of the trajectories of free particles and the
unit magnitude of the velocity 4-vector are discussed. An interpretation of the above-described results is

given,
1. INTRODUCTION

Recently, a number of new results have been obtained
regarding the existence of solutions to Einstein's non-
vacuum field equations?

(—8)V/2 Gw = — gnTrv, (1.1)
The novelty of these results does not lie in the exis-
tence per se but rather in the variety of the functions
Tw(x) compatible with this existence.

It will be convenient to consider certain unique featu-
res of the general relativistic conservation law

Tw  =0. (1.2)
Since the special relativistic form of this law

Tw,=0 (1.3)
provides a real restriction on T in the sense that
not every tensor density T satisfies (1. 3), Eq. (1. 2)
is usually thought of as restricting Tw. However,
since (1. 2) involves the metric it can also be thought
of as restricting the metric alone while leaving T+
completely unrestricted.

Einstein's ten nonvacuum gravitational field equations
(—g)1/2Gmw = — gaTw (1. 4a)
imply the generally coviriant conservation law

Tw =0,

v

(1. 4b)

It is useful to consider the system of 14 equations
(1. 4a), (1. 4b) which is equivalent to Eq. (1. 4a) alone.
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The basic result described in the present paper is a
proof that the combined system (1.4) admits an un-
restricted Tw(x) just as the generally covariant
energy momentum law (1. 2) does. The discussion
below describes this result in somewhat more detail.

Equation (1. 3), the special relativistic form of (1. 4b),
provides a real restriction on 7%, Because of this,
the combination of (1. 4a) with (1. 4b) is usually
thought of as providing a restriction on 7w, The
basic mathematical result described in this paper
shows that because of the structure of (1. 4a) and
because (1. 4b) involves the metric, the combined
gravitational system (1. 4) can also be thought of as
restricting the metric alone while leaving T+ com-
pletely undetermined.

Thus there are three ways of looking at the system
(1. 4). First,there is the viewpoint enunciated by
Schrodinger2:3 in which Eq. (1. 4) is thought of

as defining T# in terms of the metric &+ According
to this viewpoint, T# is taken to be completely deter-
mined while g, is completely undetermined. Second,
there is a v1ewp01nt most closely associated with the
existence proof of Lichnerowicz.4 This viewpoint
takes the g,. and the T4? to be determined by (1.4),
while the g, , and the T4 remain undetermined.
Third, there is the viewpoint presented in the present
paper. This viewpoint takes the g, and the g, 4 to be
determined by (1. 4), while the T% “and the T/ remain
undetermined.

Riquier's existence theorem, the existence theorem
used to prove this new result, is not wellknown.
Therefore, a general description of the procedures
used in applying the theorem to systems of equations
is presented in Sec. 2. In addition, diagrams are pre-
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plored. Einstein's nonvacuum gravitational field equations (which imply the conservation law) are examined.
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of the space-time coordinates, a solution to the gravitational field equations always exists. Furthermore, this
solution is such that the law of conservation of energy—momentum is satisfied. The proof uses a coordinate
transformation method to exploit the covariance of the energy—momentum conservation law. Riquier's exis-
tence theorem enters as an important part of the proof, and a general discussion of Riquier's existence theorem
from a physical point of view is given. Both the geodesic nature of the trajectories of free particles and the
unit magnitude of the velocity 4-vector are discussed. An interpretation of the above-described results is

given,
1. INTRODUCTION

Recently, a number of new results have been obtained
regarding the existence of solutions to Einstein's non-
vacuum field equations?

(—8)V/2 Gw = — gnTrv, (1.1)
The novelty of these results does not lie in the exis-
tence per se but rather in the variety of the functions
Tw(x) compatible with this existence.

It will be convenient to consider certain unique featu-
res of the general relativistic conservation law

Tw  =0. (1.2)
Since the special relativistic form of this law

Tw,=0 (1.3)
provides a real restriction on T in the sense that
not every tensor density T satisfies (1. 3), Eq. (1. 2)
is usually thought of as restricting Tw. However,
since (1. 2) involves the metric it can also be thought
of as restricting the metric alone while leaving T+
completely unrestricted.

Einstein's ten nonvacuum gravitational field equations
(—g)1/2Gmw = — gaTw (1. 4a)
imply the generally coviriant conservation law

Tw =0,

v

(1. 4b)

It is useful to consider the system of 14 equations
(1. 4a), (1. 4b) which is equivalent to Eq. (1. 4a) alone.
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The basic result described in the present paper is a
proof that the combined system (1.4) admits an un-
restricted Tw(x) just as the generally covariant
energy momentum law (1. 2) does. The discussion
below describes this result in somewhat more detail.

Equation (1. 3), the special relativistic form of (1. 4b),
provides a real restriction on 7%, Because of this,
the combination of (1. 4a) with (1. 4b) is usually
thought of as providing a restriction on 7w, The
basic mathematical result described in this paper
shows that because of the structure of (1. 4a) and
because (1. 4b) involves the metric, the combined
gravitational system (1. 4) can also be thought of as
restricting the metric alone while leaving T+ com-
pletely undetermined.

Thus there are three ways of looking at the system
(1. 4). First,there is the viewpoint enunciated by
Schrodinger2:3 in which Eq. (1. 4) is thought of

as defining T# in terms of the metric &+ According
to this viewpoint, T# is taken to be completely deter-
mined while g, is completely undetermined. Second,
there is a v1ewp01nt most closely associated with the
existence proof of Lichnerowicz.4 This viewpoint
takes the g,. and the T4? to be determined by (1.4),
while the g, , and the T4 remain undetermined.
Third, there is the viewpoint presented in the present
paper. This viewpoint takes the g, and the g, 4 to be
determined by (1. 4), while the T% “and the T/ remain
undetermined.

Riquier's existence theorem, the existence theorem
used to prove this new result, is not wellknown.
Therefore, a general description of the procedures
used in applying the theorem to systems of equations
is presented in Sec. 2. In addition, diagrams are pre-
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sented summarizing the structure of various exis-
tence proofs which use Riquier's theorem. The last
diagram in Sec. 2 summarizes the existence proof for
the gravitational field equations (1. 4a).

2. INTEGRABILITY>

I wish to discuss here the methods necessary to
prove the integrability of systems of partial differen-
tial equations. Consider the simple system of equa-
tions

w,u ZAW

where Y is an unknown function and the A, are given
functions of the variables x, y, z,{. The integrability
conditions for the system (2. 1) are

(2.1)

A = 0. (2.2

[u, 1]
These conditions are sufficient conditions for the
existence of the function . Before going further,I
should say a few words as to terminology. I will
refer to integrability conditions like Eq. (2.2) as an
“equation,” a “condition,” or a “restriction.” I will
never refer to it as an identity unless it is actually
equivalent to
0=0. (2.3)

The reason for this distinction can be seen when one
considers the nonvacuum Einstein equations
Gw = — gaTw, (2.4)

where T is a symmetric tensor density. The Bianchi
identity (a true identity)

GHY v = 0 (2. 5)
implies the equation
Tw , =0. (2.6)

But Eq. (2. 6) is not an identity since, for example,
when T+ (x) is given, Eq. (2. 6) clearly becomes a res-
triction on the g .

Riquier's existence theorem describes the method of
deriving the integrability conditions for a general
system of partial differential equations. This method
is analogous to the method of deriving Eq. (2. 2) from
(2. 1); but to describe it in detail requires quite an
extensive discussion.

Riquier's book on the subject is rather difficult to
obtain. One of the more accessible sources for
Riquier's theorem is Ritt's book.® However, Ritt's
presentation is not well suited to the equations of
physics since his notation gives no explicit recogni-
tion to given functions like A, in Eq. (2.1), or 74 in
Eq.(2.4), or J* in Diagram III. And in physics, the
restrictions upon these given functions generated by
the integrability conditions have physical meaning.7
For this reason,a simplified and physically oriented
discussion of Riquier's theorem is presented below.

In addition to the unknown functions y , the original
system, hereafter called system S, may contain
given functions J*% We will denote the system S by
the following symbolic equation:
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S [V J%] =0, (2.7
where the brackets signify that the functions S in-
volve the y,,, the J% and their derivatives.

A definite procedure is prescribed in the theorem
for deriving the integrability conditions of system S.
First, one must choose an order for the derivatives
and perform those algebraic operations on the sys-
tem necessary to put the system S in a form which
satisfies criteria (a)—(c) of Appendix B. This entire
process of ordering and algebraic manipulation will
hereafter be called Procedure O.

For simplicity and definiteness, we will consider as
unknown only the minimum number of functions re-
quired to complete the ordering process. Thus, once
ordering is completed, all functions whose deriva-
tives do not appear in one or more first members,8
will be considered to be given functions. In some
cases in order to complete the ordering process, it
will be necessary to take some of the given functions
to be unknown functions. When we wish to emphasize
that the ordering process includes such a change in
the number of unknown functions, we will call it
Procedure O*. Similarly if we wish to emphasize
that the process includes no change in the number of
unknown functions, we will call it Procedure O'.

If each of the first members is the derivative of a
different unknown function, then there are no inte-
grability conditions, and we say that system S has
integrability of the zevoth kind. If there is at least
one unknown function which has derivatives appearing
in two or more different first members, then there
will be integrability conditions. These are derived
according to the following procedure,® which for
brevity we will call Procedure D. One first writes
down an integrability condition by differentiating two
appropriate equations of the system and eliminating
by subtraction the first members of the resulting
equations. One then uses the equations of the system
and their derivatives to eliminate the principal deri-
vatives occuring in the integrability condition. One
does this step by step, starting with the highest prin-
cipal derivative and proceeding to the lowest.10 At
the end of this procedure one obtains the integrability
conditions for the system. We denote the resulting
integrability conditions by the equation

Liy,,J% = 0. (2.8)
Both the answer to the question of existence of solu-
tions and also the structure of the system S depend
on the nature of Eq. (2. 8). We shall next proceed to
discuss the various categories. A summary of this
discussion in diagrammatic form is given in Diagram
I, which will be found at the end of this chapter. We
suggest that the reader refer to Diagram I from time
to time to clarify the relationship between the various
categories.

Integrability Conditions Are the Identity

If Eq. (2. 8), hereafter called I,,is actually the iden-
tity 0 = 0, then a solution to system S exists. Since
one application of Procedure D was necessary to
prove existence of a solution, we say that system §
has integrability of the firs{ kind. In Diagram II,
Einstein's vacuum field equations are shown to be an
example of this case.

J. Math. Phys., Vol. 13, No. 10, October 1972
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DIAGRAM I. Summary of general case.

System S
S[y,,,d*] =0

0
(0,D) Q

I, is internally

system is not integrable,

1 but not an identity,
I, is the identity
0=20

S has integrability

of the first kind, §
(0*,D)
/IZ[ym:J"] =0

I, is internally I, is internally
inconsistent. consistent, but not
Original system an identity.

is not integrable.

inconsistent,

I, is the identity.
S has conditional
integrability of the
second kind.

12(

s,

1

Soys ¥l =0

ete.

S has integrability
of the zeroth kind,

Ilz Sl[ymi‘]k] =0

(0',D)

I, is intérnally

Original system
is not integrable.

conditions. System

Iy, %) =
(System 1) Has no integrability
inconsistent, Original

1, is internally consistent,

Iz[ym: Jk] =0

Iy is internally
consistent, but not
an identity.

I, is the identity.
S has regular
integrability of
the second kind.

12
Sz[ym’Jk] =0
1

etc.

DIAGRAM IL Example of regular integrability of the first kind.

Gw =
(System S)

(0, D)

(6w, =0
(System 1)

I, is the identity
0=0

System S has regular
integrability of the
first kind.

Integrability Conditions Are Internally Inconsistent

If the system I, is internally inconsistent, then of
course no solution to system S exists.

Integrability Condition 7, Is Internally Consistent,
but Is Not the Identity

In this case one must combine /, with the system S,
and apply first Procedure O, and then Procedure D.

In order to apply Procedure O, it may be necessary
to consider certain of the given functions to be un-
known functions. And several different choices for
these new unknown functions may be possible. Each
different choice corresponds to a different mathema-
tical problem. After Procedure O has been applied,
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one applies Procedure D to derive a new set of inte-
grability conditions I,. If the new set I, is internally
inconsistent, of course, the system S is not integrable.

If this new set I, is an identity, then one concludes
that the original system S has integrability of the
second kind. Suppose that in applying the ordering
procedure to the combined system S, it was neces-
sary to increase the number of unknown functions.
Then, if I, is the identity we say that the original sys-
tem S has conditional integrability of the second kind.
Here the term conditional refers to the fact that inte-
grability is conditioned on an increase in the number
of unknown functions. Einstein's and Maxwell's non-
vacuum field equations provide examples of this case.
See Diagrams III and IV.

If I, is internally consistent but not an identity, it
must be combined with the system S, and Procedures
O and D applied all over again. In general, this deri-
vation of new integrability conditions could go on in-
definitely in which case Riquier's procedure would
give no conclusion as to the integrability of the
original system S.

At the end of this section is a general diagram of the
various possibilities described above. And on later
pages there are similar diagrams of specific cases.
One point should be emphasized about these diagrams.
The first statement of an integrability condition in
each diagram is given in a form which makes clear
what operations on the preceding system of equations
are used to produce the integrability condition. The
operations we refer to are of course the operations
dictated by Procedure D of Riquier's theorem.
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DIAGRAM III. Example of conditional integrability of the second
kind.

Fw  +4ndr=0
(System S)
(0,D)

(Fw ,+dande) =0
(System I,)

I, is internally
consistent, but not
an identity.

I, is the identity
0=0.

Therefore S has conditional
integrability of the second
kind.

DIAGRAM IV,

Gw + BT =0
(System S)

(0,D)

(Gw + 8nFwr), = 0
(System I,)

I, reduces to the equation
Tw =0

Thus /[, is internally consistent,

but not an identity,

(S Gw + 8aTw =0
System Sl}[ P 0
1 W=

v

(0*,D)
(0%, D)

(gﬂ 4 8iven
Tii given)

(G + 8aTw),, — 8n(Tw ) = 0

(T'w given)

(G + gaTw),, — 8a(Tw ) =0

I, is the identity 0 = 0.
Therefore § has conditional
integrability of the second
kind.

1, is the identity 0 = 0.
Therefore S has conditional
integrability of the second kind.

Let us give an example. In Diagram I, integrability
condition /, is first written

(Fw , +4nJw) , =0. (2.9

This denotes that the effect of following Riquier's
procedure is to take the divergence of Maxwell's
equations. Then in the same diagram, integrability
condition I, is written

(Fw , +4nJy)  —4n(Je ) = 0. (2.10)
This denotes that the effect of following Riquier's
procedure for system S; is to take the divergence of
the first component of S; and to subtract from it 47
times the second component of S;. A similar prac-
tice is followed in the other diagrams.

3. THE FIELD EQUATIONS

Consider Einstein's field equations

(— @Y2(Rw — 3 gR) = — 8rTw, (3.1)
which may be rewritten in the form
(— g)Y/2Rw = — 8n(Tw — $gwT). (3.2)

If one is given some symmetric tensor density T (x),
what restrictions must it satisfy in order to guaran-
tee the existence of a metric satisfying Eq.(3.1)?

To answer this question, one applies Riquier's theo-
rem to (3. 2). Now to simplify the necessary calcula-
tions, it is convenient to examine Eq. (3. 1) in har-
monic coordinates.11 To do this, one considers the
combined system

(—g)L/2 (Rw— }gwR) = — 8nTw,

[(—g)*/2g=p] 5= 0.

Here the harmonic coordinate condition is expressed
by Eq. (3. 3b), and the harmonic coordinate system is
labeled x.

Furthermore, to avoid any limitations on 7* that
would result from the coordinate conditions (3. 3b),
one imagines that the TW?'(x’) are given in some
arbitrary coordinate system x’, while the metric
£#(x) is found in the harmonic coordinate system x.
With this point of view in mind, the field equations
become

— )1/2 (R — L gwR) = — 8rA¥ A"T/fTwT”
(— &)1/2 (R — ;g R) nAs (f]Av,[f] '3 4a)

(3. 4b)

(3. 3a)

(3. 3b)

[1/(— &)Y 2] [( — g)1/2g+8] , = O.

Several comments are required to explain the quanti-
ties Av ,[f] appearing in Egs. (3. 4a). Let the trans-

formation from the x coordinate system to the x’ co-

ordinate system be

x' = fe(x), (3. 5a)
and let the inverse transformation be
xT =F7(x'). (3. 5b)
Then the quantities Ax , are defined by
oxXH oF'r
Ak = = 3. 6a
*xew pxo (3. 62)
and
T7 T
am =88 YT (3. 6b)
ox # oxH
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Then the following identity holds
of Y _
A*# o af— = HH ve

(3.7
xl}

Equation (3. 7) can be used to express the quantities
Ar ., as algebraic functions of the derivatives 3%/
ox% In Eq.(3.4) the quantities A" , are to be con-
sidered to be expressed in terms of the af“’/ax” by
means of Eq. (3.7).

One can showl?! that when (3. 3b) holds, the Ricci ten-
sor R+ can be written

Rw = — jgobgw .+ goPgBoTH | T 4. (3.8)

Using (3. 8) Egs. (3. 4) can be written
(—g)t/2 (Rw— 3 gw'R)

= — 3go8[(—g)1/2 (g ,—38"g.,.&°" Mas

+ Ko (gw,gw ) =—8mAr [f]AY [f]T«™,
3.9
where

Kw(gw,gw )= (—g)t/2garghols TV o
- %guvgapgﬂorpo, JTH o + g8 (( _g)l/Z]' .
X (g¥ o~ 289818 o) — i(—g)1/2ge®
X goT (&¥8;51) p-

It will be convenient to replace the metric tensor
gH by the metric tensor density
gu = (— g)t/2%gw (3. 10)

and to express Einstein's equations entirely in terms
of the g#’. We shall also use the determinant g of g

9= lgw| =[(—g)1/2)4/g = g. (3.11)
Equations (3. 10) and (3. 11) imply that

(—&)/2 (gw ,— 38188 ) =8 o (312
Note also that

gw =[1/(=g)1/2]gw (3.13)
and

gw o= [g"/(—g)1/2] . (3. 14)

Using Egs. (3. 12)—(3. 14) the field equations (3.9) can
be expressed in terms of g #¥:

(— gt /2RM — 38"R]

1 gob

T2 (Cg)re g

v gab geb
S [

[

iy

,af

=—8mAr [f1AY, [f]T>™. (3.152a)
Express Eq.(3.4b) in terms of g # and obtain
g ,=0. (3. 15b)

To apply Riquier's theorem, first choose an order for
the derivatives12
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gl 4 > gH 3 > g 5 > g (3.16a)
g3 3> gt > 12 5, > g1t (3. 16b)
923 3> g2% 4, >g22 , > g¢21 (3. 16¢)
933 3> ¢34 4 > 32 5, > g3 (3.16d)
g%3 3 > g%t 4 > %2 5 > 941 (3. 16e)
gl3 > 23 > ¢33 > 443 > (allgg:her> (3. 160

The order relations given above are mutually self-
consistent. The process of choosing these order re-
lations is by no means trivial. The particular choice
given above greatly simplifies the calculation of the
integrability conditions via Riquier's procedure.
These order relations lead to the following principal
derivatives for the system (3. 15):

gh 44 for Egs. (3. 15a)
g3 3 for Egs. (3. 15b)

Only four unknowns appear twice in Eq. (3. 15),
namely the g#3. And these four functions give rise
to four integrability conditions which have the form

3

#3344 — ¢*7 443 (3. 16g)

Written out explicitly, the integrability conditions are

1 go8 3 1 444
U - ST B auv
5 (Lgyrz 8 as3 + 2(_g)1/29 w44
+ second-order terms = — 8n(A# , A3 Torr)

(3.17)

The terms in g#3 4,3 cancel out of Eq.(3.17). The
next step in Riquier's procedure is to remove from
(3.17) the g3 ;3 and g3 ,,; terms using the ij and
i4 derivatives of (3. 15b), i = 1,2, 3. The result is

1 gob 43 N 1 gaB uw
—E(_—_g)l_/ig ha83 T (Tgyi/a 87 ves
+ second-order terms = — 87(A+ A3 T,T""T'),g-
(3.18)

The only third-order terms remaining in (3. 18) are
g+e .pla=1,2,4). The next step in Riquier's pro-
cess removes these terms using the three-divergence
of (3. 15a). The third order portion of this three-
divergence has the form g#¢ _ .(a = 1,2,4). The
result is

__l_io_tﬁ_gpu L1 ges g
2 (—9)V/2 oBy g (—a)1/2 vaB
+ second-order terms = — 8u(A* A T,Ta/r/),u
(3.19)

Note that the third-order terms on the left-hand side
of (3.19) completely cancel one another. Also if one
expresses the remaining terms on the left-handside

of (3.19) in terms of R one obtains

(—&)V/2 (Rw— 3gwR), + 5[ a°B/(— )2} gW s
= — 8m(Ar A Ty ,. (3.20)
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As can be seen from Eq. (3. 19), the left-hand side of
(3. 20) in reality involves only second-order terms in
the g #¥. The particular form of these second-order
terms can be found most quickly by using the follow-
ing identity (Bianchi's identity):

[(—&)L/2(Rw — zg#R)] ,
+ (_g)l/Zr‘u (XB(RO‘B — %gleR) =0. (3.21)

Substitute Eq. (3. 15b) into (3. 20) to remove the
second term on the left-hand side of (3. 20). Next
make similar substitution of Eq. (3. 21) in Eq. (3. 20)
and obtain

(—&)V2TH 4(RoB — 1gBR)y = — 87T(A“o(’AUT/Ta,T,),U'
(3.22)

Having rewritten Eq. (3. 19) in a simpler and more
explicit form, one can now complete Riquier's pro-
cedure. Each of the coefficients of I'# _, in (3. 22)
contains a principal derivative of the formg *® ,,,
and the final step in Riquier's procedure is to elim-
inate these principal derivatives using Eq. (3. 15a).
The result is

— 8n[(Ax A T,T“’”)JV + FHO(BTO‘B] =0 (3.23)
which is the integrability condition for the gravita-
tional field equations (3. 4).

This can also be written

Tw ,=0. (3. 24)
Thus the energy—momentum conservation law is the
integrability condition that results from the appli-
cation of Riquier's procedure to the field equations
(3.15). Now the given quantities are the 7% *(x’), and
the dependent functions of the system are g,,(x).
The next step is to express Eq. (3. 24) in terms of
Tﬂ’“/(x'),gw(x), and the transformation functions /¥ (x).
To do this, first rewrite Eq. (3. 24) in the x’ coordin-
ate system

Fow,, =Tw , +T7, T8W =0. (3. 25)
Now the relationship between the Christoffel symbols
I'¥ ,u in the x" and the I'# ; in the x coordinate sys-
tem is

v =TT A" AY A + A” (3,AT 4 ).
o TR T (3. 26)

The identity

9, (0" &) = 9, (A" ATy) =0 (3.27)
may be written

A"’T(BM,ATB,) = — ATy (A= w0a A ). (3. 28)
Using Eq. (3. 28), Eq. (3. 26) may be written

DV gy = D7y AT g A%, — ATy A% 04 1. (3.29)
Substitute Eq. (3. 29) in Eq. (3. 25) and obtain
[8,4” [(ATgA% ) — T'T A" A5 A® T8

—Tww , =0 (3.30)
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as the final form of the integrability condition for the
gravitational field equations (3. 4).

Since the integrability condition equation (3. 30) is not
an identity, Riquier's procedure has so far given no
answer to the question of integrabilityl3 of the field
equations (3. 4). To obtain an answer one must affix
equation (3. 30) to the system of 14 equations (3. 4)
and apply Riquier's procedure to the combined sys-
tem of 18 equations given below:

(— Q)RR — LgwR) = — 8r A [f']Av [f 1T,

(3.31a)

gue 5 =0, (3.31Db)
Bwa ’ C X
(W (ATB,AO“!,)— FTW)A" TAYB’A(Dp/) T Bw

~Tw =0, (3.310)

The principal derivatives of the system (3. 31) are

g#” 44 for Egs. (3. 31a),

g#3 5 for Egs. (3. 31b),

S aa = 564 (Z;) for Egs. (3.31c).

Thus the number of unknown functions has been in-
creased from 10 to 14. Tv#[f'] is given and the sys-
tem of field equations (3. 31) is thought of as deter-
mining the g #(x) and the transformation functions

J¥(x).

Since the principal derivatives for Eqs. (3. 31a) and
(3. 31b) are the same as for (3. 15a) and (3. 15b), Riq-
uier's procedure leads as before to Eq. (3.30). This
time, however, the derivatives [V .44 Which equation
(3. 30) contains are principal derivatives. Riquier's
procedure now requires that these derivatives be elimin-
ated by substituting for the f* ,, as defined by Egs.
(3.31c). Since Egs. (3.30) and (3. 31c) are identical,
this last step in Riquier's procedure leads to the iden-
tity

0=0, (3.32)
which proves that the system of Egs. (3.31) has an
analytic solution. And an analytic solution exists re-
gardless of the form one is given for the ten analytic
functions T#¥(f’). In Appendix B, it is shown in
addition that the initial conditions can always be
chosen so that both the coordinate transformation
(3. 5a) and the corresponding inverse transformation
(3. 5b) are nonsingular. Once such a solution to the
system (3. 31) corresponding to nonsingular transfor-
mation functions /¥ and F* has been found giving
g#r(x) and f¥’(x), one cantransform that solution into the
x' coordinate system to obtain g # ¥ (x’). From this
using Eq. (3. 10) one can obtain the g#'¥'(x’) corres-
ponding to the given functions T#*(x‘). This comple-
tes the proof of the following theorem.

Theovem I1: Given any symmetric14—16 gnalytic
tensor density T+'¥'(x’), there always exists a corres-
ponding metric g# ¥ (x’) which satisfies the field
equations (3. 1).
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4, CONCLUSION

In the introduction to this paper, three mathematical
points of view concerning Einstein's field equations
(1. 4a) and their consequence, the law of conservation
of energy, Egs. (1. 4b) were discussed. According to
the first viewpoint, Eqs. (1. 4) are considered to be
restrictions on the T, According to the second view-
point, Egs. (1.4) are considered to be restrictions on
the g;; and the Tv4, According to the third viewpoint,
Eqgs. (1. 4) are considered to be restrictions on the

gyu'

If one adopts the first mathematical viewpoint, one
chooses the metric arbitrarily beforehand, and then
one proceeds to calculate the corresponding energy—
momentum {ensor density. If one adopts the third
mathematical viewpoint, one arbitrarily chooses the
symmetric energy—momentum tensor density T+ be-
forehand, and then one proceeds to calculate the cor-
responding metric. Theorem 1 states that such a cal-
culation of the metric is always possible. (See Section
3).

To the first mathematical point of view there corres-
ponds the physical viewpoint according to which Egs.
(1. 4) are thought of as a definition of the matter ten-
sor density T#. According to this view, regions
where matter is present are defined to be regions
where the left-hand side of (1. 4a) is nonzero. The
presence of matter is no more than an interpretation
assigned to the nonzero values of (— g)1/2(R# —
38"R). (See Ref. 2.)

To the second mathematical point of view there cor-
responds a widely accepted physical viewpoint accor-
ding to which the conservation law (1. 4b) is thought
of as expressing a property of the energy—momentum
tensor density T#, while the field equations (1. 4a)
are thought of as expressing a property of the gravi-
tational field g,,.

To the third mathematical point of view there cores-
ponds the physical viewpoint according to which Egs.
(1. 4) are thought of as a definition of the metric g,.
The metric is thought of as no more than an inter-
pretation of the properties of the symmetric energy-
momentum tensor density 7#. Theorem 1 implies
that such a physical viewpoint is mathematically self-
consistent, provided that one is considering only

Eqgs. (1. 4). However, to establish the physical self-
consistency of this third physical viewpoint, one must
show the quantities T+ (x) to be obtainable by physical
measurements which do not involve the metric. Such
a complete analysis of the physical meaning of

Tw (x) is not given here. The present paper does in-
clude, however, a discussion of the special case when
Tw corresponds to a pressure-free fluid. (See Appen-
dix C).

Also, note that Egs. (1. 4) are not the only equations
of classical physics in which the metric appears.
The metric also appears in the covariant form of
Maxwell's equations and in the Lorentz force equa-
tion. One may ask whether this third physical view-
point according to which the field equations (1. 4) are
thought of as a definition of the metric remains
mathematically self-consistent when the combined
Maxwell-Einstein equations are considered. This
question will be discussed in a future paper.
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In conclusion, much remains to be done to fully
establish the mathematical and physical self-consis-
tency of the third physical viewpoint. The results
presented in the present paper do suggest, however,
that the definition of the metric (1.4) may not be the
only possible one if the rules of measurement are
appropriately changed. Indeed, these results suggest
that certain features of the rules of measurement,
namely those features which determine the metric,
may be arbitrary in character.17=21 These results
also suggest that the law of conservation of energy-
momentum may be one of these arbitrary features of
the rules of measurement.

APPENDIX A

To complete the proof of integrability of the system
(3. 31), it must be shown that the initial conditions

for the system can always be chosen so that both the
coordinate transformation (3. 5a) and the correspond-
ing inverse transformation (3. 5b) are nonsingular.

Since the solution is analytic one can conclude that
the functions f*'(x) are finite and that the Jacobian

13, f |

is finite. From this fact one concludes that the Jaco-

bian of the inverse transformation is nonzero:
|0, F¥| = 0, (A1)

which means that the coordinate transformation

(3. 5b) is nonsingular.

Next consider the transformation (3. 5a). Suppose
that the initial conditions cannot be chosen so as to
make this transformation nonsingular. This would be
the case only if Eqgs. (3. 31c) imply that
lof*'1 = 0. (A2)
But the system (3. 31c¢) is a system of second-order
partial differential equations, and such a system can
only imply a first-order differential equation like
Eq. (A2) if it has at least one of two properties,
Either there are more equations than unknown func-
tions (so that one of the second-order derivatives can
be eliminated algebraically), or the system has integ-
rability conditions (so that derivatives can be elimi-
nated after appropriate differentiation of the equa-
tions of the system). The system (3. 31) has neither
of these properties. Therefore, it can lead to a first-
order differential equation only by integration. Such
an integral would involve at least one arbitrary con-
stant of integration. Equation (A2) contains no arbi-
trary constants, Therefore it cannot be a conse-
quence of the system (3. 31c). Thus, one may con-
clude that it is always possible to choose the initial
conditions in the system (3. 31) so as to obtain

la 1 = 0. (A3)

APPENDIX B: RIQUIER'S ORDERING PROCEDURE

To apply Riquier's existence theorem to a system of
equations one must first assign an order to the
various partial derivatives which appear in the sys-
tem. This order determines the order in which those
derivatives will be eliminated in Riquier's procedure
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for calculating the integrability conditions, One
writes

A>B (B1)

(read “A is greater than B”) to state that the deriva-
tive A is to be eliminated before the derivative B.
We will refer to equations such as (B1) as “ordering
inequalities.” The order of the derivatives may be

chosen at will except for the restrictions given below.

Let the indices ¢ and j label the various dependent
functions which appear in the system and the Greek
letters p, v, etc. label the independent variables x#,
Then we define f# as the dependent functions, and we
write

i :a_jl i - afl B2
" axn’ W axvaxs (B2)

and so on. Also note that in the following two equa-
tions, Eq. (B3) and (B4), the symbol “ = ” will mean
“implies and is implied by.” Then the restrictions
on the ordering may be expressed as follows:

(1> 1) = (7 > ) = (i > 1),
(2> ) = (F > ), (B3)
i, > fi > f,

Also each ordering inequality must remain true no
matter how many times it is differentiated. For
example,

(£ > f) = (Fiyr > fir)- (B4)

With the above definitions and restrictions on the
ordering in mind, we are now in a position to des-
cribe Riquier's procedure for calculating the integ-
rability conditions for a system of partial differen-
tial equations. We consider a finite system of n
differential equations

ai1+ i -+imyj
X,

L B5
oxy M e g (B)

where the y, are the unknown functions, the x,, are
the independent variables, and the indicies iy«--i,,
j,m are not summed and may run over different
ranges of numbers; where

(a) in each equation % is a function of the given func-
tions J* and their derivatives, and also of certain of
the derivatives of the unknown functions v, , every
such y; derivative in % being lower than the left-hand
member of the equation.

(b) The left-hand side of each equation is different
from that of every other.

(c) If w is the left-hand member of some equation,
no derivative of w appears on the right-hand side of
any equation.

Note that once criteria (a)—(c) are satisfied, those y,
which do not appear on the left-hand side of some
equation can be considered to be given functions.
Furthermore, the n highest derivatives appearing on
the left are not necessarily the n highest derivatives
appearing in the system.
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Riquier's existence theorem applies to all systems of
equations which, by algebraic manipulation, and pro-
per choice of the ordering of the derivatives, can be
written in the form (B5). The theorem applies in any
region R in which the functions 4 in Eq. (B5) are
analytic functions of their arguments. The theorem
shows how to construct a power series solution to the
system (B5). Furthermore,the theorem shows that if
the power series is centered about any point in the
region R, it converges within a small (but not infini-
tesimal) region about that point.

We call the derivatives on the left in Eq. (B5) the
“first members” of Egs. (B5). Derivatives which are
first members or are derivatives of first members
are called principal derivatives.

Next we shall describe what happens to the integra-
bility conditions of a system of differential equations
T if several derivatives of its component equations
are added to it to form a new system T’'. We con-
sider a simple example. Let the system T consist of
the single equation

U, + U2+ F(x1,x2) = 0. (B6)

Differentiate Eq. (B6) with respect to x2, and consider
the combined system T’ given below:

U, + U2+ F(x1,x2) =0, (B7a)

Uyp +2UU, + Fy =0, (BThb)
Now Eq. (B6) has no integrability conditions; but Eqs.
(B7) do have an integrability condition in the sense

of Riquier. This condition is

[Uy + U2+ F],— (U, +2UU, +F,]=0, (BS)

which immediately reduces to the identity 0 = 0.

Thus the addition of the derivative egquation (B7b) to
the system does increase the number of integrability
conditions. But the new integrability condition is
identically satisfied. Integrability conditions like Eq.
(B8) which (a) are identically satisfied and (b) arise
from the combination of an equation with one of its
derivatives will be called {rivial integrability condi-
tions. Integrability conditions which are not trivial
will be called nontrivial. The property we have
demonstrated in a simple case is true for any system
of equations. That is, given any system of equations
T in the form (B5), suppose one adds to that system
additional equations which are derivatives of its com-
ponent equations to form a new system T’. Then the
system T’ will have the same nontrivial integrability
conditions as the system T,

In the proof of Riquier's theorem, it is necessary to
extend the system (B5) by adding to it certain equa-
tions which are derivatives of some of the equations
of the system. The additional equations are chosen
s0 that the first members of the new system form a
complete set in the sense of Riquier. (See Ref. 6, pp.
148~151.) Such a process of completion is always
possible for a system of the form (B5).

From the discussion above of Egs. (B6) and (B7), it is
clear that the process of completion will not change

or add to the nontrivial integrability conditions of the
general system (B5). Thus the process of completion

J. Math. Phys., Vol. 13, No. 10, October 1972



1550 C.

can be ignored when one is calculating the nontrivial
integrability conditions of a system. For this reason,
no mention is made of the process of completion in
Sec. 2, and no use of this process is made in Sec. 3.
All the integrability conditions discussed in Sec. 2 and
3 and in Diagrams I-IV are nontrivial integrability
conditions.

%PPENDIX C: COMMENTS ON THE MEANING22 OF
w(x)

In Theorem 1 the energy-momentum tensor density is
given beforehand as a function of the coordinates and
independent of the metric. Several comments as to
the possible physical meaning corresponding to the
giving of the energy-momentum tensor density in

this way are given below. Since the metric has not
been given, all concepts used in this section in defin-
ing T+ [i.e.,all those concepts leading up to Eq. (C3)]
are nonmetrical in nature.23

First, consider a field of trajectories, with a mass
assigned to each trajectory. To such a field there
corresponds a unique conserved mass-current den-
sity J# and a parallel tangent velocity vector v unique
up to a scaling factor a(x)

Jr =0, (Cla)

Jlpv) =0, (C1b)
Note that since J* is a current density, the divergence
in Eq. (Cla) is equivalent to a covariant divergence so
Eq. (Cla) may be rewritten

(C2)

From such a trajectory field (which describes pres-
sure-free dust) one can define the symmetric energy-
momentum tensor density

Tw =y v, (C3)
Apply Theorem 1 and conclude that there exists a
metric g+ which satisfies the field equations (1. 4a)
and the conservation law (1. 4b). Substitute Eq. (C3)
into the conservation law (1. 4b) written in the x’ co-
ordinate system appearing in Eq. (3.31c):

o g, How TV = 0. (C4)
Substitute Eq. (C2) in Eq. (C4) and obtain the geodesic
equation

v#’;,,,J"’ = 0. (C5)
Thus the metric satisfying (1. 4a) makes the trajec-
tories geodesics. Transvect Eq.(C5) on v, and ob-
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tain after minor simplification

(vu,v“’),y,j"’ =0. (C6)
Note from Eq. (C6) that the length of v* remains un-
changed along a trajectory. Thus if v* has unit
length on a spacelike hypersurface, it retains that
length throughout time. To obtain this unit length, one
rescales v# replacing v¥ by u# with

ut = av¥, (CN
This does not change the trajectories. The require-
ment that the geodesic equation (C5) be maintained
during the rescaling process implies that

(C8)

Equation (C8) leaves one free to choose a(x’) on an x4
= const hypersurface, One requires that

@),y =7(—0 ) =+ L 5
gpyv.“f) x4=0 ngFpoc/FuT’Ua v x4=0
(C9)

This gives24
(g“uuﬂu”)xqzo =7 1. (C10)

Combine the initial condition (C10) with equation (C6)
to obtain the result

uut =51

¢ (C11)

throughout all space-time,

This completes the proof of the following theorem.

Theovem 2. Given any analytic field of mass-
carrying trajectories in which the trajectories re-
main distinct from one another, it is always possible
to find a metric which satisfies Einstein's equations
corresponding to the energy-momentum tensor den-
sity arising from these trajectories. Furthermore,
this metric makes the trajectories geodesics, and a
rescaling of the tangent vector field v#(x) correspond-
ing to the trajectories can make v#(x) into a unit
vector while retaining the geodesic equation.
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exterior of a steadily rotating ideal fluid with axial symmetry
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15 See Appendix B for details as to the range of validity of this
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16 In the present proof, T+’(x) is for convenience assumed to be
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symmetric. If this assumption had not been made, the restric-
tions T!#} = 0 would have appeared as integrability conditions.
(See Ref. 1,p.5). It is of interest to note that in special relativity,
the symmetric nature of the energy—momentum tensor is neces-
sary for the conservation of angular momentum. See, for example,
C. Mgller, The Theory of Relativity (Oxford U.P., London, 1952),
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Similar ideas are presented by Poincaré under the title “Relati-
vity of Space.” (See Ref. 18-21.) Poincaré's comments form a
helpful background for the understanding of the third physical
viewpoint. Indeed the present paper can,in a certain sense, be
considered an extension of these ideas of Poincaré (which were
presented before the advent of general relativity) to curved
space—time. I am grateful to J. W, Weinberg for pointing out the
similarity between my own ideas and those of Poincaré.
18 H, Poincaré, Science and Hypothesis (Dover, New York, 1952),
(originally published in French in 1902), pp. 70-1.
H. Poincaré, Science and Method (Dover, New York, 1952) (origi-
nally published in French in 1908), pp. 93-109.
H. Poincaré, Value of Science (Dover, New York, 1958) (originally
published in French in 1905), pp. 26—-40.
21 H, Poincaré, Last Essays (Dover, New York, 1963) (originally pub-
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and useful comments on the questions discussed in this section,
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Vol.I,,pp. 120-27.
Note added in proof: The use of the plus-or-minus signs here is
necessitated by the requirement that o2 be positive.
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A theorem is proved that asserts, roughly, that a function that is real Lorentz covariant anywhere is complex
Lorentz covariant everywhere in its domain of regularity. It is also shown that the analytic continuation of 2
scattering function from a regularity domain in the physical region of a given process along all paths generated
by complex Lorentz transformations leads to a function that is single-valued in the neighborhood of all these
paths. Applications are discussed. The results derived constitute necessary preliminaries to a discussion of
the analytic structure of scattering functions given in other papers.

The requirement that transition probabilities be in-
variant under physical Lorentz transformations im-
plies? that the scattering functions M(K) satisfy the
Lorentz covariance condition?.3

M(K) = A M(AIK)

for all real K corresponding to physical points and
for A any element of the real proper orthochronous
homogeneous Lorentz group. Here K is the set of
variables

K = {k1 y ,ti}y

where k;, m;, and f; are the momentum-energy, spin
quantum number, and particle type of particle ¢, and
A, is an operator that applies to each spin index
a matrix transformation corresponding to A. The
specific form of A_ is given in the Appendix.

In this paper some consequences of assuming that
M(K) is also regular analytic at some physical point
will be examined. The main result to be established
is that if an M function is regular at some physical
point, then the complete analytic extension of the func-
tion is defined over a multisheeted manifold, each
sheet of which maps onto itself under any proper com-

plex Lorentz transformation. Furthermore,the func-
tion defined (single-valuedly) and regular over any
sheet is covariant under proper complex Lorentz
transformations. Finally,if M is regular at each
point of some real domain containing only physical
points, then the sheets described above can be chosen
so that all the points of any closed bounded subset of
this domain lie in a single sheet. These results have
some important consequences, which will be mention-
ed at the end of the paper.

The initial considerations will refer to a function F(K)
whose domain of definition is not restricted by the
mass shell and conservation-law constraints. Also
the type variables T = {t,} will be considered fixed.
Thus the argument of F(K) will be a set of the type
introduced above but with the mass constraints and
type variables removed.

Let the following definitions be made.

Definition: L will denote the real proper ortho-
chronous homogeneous Lorentz group. It is continu-
ously connected to the identity.

Definition: £ will denote the complex proper homo-

geneous Lorentz group. It is continuously connected
to the identity.
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Definition: A will represent a Lorentz transfor-
mation and

(AK) = {AR;,m,}. (1)

Definition: Points K, and K, related by K, = AK,
will be said to be connected by A.

Definition: The set of points connected to K by
some A € £ (or L) will be denoted by £K (or LK).

Definition: The set of points connected to some
element of the set D by some A € £ (or L) will be
denoted by £D (or LD).

Definition: A point K is veal if and only if the four
vectors {k;} are real.

Definition: A veal setis a set of real points.

Definition: A funclion F(K) is a (single-valued)
mapping to the complex numbers.

Definition: The spin indices of (K) will be pre-
sumed to have some spinor index-type label, and
A F(K) will represent the result of the action upon
F(K) of the corresponding spinor transformations
associated with A, as discussed in the Appendix.

Lemma 1: If F(K) is defined (single-valuedly)
over a real set D and satisfies for all A € L and all
K such that K and AK are elements of D the covar-
iance condition

F(K) = A F(NIK), @)

then (2) with A-IK e D and A € £ defines a (single-
valued) function over £D, provided any two points of
D connected by a real element of £ are also connec-
ted by an element of L.

Pyroof: The prescription will uniquely define F(K)
at K’ of £D if for any two points K; and K, of D for
which K = A K, = A,K,,with A; and A, € £,o0ne has

A FKy) = A, F(K,). (3)

But by the group property K, = A2‘1A 1K = AK,.
Thus (2) gives

F(K,) = AjLA, F(K,) (4)

provided A = (Aj'A,) € L. Hence it is sufficient to
show that A is an element of L. If the rank #(K,) of
the Gram determinant G(G;; = k;-k;) at the point K, is
4, or equivalently? if there are four linearly indepen-
dent vectors among the vectors of K,, then the rank
is also 4 at K, since inner products are unchanged,
and the same four vectors are also linearly indepen-
dent at K,. In this case the linear transformation A
is unique. Since K, and K, are real, A is a real ele-
ment of £. By hypothesis it is then, by virtue of its
uniqueness, an element of L. This completes the
proof for the case 7(K,) = 4. For v(K,) = 3 the trans-
formation A is still unique4 and the same argument
holds.

If (K,) < 3, then the transformation A is not always
uniquely defined by the equation K, = AK; and it may
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not be real, as required for the above argument.
There are several cases. If the rank »(K,) is equal
to n(K), the number of linearly independent vectors
of K1, then the space separates into a manifold M(K,)
of dimension n(K) = #(K,) spanned by the set K, and
the orthogonal manifold M*(K,). One can construct a
set of real orthogonal basis vectors e (K), each of
length +1, such that the first » span m(K;) and the last
(4 —n) span M*(K,). To construct such a basis, one
first takes n(K,) linearly independent real vectors
from the set K. This set is augmented by [4 — n(K})]
real vectors to give a complete set of real linearly
independent vectors. Because the rank 7(K,) equals
n(K,), the linear equations arising in the construction
of e (K ;) are soluble. The details have been given by
Half and Wightman.4 Since the original vectors are,
for us, real, the coefficients in the linear equations
are real, and hence the solutions can be taken to be
real.5 A similar real basis,ep(](z), can be constructed
for K,.

Our interest is in the various Lorentz transforma-
tions A’ satisfying K, = A'K, the K, and K, being the
fixed points of D connected by A € £;K, = AK;. The
transformations A’ can be represented by the matri-
ces A7, defined by

Ne,(K;) = eo(Ky)Ny, = e,(Kp)GOT(K )N, (5)

where a summation convention is used. The labels
p,0,and 7 specify the basis vectors, not components,
and

Gor(K) = e°(K)-er(K) =+ 0,, forj=1,2. (6)
For either value of j three of the vectors e°(K ) have
length —1 and the other has length +1.6 That all four
have length —1 is impossible because any vector v
can be expanded as

v = v, (K)e(K) (7)
with
v (K) = e,(K)-v = e, 4(K)u,, (8)

where p labels the component of the vector, Then
v = v, Gy, = vp(Kj)GPO(Kj)vO(Kj). (9)

If the negative sign were always to occur in (6), then
all vectors represented by real v, (K,) would have
negative length. But the vector v with components
v, =0, has real v, and positive length [G¥ = (1, —1,
— 1,— 1)], which is a contradiction. On the other
hand, if there were two real orthogonal vectors v1 and
v2 of length + 1,then
(032 — W2 =1, (@§2z—Ivzl2=1,  (10)
and
vivg = vi-v2, (11)

From these it would follow that

(viv2)2 = (1 + |vl]2)(1 + [v2]2), (12)
and hence that

(viv2) > [vi|2]|v2]2, (13)

which is not possible for real vectors. Thus there is,
for each j,precisely one vector ef’(Kj) of length +1.
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Because of this the vectors ef’(Kj) can be generated
from the original set of basis vectors by real
Lorentz transformations. The transformation A, con-
necting the two sets

Aeo(K,) = eo(K,) (14)

will then also be a real Lorentz transformation.

The basis set e?(K,) is not completely specified by
this construction. It is possible to take the first n
vectors (which may or may not include the one of
positive length) to be given by

eo(K,) = Ae’(Ky), o=(1,2,...,n). (15)
For, since K, = AK, these vectors span the space
M(K,). They are orthogonal, since the e°(K,) are and
A € £. And they are real, since A takes all the real
vectors of K, into the real vectors of K,, and hence
by linearity all real vectors of M(K,) into real vec-
tors of M(K,). Because n(K,) < 4, one can by proper
choice of the sense of the vectors e°(K,) with ¢ >

n{K ;) make A, a real element of £.

With the basis vectors fixed in this way,it is clear
that the basis vector of positive length occurs either
in the first n vectors of both sets e?(K,) and e°(K,)
or in the last (4 — n) vectors of both sets. Also, with
this choice the first n X n submatrix of (A”)g is the

7 X n unit matrix. Since A’ takes all vectors of M{K,)
into vectors of M(K,), the first #» columns of A” have
zeros except in the diagonal positions. The same
property holds also for the first » rows as a conse-
quence of the relations A'"1K, = K, and

(GNG), = (N1, (16)

which is the characteristic property of Lorentz trans-
formations. That A” is a Lorentz transformation fol-
lows from (5) and (14); one obtains
NlNe (Kq) = e (K)NoN e (K,), (17)
which shows that A" = Aj1A’. Since A, is real, the
transformation A” will be real if A’ is.

The conclusion from the above remarks is that for
the case n(K,) = 7(K,) all Lorentz transformations
A € & satisfying K, = ANK; and K, € D,and with K, =
AK, for some A € £, can be represented in the form
A.' — AbAH (18)
with a fixed real Ay ¢ £ and a A” ¢ £ differing from
the identity only in the (4 — n) x (4 — %) subspace
corresponding to M {K). And conversely, for all
A" € £ satisfying this property, which we call P, the
transformation &' = A, A" is an element of £ satis-
fying N’K; = K,,.
This result is used in the following way: The trans-
formations A” ¢ £ satisfying P can be parametrized
in such a way that the matrix elements (A’;)g are ana-
Iytic functions of these parameters regular in a neigh-
borhood N of the identity, and such that real para-
meters give there real A” € L. Such a parameteriza-
tion has been given by Jost,” for the case with no
constraint P. The restriction to a submatrix is ac-
complished by setting some of his parameters to
zero. Now suppose first that A, ¢ L. Then the hypo-
thesis of the lemma gives
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F(K,) = N,F(K,) = SINF(K,), (19)

bs s
for all A" € L satisfying P. For then K, = N'K,, with
N € L,the K, and K, being the fixed points of D con-
nected by K, = AK,,with A € £. But the validity of
this equation for real values of the parameters of A”,
together with regularity in N, implies its validity
throughout N, Thus (19} is true for A” € £ satisfying
P, in a neighborhood of the identity. The restriction
P does not destroy the group property, since products
of matrices having this property will also have it, and
inverses of matrices having this property must also
have it, Using the fact that the subgroups of £ speci~
fied by the constraints P are connected, or more spe-
cifically, that any element of £ satisfying P can be
expressed as a product of a finite number of elements
of £ satisfying P from any fixed neighborhood of the
origin, one obtains the result that (19) is true for all
A" ¢ £ satisfying AK,; = K,. This ensures the validi-
ty of (4), from which the lemma follows, for the case
n(K,) = r(K,),provided A, is an element of L.

In the above argument it was supposed that A, was an
element of L;then for A” € L it followed that A’ € L,
and (2} was immediately applicable. Now A, is by
construction a real element of £ satisfying AKy = K.
Thus, by virtue of the hypothesis of the lemma, there
exists some A’ € L such that AK, = K,. For this A’
the transformation A” = A;! must be a real element
of £. Thus it is either an element of L or it can be
written in the form A” = A A", where A% is an element
of L and A is the (CPT) transformation 2 = —k,
which is a real element of £. Parametrizing A} € L
instead of A” one can develop the same argument as
before and prove, from the validity of (14) for the

N € L just introduced, its validity for all A’ € £ satis-
{ying AK; = K,. This again validates (4}, and comple-
tes the proof of the lemma for this case n(K1) = »(K1).

The remaining possibility is n(K;) > r{K;} < 3. For
these cases the vectors of K, are linear combinations
of »{K,) orthogonal vectors of nonzero length and a
single vector of zero length orthogonal to these. The
r(K,) vectors of nonzero length are obtained by first
picking ¥(K,) of the vectors of K; such that the Gram
determinant of these »(K,) vectors is nonvanishing,
This is always possible.4 If any one of these vectors
has nonzero length, then normalize it to £ 1, by multi~
plying by a real scalar, and let it be the first vector
of a real basis. If on the other hand all these vectors
have zero length, then some real multiple of a com-
bination of the form (%; + &) must have length + 1,
since the (Gram) determinant of the matrix (Gij) =
(%;+k;) is nonvanishing. Subtracting a real multiple of
this normalized vector from the other vectors, in the
usual way, one gets a set of [#(K,) — 1] vectors ortho-
gonal to it. Since the Gram determinant is still non-
vanishing, the process can be repeated to give a real
orthonormalized (i.e.,to = 1) set of (K ) vectors

(eX(K,),..., eY(K‘)(Kl)). This same construction was
used (though not described) in the case 7(K;) = n(K,).

Since in the present case n(K,) > »{(K;), there must be
a vector of K, that is linearly independent of these
first »{K ) vectors. By subtracting from it multiples
of the e?(K,), o = 1,...,7(K;),a linearly independent
vector w orthogonal to them can be obtained. Since
the value of the Gram determinant is unaltered by
adding linear combinations of certain of the vectors
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to others, the Gram determinant of the first »(K,)
vectors together with w must vanish. But then w must
have zero length. The next step is to augment the set
K, by adding [4 — #(K,)}] real vectors that together
with the first »(K ) basis vectors give four linearly
independent vectors. Since n = 4 implies? ¥ = 4, one
can complete the construction of a complete set of
real orthonormalized basis vectors e°(K,), using the
procedure just described.

The vector w is orthogonal to the first »(K ;) of the
e°(K,),and hence it is a linear combination of the re-
maining ones. Since it is real and of zero length it
must, for the case 7(K;) = 2,be of the form

w = a[eO(Kl) * 63(K1)], (20)

where a = 0 is real and e%(K,) is the basis vector
having positive length, That the coefficients of the
e9(K,) are real for real w follows from the existence
of the real inverse of the real Lorentz transformation
generating the e°(K,) from the original basis vectors.

The sign of + ¢3(K) in (20) depends on the sense of
the vector e3(K,). However,only one sign is possible;
if different vectors of K; were to give w's having dif-
ferent signs in (20), then one would have n(K ;) = »(K,)
+ 2 = 4, which is impossible since n(K ;) = 4 implies
¥(Ky) = 4.

For the case 7(K,) = 1 the vector w must be of the
form

w = a[e%(K,) + sinfe2(K,) + cosfe3(K )], (21)
with @ and 6 real and a # 0. Moreover, for this case
all vectors of K, must, when the part along e}(K,) is
removed, give multiples of this same vector w. To
see this, note that the Gram determinant of two vec-
torsw and w’ of the form (21) is

Gw,w’) = aa'[1 — cos(6 — 0")2, (22)
which is different from zero unless w’ is a multiple
of w. Thus if two vectors w and w’ of the form (21)
can be obtained as linear combinations of the vectors
of (K,), then either w’ is a multiple of w or 7(K;) > 2.
The second possibility contradicts the assumption
7(K,) = 1. The form (21) can be brought to the form
(20) by a redefinition of the basis vectors that leaves
them real and orthonormalized.

In the case 7(K,) = 0 all the vectors of K, are of zero
length and they are mutually orthogonal. Expanding
them in terms of an arbitrary real orthonormalized
basis e°(K,), each one has the form

w = a[eO(K,) + ael(K,) + Be2(K,) + ye3(K3)], (23)
where a and (o, 8,y) are real and

a2 + 82 +.2 =1, (24)
If w # 0, then any vector w’' of the same form for
which

Gw,w’) =0 (25)

is, as before, a multiple of w. Thus for all the cases
n(K,) > 7(K,) one can construct a real orthonormali-~
zed basis e°(K) such that the vectors of K; are real
linear combinations of a zero-length vector
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w = e%K,) + e3(K,) (26)
and the vectors
e°K,y), o= 1,..., 7Ky <3. (27)

A similar basis can be constructed for K,. The set
K, is related to the set K by the relation K, = AK,,
A € £. Since A is not necessarily real, the vectors
Ae°(K ) need not be real. However,for ¢ =1,...,
7(K,) these vectors must be real; the basis vectors
e"(Kl) can be expressed as real linear combinations
of vectors of K, and hence the Ao°(K,) will be the
same linear combination of the corresponding vectors
AK, or AK,,and hence also real. They have a Gram
determinant of rank »(K,) = #(K,) and are orthogonal
and of length —1, and hence they can be chosen to be
the corresponding e“(K,):

e’(Ky) = Ae°(Ky), o=1,...,7(K,). (28)
The entire set of real vectors e°(K,), constructed in
the same manner as the e°(K;), and using (28) for
o=(1,...,7(K,)), can be related to the set e¢3(X{) by
the equation

eo(K,) = Ayeo(K,y), (29)

where Ay is a real Lorentz transformation uniquely
defined by this equation, once ¢9(K,) and e9(K,) are
picked.

All real vectors of zero length in M(K,), the manifold
spanned by the vectors of K, are multiples of the
single vector

w(K,) = e¥%Ky) + e3(Ky), (30)

since any real linear combination of the vectors of
(27) is orthogonal to w(K,) and of nonzero length un-
less zero. Similarly all real zero-length vectors of
M(K,) are multiples of

w(K,) = e%(K,) + e3(K,). (31)

Since w(K ) is a linear combination of the vectors of
K, the vector Aw(K,) is in M(K,), the manifold span-
ned by the vectors of K,. But then Aw(K,) is a real
nonzero vector of zero length in M(K,). Hence it is
a multiple w(K,):

w(Ky) = ¢ Aw(K,) = 0. (32)

The factor ¢ can be taken to be unity. This follows
from the fact that a real Lorentz transformation in
the (0, 3) subspace gives simply a scale transforma-
tion of a vector of the form (31):

cosha sinha) /1) _ fcosha + sinha (33)
sinha cosha/\1/ ™ \sinha + cosha/’
This transformation preserves the reality and ortho-
normality properties of the e°(K,). Thus it can, and

will, be assumed that the basis e°(K,) is chosen so
that

c=1 (327a)
or, equivalently, that
€0 (K,) + e3(K,) = AeO(K ) + Ae3(K,). (32'p)
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Using (29), one obtains, then,

eO(K,) + e3(K ) = ATA[eO(K ) + e3(Kq)]. (34)
The general form of the Lorentz transformation
AA € £ satisfying (34) is readily computed. If the
rows and columns are placed in the order (0, 3, 2, 1),
the general transformation matrix (A”)gdeﬁned by
NeolKq) = ew(Kl)(A”);’, (35)
and consistent with (34), with A” € £ in place of the
fixed A;1A, can be written

1+a —a c f
a 1—a ¢ f
(¢ cos + f sinb) — (¢ cos@ + f sin6) cosd sing
(f cos# — ¢ sinf)| — (f cosé + ¢ sinb) — sing cosb ‘
(36a)

where ¢, f,and © are arbitrary complex numbers and

2a = c2 + f2, (36b)
The condition (34) imposes the constraint that the
first two columns are the negatives of each other,
aside from the unit contributions on the diagonal.
This gives four conditions, only three of which are
independent of Lorentz transformation condition (16).

Since the relations (28) and (34) are maintained if A
is replaced by any A’ satisfying A'K; = K,, of which
one is A,, the general form of (A”)9 = (Ab-lA’);Jj de-
fined by (35), with A'K; = K,, is given by (36) with the
last #(K) rows and columns having unity in the dia-
gonal position and zeros elsewhere,provided A" € £.

It can be assumed that A, € £. If 7(K,) < 2, then there
is freedom in the sign of at least one e°(K,),and A,
can be made a proper transformation, Then A, will
be a real element of £. For the other case,7(K,) = 2,
the basis e°(K,) is uniquely specified by the condi-
tions that have been imposed, and one cannot adjust
A,. However,in this case the conditions on (A")¢ re-
quire it to be unity even without the condition A” € £,
for one then has ¢ =f = § = 0 from the conditions on
e°(K,) for o0 = (1, 2),and condition (36) then gives the
unique solution A, = A€ £.

To complete the argument for the case n(K;) > 7(K,),
one first notes that A, is a real element of £ satisfy-
ing A\)K; = K,. Thus there must, by hypothesis, exist
some A’ € L satisfying N'K; = K,. But then

F(K,) = (A A"), F(K,) (37)
is valid when A” = A;'A’ corresponds to this A’ € L.
Since A, is a real element of £, either A” is an ele-
ment of L or AglA” = A is, where A is the CPT
transformation. Then A” or A”;, whichever is in L,
can be parametrized as in (36), with the appropriate
constraints if (K ;) > 0. For 2a neighborhood of real
values of the parameters, subject to these constraints,
one still has A’K, = K, with A’ € L. But the spinor
transformation

N, = AN AN, or

bs s

(BpAo)s(A)s

is an analytic function of these parameters, regular in
a neighborhood of the origin of the free variables of
(c,f, 8). Since (37) is true for real values of these

(38)
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variables, it is also valid for complex values in this
neighborhood, One sees by inspection of (36) that the
set of A” satisfying the conditions corresponding to
ANK, =K,, A € £,is a connected set of transforma-
tions in £. From this it follows that any element of
the set can be expressed as a product of a finite num-
ber of elements of the set lying within any neighbor-
hood of the identity, and hence that (37) is valid for all
N € & satisfying NK; = K,. This validates (4) for
this last case and completes the proof of Lemma 1.

Lemma 1A: Real points connected by a Lorentz
transformation A € £ are connected by some real
A s L,

Proof: The transformation A, constructed in the
course of the proof of Lemma 1 is the required real
Aed. ‘

Lemma 2: Let K, be a set of n linearly indepen-
dent vectors. For any neighborhood N of the identity
in £ there is a neighborhood D(N,K ) of K such that
any two points in D(N,K ;) connected by a Lorentz
transformation are connected by a Lorentz transfor-
mation A € N.

Proof: Suppose the rank of the Gram determinant
of the vectors of the set K, = {0} is (K ) = ». One
can arrange the vectors of K, such that the rank of
the Gram determinant of the first » vectors of the set
is 7. By using the procedure discussed in Lemma 1,
but without the reality condition, a set of ¥ orthonor-
mal basis vectors e4(K),...,¢,(K,) can be construc-
ted as linear combinations of the first » vectors of
K,. Completing the set K to a set of four linearly in-
dependent vectors by the addition of (4 — ) new vec-
tors, one can construct (4 —») more vectors e, ;(K),
...,€4(K;) that are orthonormal and orthogonal to the
first » of the basis vectors. For the case » = n this
gives a complete set of basis vectors e (K).

For the case n = 7 + 1 the subtraction from 29, of
its components along ¢, (K,),...,e (K,) leaves a vec-
tor wgy = w # 0, which must be of zero length, since
otherwise the rank » would be n. For some ¢ > n one
must have e (K ) w = 0, since otherwise w, would

be a zero-length vector orthogonal to three ortho-
normal vectors in a four-dimensional (nondegenerate?)
space and hence zero. Take this vector e (K,) to be
e4(Ky). Then e, (Ky) — wle (Ky) w]-1}is a vector of
unit length orthogonal to e,(K,) and to e,4(K), ...,
e,(K,). Take this to be the final basis vector e, (K ),
and reorthogonalize e, ,(Kg),. .., e5(K,) following

the standard procedure.

For the case » = n — 2 the subtraction of components
along e,(Kg),...,e,(K;) from the vectors k9,,k%,
must leave two linearly independent orthogonal vec-
torsw,, and w, , having zero length. Otherwise there
would be fewer than z linearly independent vectors, or
the rank of the vectors of K, would be greater than 7.
The vectors w = w,,; and w’ = u,, cannot both be
orthogonal to e (K ) for all o > n, for then they would
be orthogonal to two orthonormal vectors. This

would provide two linearly independent zero-length
vectors in a two-dimensional space, which is impos-
sible.4 One can order the vectors of K and of the
e,(Ky),0 > n,s0 that w-e ,(Kq) = 0. Then the vector

i{e4(Ko) —wley(K,) w]-1} is a vector of unit length
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orthogonal to the vectors e,(K,),..., e (K,), and to
e4(Ky). Let it be called e, ;(K,). The vectors e (K o,
4 > ¢ > n, can then be reorthonormalized followmg
the standard procedure so that the e (K,) for o <7 +
1 and 0 > » become an orthonormal set. If the origi-
nal ¢,(K,}, 0> n,are appropriately chosen the sub-
tractions of the required vectors will not give any
zero-length vectors,

From the relationw’e, 1(K 0) = i[’ e, (Ky)] it follows
that {w - 64( 0)[84(K0) W 1'+1 O)Tewrl(KO) W’ } =
W is a zero-length vector orthogonal to e, (K ), el( o)s
¢,.1(Eg). It cannot vanish since @’ is linearly in-

dependent of w whereas e (Ky)[e,(Ko)wl] + e, ,(K,)
+w’] one must have e (K,)*@w = 0. Otherwise @ would
be a zero-length vector orthogonal to the first v + 1
basis vectors and the last 4 — n basis vectors and
hence orthogonal to 4 —» + v + 1 = 3 orthonormal
basis vectors, Letthis e (Ky)bee,(K,), sinceitisnot
vectors. Let this e (KO) be e3(K0) since it is not
e,(K,). Then the vector i{e (K o) — wle (K ) w]1}=e
is a vector of unit length orthogonal to all e,(Ky) with

<% + 1or ¢ = 3,where these vectors are all ortho-
normal. This is impossible unless ¥ = 0, since a vec-
tor orthogonal to four orthonormal vectors is zero.
Thus one can set ¢,(K,) = e. This completes the con~
struction of the orthonormal basis ¢,(K,) for the case
n=v + 2. The casen > 7 + 2 is not possible.

For K in a sufficiently small neighborhood of K, one
can coustruct a basis e (K) following the procedure
just described, except for the following changes: The
{4 —n) vectors that are added to the set K to make a
linearly independent set will, for all K, be taken to be
the fixed vectors e (K ) for o > n, constructed above.
For K in a sufficiently small neighborhood D'(K,} of
K, the augmented set will continue to have four linea-
rly independent vectors, and one can proceed with the
construction; one constructs a set e (K}, ¢ > n,by
subtracting in the standard way the components along
e,(K), o <7, etc.,and normalizing. For K € D"(K)

C D'(K ) the vectors arising in this procedure will
have nonzero length, so that a uniform procedure can
be followed for all K € D"(K,). At the next stage the
vectors e, (K) [and e ,(K)] can be defined in the same
way as above except that additional normalization fac-
tors 1 (and n) must be supplied. For K in a suffi-
ciently small neighborhood D" (K ;) C D"(K,) the
various factors that are required to be nonvanishing
will continue to be nonvanishing, since they will de-
pend continuously on the vectors of K. The only am-
biguity in the procedure is in the choice of sign for
the normalization factors. This sign can be fixed by
requiring the normalization factors to be continuous
functions of K, Thus in a sufficiently small neighbor-
hood D(K ) of K, a basis ¢,(K) can be defined so that
these basis vectors depend continuously on the vector
K. Also, for the case » =n — 1 the vector w obtained
by subtracting from k,0 = 29, its components along
e,(K), ¢ =1,...,7,will always have the standard
formw = [ey(K) + ine,,;(K)]w-e,(K)]. For the case

¥ =u — 2 = 0 this vector will have the formw =

[e (K) + ine (K))[w"e,4(K)], and the other vector,w,
will have the standard form @ = [e,4(K) + iTe,(K)]r
[w-e 5(K)].

For any two vectors K, and K, in D(K;) a Lorentz
transformation A (K, K,) € £ is defined by the equa-
tion
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e(K 1) = (K, Ky)e, (K ). (39)

If K, and K, are connected by a Lorentz transforma-
tion, then K7 = A(K{, K,)K%, where K7 is the set con-
sisting of the first » vectors of K. This is because
the vectors e (K) are constructed, following a stan-
dardized procedure, as a linear combination of the
vectors of K7, and the coefficients are given as func-
tions only of the inner products of the vectors of K7,
For the case ¥ = »n,K” = K” and this transformation
connects K; to K,. Since the transformationA(K,, K,)
is a continuous function of (K, K,) the inverse image
of any open set in N containing the identity contains a
neighborhood of the point (K, K,). This neighborhood
must contain a nelghborhood of the formK, €
D(N,K,), K, € D(N,K), with D(N,K,) C D(K ). This
D(N,K ) satisfies the requirements of the Iemma for
the case v = n.

For the cases ¥ <n any points K, and K, € D(K,)
connected by a Lorentz transformation are connected
by a Lorentz transformation of the form

K, = AA(K,,K,)K, = AvK}, (40)

where A¥KY] = K7. For the subcase » =n — 1 the K,
and K, dlffer only in the value of the vector w, and
both values,w; and w}, lie in the (e5(K,); 64(1{1)) sub-
space. But two vectors in a subspace connected by a
Lorentz transformation are connected by a Lorentz
transformation in the subspace. This is a consequen~
ce of Lemma 2 of Hall and Wightman.

The Lorentz transformations in a two-dimensional
subspace can be expressed as a product of possible
inversions about the space or time axis times a
transformation

a, = [exp(¢T)]a, = A(T)a,, (41)
where I' is a complex number and the a, are compo-

nents along two orthogonal light-cone vectors. If two

points are connected by a transformation of the form

A(T) then this transformation is unique.

If two points are in a neighborhood of the point (a,, a_)
= (1, 0) that contains no point with a, = 0, then, if they
are connected by any Lorentz transformation, they
are also connected by a A(T'). This is because for the
case a_(0) # 0 one can transform—using a A(T')—to a
point where a, = + a_. At such a point the reflections
are equivalent either to the identity or to the particu-
lar A(T) given by expl’ = exp(—I') = — 1. As a con-
sequence of this,any sequence of reflections and
proper transformations can be reduced to a single
transformation A(T'), for this case, by the elimination
of reflections in pairs, On the other hand,if ¢ = 0,
any product of reflections and A(T') takes the point to
a point with a_ = 0, which can be reached by A(I")
alone, or to a point with ¢, = 0, which by assumption
is not in the original domain. Thus, with the neighbor-
hood taken small enough so that points a, = 0 are not
included, all points in the neighborhood connected by
a Lorentz transformation are connected by a unique
transformation of the form A(I"). One can therefore
define a unique A,(K,K,) = A(T')A(K,,K,) that
satisfies

Ky = A(K{,K K.

This transformation is a uniquely defined and contin-
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uous function of the K, and K,, provided (K,,K,) is
restricted to a sufficiently small neighborhood of
(Ko, K ).

In case K, and K, are not connected by a Lorentz
transformation Eq. (41) can be modified by the inclu-
sion of a scale factor A defined by

a, = Mexp(z Tja, = AA(D)a,.

The A, is still defined to be A(T')A(K,,K,). This A,
is again continuous in K, and K.

Since A;(K,,K,) is continuous, one can proceed just
as before, and D(N,K ) can be taken to be any neigh-
borhood of K, such that D(N,K ;) ® D(N,K ) is in the
inverse image of any neighborhood of the identity con-
tained in N. Such a D(N, K,) must exist since the in-
verse image contains a neighborhood of (K, K;). The
neighborhood D{N, K ) is to be restricted also by the
condition that the vectorsw do not have a zero com-
ponent along the w + axis. This is possible since for
K, this condition is satisfied (for this case 7 =#n — 1).

For the remaining case n =% + 2 = 2 similar argu-
ments apply. The vectors of K are specified by the
two vectors w and w. The vectors w, and wj both lie
in the (e,(K,); e5(K,)) subspace and the vectors w,
and w7} both lie in the (e4(X,); e,(K)) subspace. Thus
the transformation A® will be a product of transfor-
mations in two orthogonal subspaces. The problem
separates then into fwo disconnected parts each of
which is treated in the same way as A® for the » =
n— 1 case.

Lemma 3: Let K, be an arbitrary set of vectors,
Let the first n vectors of K, be linearly independent.
For any neighborhood N of the identity in £ there is
a neighborhood D(N,K ) of K, such that if any two
points K, and K, in D(N,K) are connected by a
Lorentz transformation then K% = AK3 with A € N,
where K* is the set consisting of the first » vectors
of K.

Proof: This is a trivial extension of the preceding
lemma. The neighborhood D(N,K ;) can be the inter-
section of any (full) neighborhood of K, with D*{(N, K%),
the neighborhood in the subspace associated with the
K" specified by Lemma 2.

Definilion: A simple point K is a point where n =
3,4,0r 7.

Lemma 4: Let K, be any simple point and D(K )
be any neighborhood of K,. Then there is a neighbor-
hood D,(K ) of K, contained in D(K ), such that any
two points K and K, in Dy(K)) connected by a A<
& are connected by a continuous path K(f) = A()K,,
with K(0) = K, and K(1) = K, such that A(¢) € £ and
K(t) € D(K,) for 0 < t <1

Proof: Let n be the number of linearly independent
vectors of K, and 7 the rank of their Gram determin-
ant. Arrange the vectors of K, so that the first n are
linearly independent and the rank of the Gram deter-
minant of the first  is . Then, according to Lemma
3 there is, for any arbitrary neighborhood N of the
identity in £, a neighborhood D(N, K} of K, small
enough so that if K; and K, are in D(N,K,) and are
connecied by a Lorentz transformation A € £, then
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there is a A, € N such that K% = A K%, where K7 and
Kz are the subsets of K; and K, consisting of their
first n vectors. The neighborhood N can be taken to
be a domain (i.e., connected), and hence a path A(#) in
N can be construcfed with A(0) = 1,A(3) =Ag,and
A{ty e Nfor 0 < z. The Dy(K,) € D(N,K,) and N
can evidently be chosen small enough so that all
points A'K, with A’ € N and K, € Dy(K) are in any
preassigned neighborhood of K, say D;(K,) C D(K ).

Consider first the case » = n. The neighborhood
Dy{K ) will be taken small enough so that for all K €
D(Kg), the rank 7(K) of the Gram determinant of the
first » vectors of K remains equal to . Then any

K e D,(K,) can be uniquely decomposed into a sum
of two terms,K = K7 + V, where the vectors of K7
are in the subspace spanned by the first v vectors of
K, and the vectors of V lie in the subspace orthogonal
to those 7 vectors. (Note that K7 is not the same as
in Lemma 2.)

The neighborhood D, (K ) can be specified by condi-
tions of the form K7 — K’U <p,and {Vl<p, with p and
p,> 0, since this is an arbltrarlly small open set con-
tammg K = K}. One can use here for instance the
Euclidian norms; e.g.,

IV =2 1e,12 = Dlul?

The proof will be completed, for this case, if a con-

tinuous A(f) for 3 < ¢ < 1, with A(z) = A, and A(1)K,

= K4, can be found that acts only in the space ortho-

ﬁornlai to the space spanned by the set K% and keeps
v P.

The Lorentz transformatlon A = A(D)AL € £, which
takes the point A(3 K, = ALK, to A(I)Kz = Kl, can,
asany A € £,be expressed in the form?®

(42)

A = R expA, (43)
where R is a unimodular real orthogonal {hence uni-
tary) transformation and A4 is Hermitian and imagi-
nary:

A=— A% = AT, (44)
(The metric tensor G has been converted to the unit
matrix by the introduction of the appropriate imagi-
nary units,) The required transformation A(t) for

4 <t < 1 can be taken to be defined by

expla(t — $)A] for b<t<? (45)
N(t) = (AT ={
R(t) expA for 3 <t <1, (46)

where R(t) for § <t < 1 is any continuous curve from
the identity E to R in the connected space of real uni-
modular orthogonal matrices.

The Euclidean norm [ V(#)ll of V(¢) = {A(t)v,} is the
square root of

D2(1) =Zi] [A(Dv;12 =25 v A At

= (A(DAD)y- (47
In the interval ? < ¢ < 1 the [ V{#}|l is constant,
because of the unitarity of R(t):
RYDR(t) = ROHR(H) = E (48)
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On the other hand, in the interval 3 < ¢ < % one has,
since A = AT,
d2 dz
— D2(t) = — (A A(t))
PR Wiy
= 64 (ANHATAA(E)), = 0. (49)
Because the second derivative of || V(#)||2 is nonnega-
tive, its maximum value must be assumed at an end
oint, As the end points are in D, (K ) they satisfy
V(1) < p. Thus for all 0 < ¢ < 1 this condition is
satisfied. Consequently, all points K(¢) = A(t)K, are
in D,(K,) C D(K;). This completes the proof for the
case that 7, the rank of the Gram determinant of K,
is equal to n, the number of linearly independent vec-
tors of K.

In the case ¥ < n the first part of the transformation,
0 <t < £, can be performed as before. For n > 3 this
already completes the proof, since the coincidence of
three linearly independent vectors ensures the coin-
cidence of all vectors. The special form of D,(K)

is not needed for this case. This completes the proof.

Definition: A function F(K) will be saic to be regu-
lar al a point K if and only if the various functions of
K corresponding to the various combinations of the
spin indices are all regular analytic functions of the
components of the four vectors {k,} at the point K.

Lemma 5: Let A be a fixed Lorentz transforma-

tion. Let F,(K) be defined by

F(K') = A,F(AIK'). (50)

If F(K) is regular at the point K = A"1K’, then F,(K) is
regular at the point K = K’,

Proof: This is an immediate consequence of the
theorem in several complex variables that an analytic
function of an analytic function is analytic. This well-
known theorem is easily proved by using the Cauchy—
Riemann equations.

Corvollary A; Let F,(K) be defined by (50), where A
is fixed. Then F,(K) is regular at K = K’ if and only
if F(A"1K') is regular at K = A"1K’,

Proof: The first part of the corollary is just the
lemma. To prove the converse, apply the lemma to
the function

F"(K) = ALF,(AK) (51)
to show that F”(K) is regular at K if F,(AK) is regu-
lar at AK. But F"(K) is just F(K). The substitution
K = A1K' gives the desired results. The fact that the
inverses Al and A7} exist is essential to the proof.

Corollary B: The property of being regular at a
point does not depend on the choice of coordinate sys-
tem relative to which the components of the vectors
k are measured, provided the components in the two
systems are related by a Lorentz transformation.

Proof: The proof is the same as for the lemma.

Definition: A domain is an arcwise connected open
set.
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Definilion: A real domain is an arcwise connected
real set open with respect to the set of real points.

Lemma 6: Suppose F(K) isdefined (single-valuedly)
in a domain D(K,) containing K, and is regular at all
points of D(K,}. And suppose F(k) satisfies the co-
variance condition

F(K) = A,F(NIK), (52)
for A € L,and K and A"1K in a real domain D con-
taining the point K. Then for each point K in D(K)
Eq.(52) is satisfied for A€ N _(K), where N,(K) is
some neighborhood of the identity in L,

Proof: Let K be a fixed arbitrary point of DK ).
Since D(K,) is a domain there exists a continuous
curve K(t), 0 < ¢ < 1,from K to K, all points of
which are in D(K,). Let the distance between two
points be defined as maximum of the absolute values
of the differences of the components of the vectors
{%;}. Then the distance of a point K in :K) to the
boundary of D(K,) will be defined as the maximum
(real) number A(K) € +ch that every point whose dis-
tance from K is less than A(K) is inside D(K,). Since
D{K () is a domain A(K) > 0 for all K € D(K,). More-
over,

AK({) 2a>0, forO0<t<1, (53)
for if there were no positive lower bound a > 0 of
A(K(t)), one could find a sequence ¢,, 0 <, < 1,with
A(K(t,)) < 2. These ¢, would have to have an accu-
mulation point £, 0 <t < 1. But AK())) = b > 0.
Hence, for all ¢ such that the distance between K(¢)
and K(f) is less than 5/2, one would have A(K(t)) =
b/2,by the triangle inequality. Since K(t) is a con-
tinuous curve, the inverse map of the open set || K(¢) —
K()lI < b/2 contains an open interval A¢ about . But,
since A(K(t)) > b/2 for ¢ € At,only a finite number of
the ¢, can be in Af. Hence { cannot be an accumula-
tion point. This is a contradiction. Thus there is a
positive lower bound a.

Let the maximum value of |K(f)|l for 0 < ¢ < 1 be A.
Let N(K,) be a neighborhood of the identity in £ such
that if A1 € N(X,), then II(A-I);;— 6 | < (a/44). Then,
for A1 € N(K,), it follows that [[AIK(t) — K(t)| < a,
and the (continuous) curve K,(t) = A"1K(t) remains
inside of D(K,) for all 0 < ¢ < 1.

Let N, be a neighborhood of the identity in L such
that A 1K, € D for A1 € N,. The existence of such a
neighborhood follows immediately from the continuity
of A1K, in A at the identity. For any fixed Al € N, n
N(K,) = N,(K,) there is a real domain D(A,K;) C D,
with K, € D(A, K,), such that for all K € D(A,K,) the
points K and A"1K are in D N D(K ;). The existence of
such a D(A,K,) follows from the fact that K, and
AIK are in DN D(K,), in conjunction with the conti-
nuity of A"1K as a function of K. Thus (52) is valid
for any fixed Al € N N N(K,) for all K € D(A,K,).
The validity of (52) for fixed Al € N, N N(K,), for all
K in the real domain D(A,K,), together with the analy-
ticity of both sides of the equation, as functions of K
(Lemma 5) implies the validity also at the point K,
since one can analytically continue along K(t) with the
argument of the function on the right tracing simul-
taneously the curve K,(f), which remains inside the
domain of regularity D(K ).
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Lemma 6A: Lemma 6 modified by the substitution
of £ for L and of a (full complex) domain D, for the
real domain D is also valid.

Proof: Make these substitutions throughout the
proof of Lemma 6.

Lemma 7: Suppose F(K) isdefined (single-valuedly)
in a domain D(K ) containing K and is regular at
all points of D(K,). And suppose F(K) satisfies the
covariance condition (52) for A< L, and K and A'1K
in a real domain D containing the point K. Then (52)
is also valid for all K € D(K,)) and Ac £ such that
there is a continuous path A(#) € £,0 < { < 1, with
MO) = E and X1) = A such that K({) = AUHK €
D(Ky) for 0 < ¢t < 1.

Proof: The assumptions of the lemma are the
same as those of Lemma 6. Thus the conclusions of
Lemma 6 may be used; (52) is valid for every point
K € D(K,) for Al € N (K), a neighborhood of the iden-
tity in L. Following Hall and Wightman4 and Jost,?
the Lorentz transformations A in a neighborhood N of
the identity in £ can be parametrized by a continuous
one-to-one mapping A()) in such a way that the rep-
resentations of A1 and A, are regular analytic func-
tions of the A, for A" € N; and such that for A € NN
L the A, are real;and such that the origin in A ; maps
into the identity in A. Such a parametrization has
been given by Jost.7

Considered as a function of the A; the right-hand side
of (52) is an analytic function regular at all points for
which A1 € N and A'1K € D(K,). But for A'1 in the
real neighborhood of the origin N _(K) the right-hand
side of the equation is,by Lemma 6, equal to the left-
hand side, which is independent of A;. Thus the right
side must be equal to the left for all A = A(¢) such
that A1(¢') € N and A(t)K ¢ D(K) for 0 < t’ <,
since one can analytically continue to this point, the
right-hand side remaining regular. If for all 0 < { <
1 the A"1(¢) are not contained in N, then the continua-
tion can be carried out stepwise by expanding A 1(z),
in the manner specified above, about a finite sequence
of intermediate points, {,,and by using the group pro-
perties. The covariance equation is in this way vali-
dated for all points K, A"1K connected by a continuous
path A($)K that remains always inside the domain of
regularity D(K,). That only a finite number of ¢, are
required follows from the Heine~Borel covering
theorem.

Lemma 7A: Lemma 7 is also true if the real D and
L are replaced by complex D, and £.

Proof: Make these substitutions throughout the
proof of Lemma 7.

Lemma 8: Let F(K) be defined (single-valuedly)
and regular for points in a domain D(K,) containing
K,. And suppose

(54)

for A € L and A and A1K in a real domain D contain-
ing Ko. Then for every simple point K, € D(K,) there
is a domain Dy(K) containing K, such that the equa-
tion

F(K; Dy(K,) = A F(ALK)

F(K) = A F(AK)

(55)
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with A"1K € Dy(K;) and A € £ defines a (single-
valued) function F(K; Dy(K)) over the points K ¢
£Dy(K). This function is regular throughout its dom-
ain of definition and coincides with F(K) in the domain
Do(Ky) © D(Ko).

Proof: The assumptions are the same as those of
Lemma 7. Thus the covariance equation (54) holds for
all K and A"1K connected by a path A()K, 0 <t < 1,
that is everywhere in D(K,). Consider an arbitrary
point K; € D(K,). According to Lemma 4, there is a
domain Dy(K) containing K, such that the points of
every pair of points in D,(K,) connected by a Lorentz
transformation are connected by a continuous path
A(f)K, 0 <t < 1,that is everywhere in D(K,). Lemma
7 then ensures that the covariance equation (54) is
valid for all K, A'K € D (K;). This in turn ensures
that (55) defines a (single-valued) function F(K; D,
(K1)). To show this, suppose for some K € £Dy(K;)
the points A{K and A K are both in Dy(K;). Then
one can write

. Fy(K; Dy(K 1)) = Ay (F(ALK)
an
Fy(K; Dy(K;)) = Ay [F(AZK).

(56)

(57)

That these are equal follows from Eq. (54) expressed
in the form

F(NLK) = AL A, F((AFA)ALK),

which is true because both arguments are in Dy(K,).

(58)

Since F(K; Dy(K,)) is independent of the particular A
used on the right of (55), so long as A1K ¢ Dy(K,),
the values of F(K; Dy(K,)) in some neighborhood of
any K € £D,(K,) can be generated from a fixed A,
as a consequence of the continuity of A-1K as a func-
tion of K, for fixed A. That is, the inverse map of the
open set Dy(K;) of A1K's is an open set D,(K;) of
K's. But for fixed A the regularity of the left-hand
side of (55) is ensured by Lemma 5, since A'1K e
Dy(K,) C D(K,). Finally,that F(K;D,(K,)) coincides
with F(K) for K € Dy(K,) is true by virtue of (55)
with A =1,

Remark: Minkowski and Williams® have shown
that Lemma 8 can be proved without the restriction
to simple points. This restriction will therefore be
henceforth omitted. Lemma 4, on the other hand, is
not true for nonsimple points, as shown by a counter
example of Jost generalized by Seiler.®

Lemma 8A. The lemma remains valid if the real
D and L are replaced by a complex D and £.

Some concepts from the theory of functions of seve-
ral complex variables will now be introduced.19

Definition: A regular function element e is a
triple [K,;D,; F,(K)] consisting of a base point K,, a
domain D, containing K , and an associated function

F,(K) defined (single-valuedly) and regular in D,.

Definition: Two regular function elements will be
called equivalent if and only if they have the same
base point and their functions coincide in some neigh-
borhood of this point,

Definition: A germ is a set of regular function
elements such that
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(1) any two elements of the set are equivalent,
and

(2) any regular function element equivalent to an
element of the set is also in the set.

Definition: A germ neighborhood N(Dy, F(K)) is
the set of all germs containing a regular functions
element [)K; Dy; Fy(K)]. The domain Dy, and the func-
tion Fy (K) are called the base domain and the charac-
levistic function of the germ neighborhood, respec-
tively.

Definition: The topological (Hausdorff) space with
germs as points and germ neighborhoods as neighbor-
hoods will be called the germ space.

Definition: The domain of vegularity of a function
F (K) defined (single-valuedly) and regular in a do-
main D is the set of all germs connected to any germ

of N(D, F(K)) by a continuous curve in the germ space.

Definition: The unique germ g[e] containing e is
called the germ specified by e. (Uniqueness is easily
proved.)

Definition: The base point K(g) of a germ g is the
common base point of the e € g.

Definition: F(g)= F,(K(g)),with e € g. [F(g) is
independent of the choice of e € g. ]

Definition: Let N = N(Dy, F,,(K)) be a germ neigh-
borhood. Then, for K € D, define g (K) = g[e]
where e = [K;D,; F, (K)].

’

Remark: gy(K) is the unique g € N such that
K(gy(K')) = K'. Restated,gy(K) is the unique inverse
of K(g), subject to the condition that g € N.

Lemma 9: If the characteristic functions of two
germ neighborhoods N and N’ coincide in a domain
D C (Dy N Dy, then g5 (K) = g\(K), for K € D,

Proof: The associated function of any element e
of g (K) coincides with F,(K) for K in some neigh-
borhood N(K) of K € D. Thus it must coincide with
F,»(K) in N(K) N D and hence in some neighborhood
of K. Thus e is in g,.(K). Conversely every
e € g,,(K) is in g \(K).

Some terminology associated with Lorentz covariant
analytic functions will now be introduced.

Definition: A function will be called £ (o» L)-
covariant over a set of points S if and only if it satis-
fies

F(K) = AF(A-1K)
for any K and A such that A is in £ (or L) and both K

and A~1K are in S,

Definition: An orbil is a set of points K all con-
nected to a single point by Lorentz transformations
Ac &L,

Definilion: A vegular ovbilis a set of germs
whose base points cover exactly once the points of
an orbit, and such that the image in the germ space
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of any continuous curve in the orbit is a continuous
curve in the germ space.

Definilion: Let g(K) for K € LKy, K(g(K’)) = K',
be the germs of a regular orbit. This regular orbit
will be called £-covariant if and only if the function
F(K) = F(g(K)) is £-covariant over the orbit L£K,.

Definition: A domain of regularity will be called
£ -covariant if and only if it is a union of £-covariant
regular orbits.

Theorem 1: A function defined (single-valuedly)
and regular in a domain containing a point and L-
covariant over a real domain containing the point
has an £-covariant domain of regularity.

Proof: Let K, be the point in the real domain and
let the function be called F(K). There is a domain
D(K,) containing K, on which F(K) is defined and
regular. Thus the set ¢, = [Ky; D(K,); F (K)] consti-
tutes a regular function element. Let g, be the germ
specified by ¢,. This g, is in N = N(D(K,)), F (K)). Let
&; and g, be any two germs in N. Then there is a con-
tinuous curve in the germ space connecting g; and g.
In particular, if K(f) is a continuous curve in D(K,)
connecting K(g,) and K(g,), then g,(K(t)) will be a con-
tinuous curve in the germ space connecting g; and g,.
For consider any germ neighborhood N’ = N(D’,
F’(K)) that contains a germ g,(K(f))), where £, is some
fixed value of £, 0 < ¢ < 1, Let D” be a domain in
D’ N D(K,) containing K(fy). Any germ of N’ with base
point in D” is identical to the germ of N with the
same base point, for D” is a domain and hence the
function F'(K) must be identical with F(K) for K € D",
This is true because F(K) and F’(K) are both regular
over the domain D” and they coincide over some
neighborhood of K(f;) € D", since g(K(%,)) contains
both [K(t,); D; F] and [K(4y); D’; F’]. Since the func-
tions F'(K) and F(K) are identical for K € D", the
germs of N’ and N with base points in D” must be
identical, by virtue of Lemma 9. Because K({;) is in
the domain D”, and K(f) is a continuous curve, the in-
verse image of the points K(t) € D” contains an inter-
val Af that contains {; and is open with respect to the
set 0 <t < 1. The germs g,(K(#)) with ¢ in the inter-
val At are all in the arbitrary neighborhood N’ con-
taining g, (K (t,)). Thus, this curve g, (K(t)) = g(t) is
continuous. Hence any two germs in N can be con-
nected by a continuous curve. This means that the
word “any” in the definition of domain of regularity
can be replaced by “every” with no change in the
meaning. (That two continuous curves joined at their
end points give a continuous curve follows easily.)

Consider now an arbitrary germ g in the domain of
regularity of F(K). It is connected to 8, by a con-
tinuous curve g(t) in the germ space. Since g(f) is
continuous the inverse image of any germ neighbor-
hood containing a germ g({,)) contains an interval Af
containing £, that is open with respect to the set

0 < ¢ < 1. By the Heine—Borel theorem, the closed
bounded set 0 < f < 1 is covered by a finite number

of these intervals, A, with i = 1,2,...,n. Associated
with these intervals are corresponding germ neigh-
borhoods N, with i =1, 2,...,%n,such that,fort € A,

g(t) € N,. And there is then a sequence {t,} so that
g() is in both N; and N, .
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The assumptions of the theorem are a paraphrasing
of the assumptions of Lemma 8. Thus for each point
K, of D(K,) there is a domain Dy(K;) C D(KO) con-
taining K; such that F(X) is £- covarlant in Dy(K;).
The first N; can be taken to be N; = N. Take K; =

K (tl). Then K1 will also lie in the domain D,, in which lie
the base points of the germs of N,. The germ neighbor-
hood N, is characterized by the requirement that each
of its germs has an element having the domain D, and
the function FZ(K) Also, N, contains the germ g(,),
which is also inN; =N, and which therefore has the
element [K(t;) D(KO) F( K)] But then F,(K) and F(K)=
F, (K) must coincide with each other in some neighbor-
hood of K. But since F(K) is £-covariant in Dy(K,)
the function F (K) is £-covariant in some domain
containing K,. Thus the conditions for Lemma 8A are
satisfied for F,(K). Hence for any point K, in D,
thereisa domam containing K, such that F, (K )is .B-
covariant in this domain. Take K, = K(t, f The argu-
ment may then be repeated to give JZ-covariance ina
domain about K, = K(¢;) for i = 3, and by iteration, for
i =n — 1. In particular, there is a point K,_, of the
domain D,, in which lie the base points of N, such
that F, (K) is £~covariant in some domain containing
K, ;. Lemma 8A now shows that there is a domain
D, (K,) containing K, the base point of the germ g,
such that there is a function F(K) defined (single-
valuedly) over £D, (K ), where 1t is regular and £-
covariant, and Wthh comc1des with E, (K ) in D, n

£D (Kg) which contains K,. The germ nelghborhood
N, = N(&D,(K,), F, (K)) contams g, by virtue of Lemma
9 since F, (K comc1des with F,(K) in a neighborhood
of K, .

The set of germs g’ € N, with K(g’ ) e £K, constitute
an £-covariant regular orb1t containing g Let
g(K(g')) =g’ for g’ € N,. That any continuous K(t) €
LK, has a continuous 1mage g(K(t)) follows from the
argument given earlier, since g(K(t)) € N, (see
Lemma 10). The £-covariance of the set. g € Ng with
K(g) € £K, follows from the £-covariance of F, (K)
over £D, (K ) D £K;. Thus each germ g in the domaln
of regularlty of F(K) is on an £-covariant regular
orbit. Since all points of this orbit are connected to g
by a continuous path, they are also contained in the
domain of regularity of F(K). Thus each germ g in
the domain of regularity of F(K) is a member of an
£-covariant regular orbit each of whose members is
also in the domain of regularity of F(K). This is
what was to be proved.

Theorvem 1IA: Theorem 1 is also true if “L-co-
variant” is replaced by “£-covariant”, and the real
domain is replaced by a (complex) domain.

Definilion: A germ neighborhood will be said to
be £-covarian! if only if its base domain is of the
form £D and its characteristic function is £~-covari-
ant over £D,

Theorem 1': The domain of regularity of a func-
tion satisfying the conditions of Theorem 1 is a union
of £-covariant germ neighborhoods.

Proof: In the course of proving Theorem 1 it was
shown that each g in the domain of regularity of such
a function is in an £-covariant germ neighborhood
N,. All the points of this neighborhood are in the
domain of regularity since one is, by virtue of the

following lemma, which was also proved in the course
of proving Theorem 1.

Lemma 10: The image in a germ neighborhood of
a continuous curve in its base domain is a continuous
curve in the germ space.

The converse of this lemma is:

Lemma 10': The image K(g(t)) of a continuous
curve g(¢) in the germ space is continuous.

Proof: A continuous function of a continuous func-
tion is continuous. But K(g) is continuous, since given
any domain D containing K(g) one can take a germ
neighborhood N, containing g specified by a function
element whose domaln D', which contains K(g), is
contained in D. Then, for allg € N, K(g)e D.

Lemma 11: Let D be a real domain satisfying the
condition of Lemma 1 that points of D connected by
areal A € £ are connected by a A € L. Let there be
two converging sequences K; = K; and K; — K, whose
limit points K, and K, are in D. And suppose K, €
£K;. Then K, € £K,.

Proof: The scalar and pseudoscalar invariants
formed from corresponding vectors of K; and K, =
AK; are equal. Thus these points map into the same
points in the space of scalar and pseudoscalar invari-
ants. As the mapping from K to the space of invari-
ants is continuous, the converging sequences K, — K,
and KL - K map into converging sequences in the
space of the invariants. Thus K, and K0 have the
same scalar and pseudoscalar 1nvar1ants

In case 7, the rank of the Gram determinant of K, or
K,, is greater than two, it follows from a trivial
generalization of Lemma 2 of Hall and Wightman that
K, and K, are connected by a Lorentz transformation
A € £;that the transformation is proper in the case
v = 4 follows from the invariance of the pseudosca-
lar invariants, and for v = 3 there is sufficient free-
dom to allow A to be made proper. Thus the lemmma
is proved for the case v > 2.

Let #(K) be the number of linearly independent vec-
tors in the set K. And let n = max(n(K,),%7(K;)). The
above argument works equally well for all the cases
v =n. One constructs the orthonormalized basis vec-
tors e,(K,) and ¢,(K,) in the manner specified in
Lemma 1 above and obtains Ko A, Ky, where A, is
the real A € L defined by ¢,(K,) = A,e,(K,). Thus K,
and K, are connected by an element of £. This com-
pletes the proof for the case » =n.

Because K, and K, arereal, the only other cases are
n =7 + 1< 4. Suppose n(Ky) =7 + 1< 4. Then,as
in Lemma 1, one can construct a set ¢;(K), .
e,(Kg),e)K, ) + e5(Ky)which spans the space of the
vectors of K,. The combination g,(K,) + e;(Ky) is
chosen to be equal to some vector w of zero length
formed as a linear combination of vectors of K.
Such a vector must exist in this case. If w, the same
linear combination of the corresponding vectors of
K, is not zero, then one can construct a set

e, (Ky),. ., 6,(Kp), €5 (Ky) + e5(K,), by means of the
same operatlons as before, but with the correspond-
ing vectors of I?o The two + signs are independent
and will be specified by the condition that the A, de-
fined by e,(K)) = Ae (K,) is inL. For 7(K;) < 2 the
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sign of 63(1?0) is not determined by this condition and
it can, and will, be taken positive.

The points K, K;, and @ can be represented by the
transformed quantities K; = A;'K,, K/ = A;1K,and
w’ = Ajlw. This, in effect, refers the barred points
to the same coordinate system, e,(K,), used for the
unbarred points K, K;, and w. In particular o’ =

+ ¢4(Ky) + e5(Ky), where the + signs are the same as
the corresponding ones in w. The vectors w (or w’)
are what is left after removing from some vector of
K, (or the corresponding vector of Kj) the parts
along e, (Kp), . .., e, (Ky). In this same way one con-
structs from the sets K, = {k,,} and K} = {4} the
sets of light-zone vectors {w,} = {q,w} and {w} =

{a/ '} by removing the parts along e, (K), . .. ,e, (K).

That the vectors of these sets are colinear follows
from the condition# =7 + 1 < 4. In the special case
that w’ = w and q, = a/, one has again K, = A K, with
Aye L. Butif w’ #w oraq, #a,for some ¢, then

K, and K, are not connected by a A ¢ L. However,
these cases cannot occur. This will now be shown by
an examination of points in D near K, and K,,.

In the real 0-3 plane consider a set of small circles
{C(w,)} drawn around the points {w, } and a set of
small circles {C(w)} drawn around the points {w/}. A
set of points with one in each C(w,) corresponds to a
real point near K,. And a set of points with one in
each C(w;) corresponds to a real point near K,,. By
taking the circles sufficiently small, these two points
near K, and K, respectively, will be constrained to
lie in arbitrarily small real neighborhoods about K|,
and K, and hence in D.

The plan is to show that there is a real point arbit-
rarily close to K, connected to a point arbitrarily
close to K, by areal A € £,but not a Ae L. The sets
of points in the real 0-3 plane connected by A € L

lie on the various hyperbolas having the light-cone
lines as asymptotes. The circles are centered on
these light-cone lines, the C(w,) lying on the line

with positive slope and the C(w}) lying either on this
line or on the other one, depending on the signs in

w’ =+ gy(Ky) + e5(Ky).

If C(w,) and C(w}) lie on the positively and negatively
sloped light-cone lines, respectively, then there is
always a A € L connecting some point of C(w,) to
some points of C(w,). Moreover, there are then also
points in these circles connected by any still
“larger” A € L. The magnitude of the Lorentz trans-
formation is measured by the quotient of the initial
over the final (Euclidean) distances of the point from
the negatively sloped light-cone line. From these
facts it follows that some set of points, one in each
of a given set of circles along the positively sloped
light-cone line, can be taken into some set of points,
one in each of any given set of corresponding circles
along the negatively sloped light-cone line, by a
single Lorentz transformation A € L. Thus for the
cases w’ =z (¢4(K,) —e5(Ky)) onecan finda A e L
connecting some real point in any real neighborhood
of K, to some real point in any neighborhood of K,
even though the points themselves cannot be so con-
nected.

The same conclusion holds if one uses instead of
A € L the real A € £ obtained by multiplying the
A € L by a reflection through the origin in the 0-3
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plane. However, as will soon be shown, the points
connected in this way cannot be connected by any

A € L. Since by taking the neighborhoods of K, and
K, small enough the points will be in D, one obtains

a contradiction with the assumed property of D. Thus
this case w’ = £ (¢y(K,) — e;(K,)) can, in fact, not
occur.

To see that there would be points in D connected by
real A € £ but not by A € L, consider first the case
w’ =~ ¢yKy) + e5(Ky). A timelike point in the circle
C (w) will be carried to a timelike point in the corres-
ponding circle C{w’) by the real A ¢ £. Since these
two points are in the forward and backward light
cones, respectively, they cannot be connected by an

A € L. The other case,w’ = g4(K,) — &;(K,), occurs
only if » = 2, as previously mentioned. But now a
spacelike point in C(w) is taken to a spacelike point
in C(w’) by the real A € £. However, transforma-
tions involving the first two vectors, ¢;(K,) and ¢, (K;),
are not allowed, because the components of vectors of
K, and K;) in these subspaces are fixed and equal, and
hence these two spacelike vectors, which lie in the
right and left space cones, respectively, cannot be con-
nectedbya A € L.

The remaining cases are w’ =+ w, or zero. If w’ =

+ w and ¥ < 2, then the construction used above again
allows certain points near K to be connected to cor-
responding points near K;. One firstusesa A € L in
the 0-3 plane to take the points of the C(w,) to points near
the negatively sloped light-cone line, and then uses a
rotation through 7 in the 2-3 plane to bring the points
to the desired positions in the 0-3 plane. In particu-
lar, if w, and w; have the same sense, certain time-
like vectors near w, can be taken to timelike vectors
near w,. If w, and w, have opposite senses, then
spacelike vectors can be connected. However, if w,
and w; have the same (opposite) sense a spacelike
(timelike) point near w, can be carried to a spacelike
(timelike) point near w by a real A € £. But these
points cannot be connected by a A € L unless w = w’
and a, = a,. In that case K} = K; and K, =A,K,, as
asserted by the lemma.

The next case is w’' =w andr = 2, If v’ = w and

a, = a, for all ¢, then Kj = K; and K, = A, K, which
proves the lemma. If g, # g, for some ¢, then K, and
K, are, in fact, not connected by a A € L. In any
event it is sufficient to show that w’ = w andr» = 2
imply ¢, = a/ for all .

The conditions K; = K, and K/ = AK; = K} are now
involved, for the first time. Let e, (K), &,(K), and w (K)
be the linear combinations of the vectors of K that
become e, (Kop), e,(K,), and w (K;) = w when K becomes
K,. The ¢(K) are then generally not orthonormalized
and w(X) is not a null vector. The A; are specified

by the conditions A, € £ and by the quantities e, (K;) =
€1, &2(K) = €5,and w(K) = w;;and ¢/; = ¢,(K}) =

e (NK) = Mey(K)) = Mgy, efy = Ay, and ] = Ajw;, at
least for sufficiently large i, where the ¢, ¢,,, and

w; are linearly independent. For these quantities give
the effect of A; on three linearly independent vectors.
But since ¢/; — ¢, €5 2 ¢,,and w/ = w,, it follows
from Lemma 3 that A; - 1, for Lemma 3 says that,
given any neighborhood N of the identity in £, one can
find a neighborhood N’ of (e, (K;, €,(K,), w) such that
any points in N’ connected by a A € £ are connected
by a A € N. Since for the case of three linearly inde-
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pendent vectors the A € £ is uniquely defined by
these points, one concludes that since the sets (¢,
€9, w;) and (g4, €/5, w/) both converge to (e;(K;),
e,(K,), w), the A, € £ connecting them must approach
the identity. But if A; > 1 and K; — K, then AK, —
K,. Thus K, = A K,, which proves the lemma for this
case.

If w’ = — w, a reflection through the origin in the 0-3
plane takes one to the previous case w’ = w. Be-
cause of the condition on D this case is then ruled
out, since K is connected to K, by a real A € £ but
notbyaAc L.

Next there is the case w’ = 0. If all of the w) =0
[i.e., if n(&,) = 7], then this case is ruled out by the
same argument that was used in the case w’ =

— o(Ky) + e5(K,); thereare points of D connected by
real A € £ but not by A € L. [The possibility n(K;) =
Ky =v with e;(Ky), . . ., e, (K,) all spacelike is also
ruled out in this way, it might be added.] If w’ =0
but some w, is a nonzero vector lying along the nega-
tively sloped light-cone line, one may again use the
same argument as was used for the case w’ =

— 5(Ky) + eg(Ky) case; the C(w’) is simply centered
at the origin instead of at its former position.

For the case r < 2,w’ = 0,and w) = a/w # 0 for some
a, the argument used in the case » < 2, w’ = + w, goes
through without any change.

Finally there is the same case but with » = 2. Every
w, and w; is either zero or on the positively sloped
light-cone line. For every a either w, or w; is zero;
otherwise it can be made into the case w’ =+ w. And
not every w, is zero; otherwise it is the previously
considered case n(Ky) =v. This means that the A,
are such that the following conditions can be satis-
fied:

(eil’ €25 wi) - (el(KO)iez(Ko)a w),
/&i (eili eiZ’ wi) - (el(Ko), ez(K())’ 0))

(ei”p €5, w,'") i (31(Ko), ez(Ko), wl),
and

A (e, €, w!') = (e (Kp), e5(Ky), 0).

Here the double-primed quantities are a particular
set of primed quantities, the w;” being an w/(K,) whose
limit is w; = 0.

These two conditions on the set A; are incompatible.
The first two equations imply that, for sufficiently
large i, the points A,w must lie in a narrow conelike
region about the negatively sloped light-cone line,
whereas the second two imply that A;w must lie far
from the origin in some narrow cone-like region
about the positively sloped light-coned line. The in-
compatibility of these conditions rules out this last
possibility.

The consequences for the A;w asserted above follow
from a detailed examination of the converging se-
quences. A general description of the argument
should be sufficient. Since (g4, ¢;,) = (¢;(K;), e,(Kp))
one can choose basis vectors ¢,; and e;; in the sub-
space orthogonal to the one spanned by the (¢4, ¢;,)
in such a way that (ey;, e5;) = (g9(Ky)e5(K)). The
(€y:» €3:), unlike the (¢, €,) are to be parts of an

orthonormal basis. A set (€55 €3;) similarly related
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to the (e/y, ¢/,) = A;(e;4, €,5) is constructed. Then A,”

is defined by the conditions A;" (¢4, ¢,,) = Mg, ¢ 23
and A;” (ey;, €5;) = (45, €4;). Since (g4, €5, €55, €,;) and

(e}, e}y, €3, €p,) both converge to (e, (K ), e,(K,),
eB(IKO), eolK ), it follows that A;” — 1, by Lemma 3.
Since A7 (e, e;5) = A (e;q, e,5), it follows that A, =
(A;”)-1A; acts only in the ¢, e;,) subspace. Also
since (e, €3, w;) = (¢,(Ky), e5(K), w), with w =
eo(Ky) + e5(K), one has w, = ?eol. + eg,).

Since A, — 1 and A; = A ;A the condition A ,w;, =~ 0
implies A;“w, = 0. Since A, acts only in the (e;,, e5,)
subspace, the problem is reduced now to a problem
in this two-dimensional space, The two conditions
A%, ~0and w, = e, + e3; imply that A, e, +

e5;) — 0; the general Lorentz transformation in this
two-dimensional space is represented by

(eg; + €3;) = (exp T;) (ey; + e3;)
and

(€g; — €3;) — [exp(— T})] (ep; — e3,),

and hence one cannot transform a point near (g,; +
esi) to a point near the origin unless Re I; 2> 0, But
in this case the point (¢y; + e;) is also brought close
to the origin. Moreover, any point is brought closer
to the line A(ey; — €5;). Thus the point w will be
brought closer to the line A(gy; — €;;). As i increases,
the lines A(gy; — €;;) are constrained to lie in smaller
and smaller cones about the line ey (K,) — e;(K;)).
Thus for sufficiently large ¢ the point w must be taken
by A, closer to a point near some small cone about

Aey(Ky) — e5(Ky)), the cone becoming narrower with
increasing 7. Thus for sufficiently large i the Aw are
constrained to lie in a conelike region about the
eo(Ko) — e5(Kyhxis.

If, on the other hand, A;! takes a point near the (eg; +
ej;) axis to a point near the origin, then Re T, >> 0.
But then under A, all points are moved further from
the line A(¢g; — e3;) and closer to the line Alef; + e3;).
Thus A;jw must for sufficiently large ¢ be far from the
origin in a narrow cone-like region about the line
Mey(Ey) + e5(K,y)). By taking i large enough, these two
cones can be made arbitrarily narrow. Hence the
allowed regions will not overlap. This gives the con-
tradiction.

Theovem 2: Let D be a real domain satisfying the
conditions of Lemma 1. Let F(K) be defined (single-
valuedly) and L-covariant over D, and be regular at
points of D, in the (weak) sense that for any point
K’ € D there is a domain D(K’) containing K’,and a
function F(K, K’) that is regular at points K € D(K’)
and which coincides with F(K) at points D, (K”), some
real domain contained in D N D{K’) and containihg K.
Let C be any closed, bounded subset of D. Then there
is an £-covariant germ neighborhood whose base
domain B = £B contains C and whose characteristic
function coincides with F(¥) for K ¢ C.

Proof: Let K be any point of C. Let C(K,,p) be a
polysphere of radius p centered at K,. Let p; > 0 be
a monotonically decreasing set of radii converging to
zero, and let the first p; be small enough so that
C Ky, p;) © D(Ky), for all i, Suppose K, is an infinite
sequence of points in £C such that K; € C(K,, p,) and
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such that F(K, K,) = F'(K,), where F'(K) is the
(single-valued) £-covariant extension of F(K) to £D,
which according to Lemma 1 exists. For each point
K, ¢ £C there is a point K; € C N £K;. Since C is
closed and bounded, the K, have an accumulation point
K, € C,and one can find a subsequence K, 2> K, € C.

The point K, cannot be on £K,,. If it were, there would,
according to Lemma 1A and the property of D, be a
A € L such that Ky € AK,. This A would map the real
domain Dr(KO) containing K, into some real domain

containing Ro € C. The intersection of this domain
AD,(K,) with D contains a real domain D/(X,) contain-
ing K,. At points of D;(K,) the value of F(K) is given
in terms of F(K) at points of D, (K;) by the L-covari-
ance condition. Now according to Lemma 8 there is
an £-covariant germ neighborhood, with a base do-~
main £D,(K,), having a characteristic function that
coincides with F(K; K) for K € D y(K,) C D(K,). The
value of F(K) at points of D] (K;) N £D,(K,) must coin-
cide with the value of the characteristic function at
these points, since both are given in terms of F(X)

at K € D (K,) by the L-covariance condition. But
then F’(K) must coincide with this characteristic
function for all points of £D)(K,) N £Dy(K,). There-
fore F'(K,) = F(K,,K) for all K; € eﬁD;(KO(; NDy(Ky)-
This precludes the possibility that a subsequence of
the K, € C converge to K,. Thus the limit point K
cannot lie on LK.

But according to Lemma 11 the point K, must lie on
£LK,, since K; 2 K4, K; — K, Ky and K are in D, and
K, e £K,. Thus there can be no infinite sequence of
K, with the specified properties. In particular for
some p, > 0 there can be no points K, € (C(Kg,p) N
£C) with F'(K,) = F(K,, K,).

Take some pj, with py > pjy > 0 such that C(K, pp) C
Dy(K,). Then the restriction of the £-covariant germ
neighborhood over £D,(K,) to the £-covariant germ
neighborhood over JiC?K o» Ph) is an £-covariant germ
neighborhood whose characteristic function coincides
with F/(K) for K € (£C N £C(K, pp)).

The point K, was an arbitrary point of C. This con-
struction can be carried though for every point

K’ € C. Let the radius corresponding to pj, but for
the general K’ € C,be denoted by p(K’). One can take
plK’) < A, some positive upper bound.

Let 7, — 0 be an infinite sequence of positive numbers
that decrease monotonically to zero. Let K, be an
arbitrary point of C and let C(K,, 7(K)) be a poly-
sphere of radius 7(K,) about the point K,. Let 7 (K) >
0 be less than p(K) and less than v,. Let K, be a new
set of points such that for each K, there isa K; € C
such that K, € C(K,, 7,(Ky)) N LC(K, 7 (K})) and such
that the characteristic functions constructed above
for K, and K/, fail to coincide at K = K. Either an
infinite sequence of K, can be found or there is some
alK ) such that for r; < a{K,) no such K; exists. Sup-
pose there is an infinite sequence of K,. For each K|
there is a K, ¢ £K, that is in C(K, v (K?). Since the
union of the C(K', p{K")), K’ € C,is a-bounded set the
K; must have an accumulation point K. This point
must be in C, since the ¥ (K}) = 0. This point K, is a
limit point for a subsequence of the K,. The other K,
can be omitted. This limit point must, according to
Lemma 11, lie on £K,. By virtue of the property of
D there must then be a A € L such that K, = AK,.
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Thus K, is in £C(K,, p(K,)). But since K; = K, and
K} — K, also K = K, and the K] € C must be in
L£C(K,, p(K ), except for a finite few which can be
omitted. Then also the C(K/, 7 ,(K})) will be com-
pletely inside £C(K, p(K ), except for a finite few,
which can be omitted. But then the characteristic
functions over £C(K, p(K,)) and £C(K’, p(K’)) must
coincide at the points in C(K{, » (K})) since they coin-
cide over points of C contained in this polysphere,
whose intersection with £C(K,,, p(K,)) is a domain,
C(K,r (K?)). But then the two characteristic functions
must coincide at K, and hence also at points of £K,
and hence at K,. This contradicts the assumption con-
cerning the K,. Thus there cannot be an infinite se-
quence of K, satisfying those conditions, and hence
there is an a(K;) such that for », < a(K) the charac-
teristic function over £LC(K, p(K)) coincides with the
characteristic function over £LC(K', p(K’)) for all

K’ ¢ C,at all points K € C(K,,7;(K)) N LCK',7;(K'))
and hence at all points K € £C(Kyp, 7;(Ky))N LC(K7,
7;(K")), where 7,(K) < min (v;, p(K)).

The point K, was an arbitrary point of C. Thus there
is for every K’ € C a characteristic radius a(K’) > 0.
If there is no lower bound @ > 0 such that a(K’) =

a > 0 for all K’ € C, then one can find a sequence of
K; € C such that a(K;) > 0. These K; must have an
accumulation point K € C, though a(K) > 0. But such
an abrupt jump in a(K) at K = K is not possible, for if
b(K) = min {a(K), p(K)} then certainly a(X) = 6(K) > 0
for K ¢ C(K, 3b(K)) n_C, since for these K all points of
C{K,3b(K)) are in C(K, b(K)), where the various cha-
racteristic functions coincide even with the weaker
limit a(K) on the 7;, and hence certainly for 7, < 36 (K).
Thus there must be an 2 > 0 such that a(X’) > a for
all K’ € C. Thus the union of the £~-covariant germ
neighborhoods over the base domains £C(K’,H’(K’)),
with K’ € C and '(K’) = min (g, p(K’)), satisfies the
required conditions; its base domain contains all
points K’ € C, it has an £-covariant characteris~

tic function defined (single-valuedly) over its base
domain B = £B, and this characteristic function coin~
cides with F'{K) for K € B n £C.

Definition: An enlavgement of a germ neighbor-
hood N is a germ neighborhood containing N but not
contained in N.

Definition: A germ neighborhood N will be called
maximal if and only if no enlargement of N exists.

Lemwma 12: Every germ neighborhood is con-
tained in 2 maximal germ neighborhood.

Proof: Let N be an arbitrary germ neighborhood.
A maximal germ neighborhood N,, > N can be con-
structed as follows: Let {K;} be a denumerable se-
quence of points that is everywhere dense in the space
in which lie the base points of the germs of the germ
space. Let the K, be enumerated. If a point K; is
reached that is in the base domain of an enlargement
of N, then replace N by this enlargement (probably
one of many possible enlargements) and proceed
iteratively with the enumeration of the points of the
sequence {K;}. Because the union of a (finite or infi-
nite) set of open sets is an open set, the result of this
denumerable sequence of operations is a germ neigh-
borhood N, since the base domain D, is certainly con-
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nected and the function F,(K) is defined (single-
valuedly) over D, and is regular at any point in D,.

Let D, be the set of accumulation points of the points
K < D No enlargement of Nz can contain a point
whose base point X is not in D,. For any such point
K must be an accumulation po1nt of points K, not in
D,. Hence any enlargement containing a pomt with
such a base point K would also contain a point with
base point K, notin D,. This is impossible, for if
there were such a K, then, when this K; was reached
in the enumeration, it could have been included in the
base domain of an enlargement of the then current
germ neighborhood, since enlargements of enlarge-
ments are themselves also enlargements. But the
construction was such that if any K; can be included
in the base domain of any enlargement of the then-
current germ neighborhood then it is in fact included
in the enlargement associated with this K,. Thus this
K, wouldbe in D,. Thus no K, not in D, and no accu-
mulation point K of these K, can be the base point of
a point in any enlargement of ; the base points of
all points of every enlargement of N, are in D,.

If a point with base point K € D, is in an enlargement
of N, then the value of the characteristic function of
the enlargement at K = K is unique; it is the same
for any enlargement. For in order that a point with
base point K € D, be in an enlargement of N, the
corresponding characteristic function must be de-
fined (single-valuedly) and regular in a neighborhood
N(K) of K, and it must coincide with F, () for K €
D, NN K_) Thus it must coincide with E (K) at the
po1nts K; € D, N N(K), which are dense in a neighbor-
hood of K. But the value of F, (K) at these points then
determines the function at K K by virtue of the con-
tinuity requirement implied by the regularity at K of
the characteristic function of the enlargement.

Let D), be the subset of D, consisting of all the points
of D, C D and of all the base points of the points of
any enlargement of N,. Since the D, is a union of
domains each of which has a point in common with
D, the set D, is a domain. Since the value of the
characteristic function of any enlargement of N, is
uniquely defined for every K € D,, one may denote

it by F,(K). This function is regular at every K € D,
because it is defined for K € D,, by an enlargement
of N,. Thus one may define a germ neighborhood

Ny = N(D,, F,,). This germ neighborhood contains N,
and hence N. Moreover, this germ neighborhood N,,
is maximal. For any enlargement of N,, would also
be an enlargement of N,. But no enlargement of N,
exists that is also an enlargement of N,, because N,,
contains every point of every enlargement of N, .

Lemma 12A: Every £ -covariant germ neighbor-
hood is contained in a maximal germ neighborhood
that is £-covariant.

Proof: LetN = N(D,F) be an £-covariant germ
neighborhood. If an enlargement of N exists, then an
L£~covariant enlargement also exists. To prove this,
note first that any enlargement of N is a domain con-
taining a point of N and some point not in N. By con-
necting these with a continuous curve one can, by a
simple construction, find, in the enlargement, a point
P, not in N such that any neighborhood of Py contains
a point of N. Let the base point of P, be K,. Accord-
ing to the Corollary to Lemma 8 there is a domain
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Dy(K ) containing K, such that the function defined

in Dy(K,) as the characteristic function of the enlarge-
ment of N can be extended to a function F'(K) that is
£-covariant throughout £D(K,) and regular there.

It must coincide with the characteristic function of
the original £-covariant germ neighborhood, wher -
ever both are defined, since both functions are £-
covariant over their domains of definition and they
coincide in Dy(K;) N D, which contains a point of
every orbit common to both domains. Thus the union
of the original £-coinvariant given neighborhood N
with the £-covariant germ neighborhood N’ =
N(£D,, F') constitutes an enlargement of the original
one, and this enlargement is £-covariant. Thus if an
£-covariant germ neighborhood has an enlargement
it has an £~-covariant enlargement.

By virtue of this, one may proceed just as in Lemma
12, using however only £-covariant enlargements.
After running through the denumerable set K; one has
an £-covariant germ neighborhood N, =N (D,,F, )
Now, no point not in D, can be the base_ point of an £-
covariant enlargement. The set D,,< D, is defined by
using only £-covariant enlargements. Thus N,, =
N(D,,, F,,) is a germ domain that is maximal with
respect of £-covariant enlargements. But then
according to the first paragraph N,, is also maximal.
Thus it is 2 maximal germ neighborhood that is £-
covariant,

Definition: The base domain of a maximal germ
neighborhood will be called a sheet.

Theorems 1A and 2, in conjunction with Lemma 12A,
are summarized in

Theorem 3: Let F(K) be a function defined (single-
valuedly) over a real domain D. For every A in the
real proper orthochronous homogeneous Lorentz
group L and every K such that K and AK are in D, let
F(K) satisfy the Lorentz covariance condition

F(K) = AJ1F(AK).
If F(K) is regular at some point K € D, then the analy-
tic continuation of F(K) from the neighborhood of this
point is defined over a manifold covered by a set of
sheets each of which maps onto itself under any ele-
ment of the proper homogeneous complex Lorentz
group £. And for any sheet the associated function
defined (single-valuedly) and regular at all points of
this sheet satisfies the Lorentz covariance condition
forallA ¢ L.

Moreover, if every point of D is a regular point of
F(K) and D has the property, specified in Lemma 1,
that any points of D connected by a real A € £ are
connected by 2 A € L, then any closed bounded sub-
set C of D can be completely contained in a single £-
covariant sheet, with F(K) coinciding with the function
defined over that sheet for K € C.

The restricted mass shell is the sub-
k| that

Definition:
set W in the space of points K = {k,, ...,
satisfy the » mass constraints

i=1

PIY

k2= > (B;*)2 = m;2,
u
the four conservation laws
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E ki” =0,

and the condition that at least one pair of vectors k,
from the set K = {k ceny n} be linearly 1ndependent.
The m; are fixed pos1t1ve numbers and n = 4.

“:0’172:37

Lemma 13: The restricted mass shell W is a
(32 — 4) complex-dimensional manifold.

Proof: Consider any point K € W. Let the &, be
ordered so that the last two are linearly 1ndependent.
Let A(K) be a Lorentz transformation that is such that
the energy components of the vectors of K K'(K) =
A(K)K are all nonzero. Such a A(K) surely exists
since the K are a finite set of nonzero vectors. Let
the components 1, 2, 3, be numbered so that

k’Ol/le’0 # k'3, /k/3. This is possible because k, 4

and k are linearly independent. By a small change in
AK) that does not upset the above inequalities, one
can also ensure that (/0 + %/0)2 = (k)3 + k3)2,
since k,_; + &, = 0.

With A(K) fixed in this way the set of vectors K'(K, K)
is defined by K’ (K, K) = A(K)K. The set Z(K,K) is
then defined as the set of (3# — 4) complex variables
consisting of the three space components of the first
(n — 2) vectors of K’'(K, K) and the first two compo-
nents of the (n — 1)th vector of K’'(K, K). The set of
functions Z (K, K) are analytic functions (in fact linear
functions) of the vectors of K. They define a set of
mappings of K space onto Z space.

By virtue of the conditions that have been imposed on
the vectors of K’ the inverse transformation K'(K;Z)
that maps Z back into K’ € W is uniquely defined for
Z ¢ U(K),a domain containing Z = Z (K, K), and is an
analytic function of Z there. This follows from
simple algebra or from the implicit funetion theo-
rem,*! the conditions of which are easily verified.

The set W can be made into a topological (Hausdorff)
space by defining the open sets in W to be the restric-
tion of open sets in K space to W. The topology in K
space and Z space will be taken as the usual one in-
duced by the Euclidian norm. With the topology of W
defined in this way, the continuity of the functions
K(K;Z) and Z (K; K), considered as mappings between
K space and Z space, which follows from their analy-
ticity, implies that these mappings are continuous
mappings between U(K) and its image Uy (K) C W. For
if a neighborhood of a point Z € U(K) maps into a K-
space neighborhood of its image K = K(K;Z), then it
must also map into a W-space neighborhood of K =
= K(K; Z), since it maps into W. And, conversely, if
a neighborhood of K € W in K space maps into a
neighborhood in Z space, then its restriction to W
also maps into this neighborhood. Thus the transfor-
mation K(K; Z) defines a one-to-one continuous map-
ping of neighborhoods of K © W contained in Uy (IT)
onto neighborhoods of Z contained in U(K). Smce the
inverse is also continuous, the transformation is, by
definition, a homeomorphism and the open sets in

Uy (K) and U(K) are homeomorphic images of each
other. Since K was an arbitrary point of W, the set
W has an open covering by sets homeomorphic with
open sets of C 379, and hence W is a (3n — 4) (com-
plex)-dimensional manifold,12

Definition: The functions K(K; Z) and Z(K; K) will
denote the functions introduced in the proof of Lemma
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13. The function Z(K; K) is defined for K € W and

for all K, and for each K € W it is an analytic func-
tion of K. The function K(K; Z) is defined for K ¢ W
and Z € U(K),a domain containing Z = Z(K, K), and
for each K € W it is an analytic function of Z for

Z € U(K). The function K(K; Z) maps points Z € U(K)
into UW(K) C W. Its reciprocal is Z (K, K) in the sense
that Z(K; K(K; Z')) = Z’ for Z' € U(K) and K(K;
Z(K;K')) = K’ for K e UW(K) cWwW.

Remark: The set Uy(K), as a homeomorphic
image of the domain U(K), is a domain,

Definition: The mapping ¢ (K) is a mapping of
K € Uy(K) to Z € U(K) defined by ¢(K)K = Z(K; K)
for K € W and K € U, (K).

Definition: The restricted mass shell W together
with the complex structure induced by the collection
{U(&), (K}, K € W, is called the complex analytic
manifold W.

Definition A: A function M (K) defined on a res-
tricted mass shell W will be called regular at K €
W if and only if M(¢p-1(K)Z) = M. ¢ 1(K))Z is a
regular function of Z at Z = d)(K)K

Definition A': A function M(K) defined on a res-
tricted mass shell W will be called vegular at K <
W if and only if Mo ¢~1 is regular at Z = ¢K for
every one-to-one mapping ¢, such that 12 =
K(Z) € W is an analytic function at Z = ¢X.

Lemma 14: Definitions A and A’ are equivalent.

Proof: If M(K) is regular (4’) at K ¢ W, it is
certainly regular (A) at K € W since ¢(K) is a par-
ticular ¢. If M(K) is regular (A) at K € W and ¢ is
a one-to-one mapping such that ¢~1Z = K(Z) € W is
an analytic function at Z = ¢K, then (Mo ¢~ 1(1?) =
MK(Z)) = M(¢p~UK) Z(K; K(Z))). But Mo ¢-1(K) is an
analytic function of its argument Z for Z = Z(K; K),
and Z(K; K) is an analytic function of K for K = K,
and K(Z) is an analytic function at Z = ¢K. Thus
Mo ¢! is an analytic function of Z at ¢K, since it is
an analytic function of an analytic function of an
analytic function.

Theovem 4: The preceding theorems and lemmas
remain valid if F(K) is replaced by M (K) defined on
a restricted mass shell W, and all domains are taken
to be domains relative to W.

Proof: The mass shell contains all points having
the same scalar invariants as any point on it, and in
particular all points on any orbit intersecting it.
This is the only global property of the K space that
was used in any of the above proofs. For local pro-
perties one replaces the topology of K space by the
topology of W space. Some of the proofs become
vastly simplified because for real K € W one has
n=r.

Remavk 1: Any real domain of W satisfies the
condition of Lemma 1;two real points of W connec-
ted by a real A € £ that is not a A € L must have
opposite energy components, and hence they cannot
both be in a real domain in W, The M, functions have
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been shown to satisfy the L-covariance condition at
regular physical points. Thus if D, is a real (physi-
cal) domain of regularity of M, (defined over W),
then, by Theorem 3, any closed bounded set C C D,

is contained in a sheet S that maps onto itself under
any A € £, and the function M, has a single-valued
analytic continuation throughout S, and is £ covariant
there.

Remark 2: One consequence of the above re-
mark is a slight weakening of the assumptions need-
ed for the S-matrix proof of CPT invariance. In the
original proof3 the postulate of minimal analyticity
required the existence of a physical sheet that was
bounded by cuts defined by equations involving only
scalar invariants. This condition on the boundary
was imposed specifically to eliminate problems
associated with a possible multivaluedness in the
continuation to the CPT image point. However,a
consequence of Theorem 3 drawn in the above re-
mark is the existences of the single-valued £-co-
variant continuation to the CPT-image point.13 The
proof of CPT invariance in this way is similar to
the field-theoretic proof of Jost?; that proof rested
heavily on Lemma 1 of Hall and Wightman, which is
rather analogous to Theorem 3.

Remark 3: In the construction of the decomposi-
tion of the analytic M, functions into analytic func-
tions of scalar invariants times standard {polynomial)
covariants,15:16 the £-covariance of the domains of
regularity is a basic ingredient. A fundamental re-
sult that can be drawn from this paper (Theorems 1
and 3, and the L-covariance at physical points estab-
lished in Ref. 1) is that any domain of regularity of
M_ containing a physical point is £-covariant. Since
M, is defined by analytic continuation from physical
points, any domain of regularity of M, is £-covariant.

Remark 4: Hepp'S has shown that the complex
mass shell is a “normal analytic set.” It follows that
Theorem 4 can be proved on the entire complex mass
shell: The restriction to the restricted mass shell W
is unnecessary.

Remavk 5: The results of this paper have been
extended to the orthogonal and symplectic groups by
Seiler in Ref, 17.
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APPENDIX: GENERALIZED SPINOR CALCULUS

The Lorentz transformations AY (A, B) are defined by
the equation

1567
Ao,B = g, \:(4,B), (A1)

where g, = (0, 0) are the usual Pauli matrices, and
A and BP are unimodular 2 X 2 matrices. The uni-
modular 2 X 2 matrices form a group. The canonical
irreducible representations of this group of dimen-
sion (2¢ + 1) are generated by the recursion relation

A(a)a’a =Cy la,a;B,y)Cy la,a’; B, 7’)A(b)BIB A(C))"y,
(A2)

where the coefficients C are the usual Clebsch-Gor-
dan coefficients. The A(Y/2) jdentified with A.

Generalized spinor indices of order (2a + 1) are in-
troduced. They can be either upper or lower and
either dotted of undotted. The distinction between
indices of these various types is with respect to the
effect upon them of the operator A,. The action of
this operator is defined as follows:

AS go¢ =A (a)acx’ ga” ASE& = §(’X,B (a)&:i:’

ASEO‘ = fa’ (A@)1 S AL = (B@)-1 o, ga! 3)
Here B @ is defined by the analog of (A2) with B's

in place of A's. If a function has several spinor in-
dices, then A_acts individually on each in the manner
given by (A3).

Let f(V) be a function of a set V = {v- v, } of 4-vec-
tors. Let AV = {Avy,...,Av,}, where

(Av) = A¥,(A,Bv, (Ad)
If f/(V) carries spinor indices and satisfies the equa-
tion

A f(V) = f(AV), (A5)
then / will be called a covariant spinor function. The

Pauli matrices oy will be considered to have matrix
elements g, ;. Then the function

gw)=o-v (A6)
is, by virtue of the conventions adopted, a covariant

spinor function.

A generalization of the Pauli g, 3 to higher dimen-
sion is defined by the recursion formula

0@y o= Cocl@, @5 8,9)C, (@, 67387, 3)
b c
X Oury g5 ™ vy (A7)

where a = b + ¢, Here (u) = {“1, . --’an} is a set of
20 vector indices and (u) = (') + (u”). The of,y is
symmetric and traceless in each pair of tensor indi-
ces, 16
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We introduce an inductive method to estimate the shift §F in the vacuum energy, caused by a perturbation 6H of
the ®(¢), Hamiltonian 4. We prove that if 6H equals the field bilinear form ¢(x, ¢), then 6E is finite. We show
that the vacuum expectation values of products of fields (Wightman functions) exist and are tempered distribu-
tions. They determine, via the reconstruction theorem, essentially self-adjoint field operators ¢(f), for real
test functions f< $ (R2). We also bound the perturbation of the ®(¢), Hamiltonian by a polynomial (®, (¢))(h) =
oM, s0 long as @ + @, is formally positive. In that case, and with zll,=< 1, 8E is bounded by const(l + diam

supp A).
1. THE MAIN RESULTS

We derive new estimates on the vacuum energy in the

®(¢), quantum field model. These estimates permit
us to establish one of the missing Wightman axioms
for ®(p),.

Theovem A: The Wightman functions or vacuum
expectation values

(R, 0(x1,1)0(xg,t5) - 0(x,,1,)9), 1.1)
for the ®(p), model exist as tempered distributions
in 8'(R2%),

Our estimates bound the shift in the vacuum energy
due to a local perturbation of the Hamiltonjan H. The
simplest such estimate is

Theorem B: The field ¢ (x,?) is a bilinear form on
the domain DH1/2) X D(HL/2),and H + ¢(x,1) is
bounded from below.

Other new results for the ®(p), quantum field model
are established in Theorem 1.1-Corollary 1.3. The
methods and estimates of this paper appear to have
other applications. For example, it should be pos-
sible to show that the Wightman functions (1. 1) have
exactly the singularities predicted by perturbation
theory. Furthermore, the methods used here appear
useful in the study of the more singular ¢% model.

Solutions to the ®(p), model were constructed in
earlier work of the authors and of Rosen. They are
known to satisfy the Haag—Kastler axioms for quan-
tum fields, and most of the Wightman axioms, as was
shown by the authors, Cannon and Rosen. See Refs. 1
and 2 for references, notation, and proofs.

The Hamiltonian operator in the ®(¢), theory is de-
fined as the limit of approximate, or cutoff, Hamil-
tonians H(g),

H(g) = Hy + Hy(g) — E(g)1. 1.2)

J.Math. Phys., Vol. 13, No. 10, October 1972

Here H, = H(0) is the free Hamiltonian for bosons of
massm > 0,and

H(g) = [ :®p(x)):g(x)dx. 1.3)
The space cutoff g has compact support, and
0=g(x)=1. (1. 4)

The vacuum energy E(g) is a finite constant (diver-
gent as g —» 1) and chosen so that

0 = inf spectrum H(g). (1.5)

Certain uniform estimates on H(g) allow us to pass to
a limit g = 1 and so obtain a Hamiltonian without cut-
offs,

H = limH(g), (1.6)

see Refs.1 and 3.

We now describe our new uniform estimates for cut-
off Hamiltonians. We use these estimates to establish
properties of the theory without cutoffs (g = 1), such
as Theorems A and B.

Case 1. Perturbations of arbilrary degvee: Let h
be a real function |#], = 1, D = 1 + diam. supp.
h < ©. Let p = max{deg®, deg®, |, and let

0= g(x),

for all real ¢, x. If deg® = deg®, and ® = ®,, we as-
sume that the coefficient of the degree p term in ®g +
®,h is bounded away from zero on a neighborhood of
supp k. Let

6H= [ 10 (p(x)) : h(x)dx = 6H(R),
oF = inf spectrum {H(g) + 6H} = 6E(g, k).

0=CEg(x) +C(Or(x) (A7)

(1.8)
(1.9)

Case 2. Linear periurbalions: Let h be a real C®
function with



1568

posium on the Lorenlz Group, Seventh Annual Summer Inslilule
for Theorelical Physics, Boulder, Colorado, June 1964 (U. of
Colorado Press, Boulder, 1965).

16 H, J. Bremmermann, “Complex Analysis in Several Variables,”
Mathematics Department, University of California, Berkeley,
California (unpublished notes).

11 g, Bochner and W.Martin, Several Complex Variables (Princeton
U. P., Princeton, N.J., 1948), p. 39.

12 L. Ahlfors and L. Sario, Riemann Surfaces (Princeton, U.P.,
Princeton, N.J., 1960), p. 14.

13 For a proof that the continuation generated by a complex Lorentz

HENRY P.

STAPP

transformation takes one to the point that corresponds to the
CPT inverse physical process see Ref. 14, In Ref. 3 this fact was
a direct consequence of the stronger assumptions made there.

11 H. P. Stapp, J. Math. Phys. 9, 1548 (1968).

15 K. Hepp, Helv. Phys. Acta 36, 355 (1963).

16 D, Williams, Ph.D. thesis {University of California, Berkeley,
1963), or University of California, Lawrence Radiation Labo-
ratory Report UCRL 11113, 1963,

17 R. Seiler, Helv. Phys. Acta 39, 641 (1966). [See also Leciures in
Theorelical Physics (Gordon and Breach, New York, 1968), Vol.
XID, p. 195.]

The Ay3 Quantum Field Theory without Cutoffs.1V. Perturbations of the Hamiltonian

James Glimm*
Courant Instilute of Mathemalical Sciences, New York Universily, New York, New York

and

Arthur Jaffe®
Lyman Laboralory of Physics, Harvard Universily, Cambridge, Massachusells
(Received 3 March 1972)

We introduce an inductive method to estimate the shift §F in the vacuum energy, caused by a perturbation 6H of
the ®(¢), Hamiltonian 4. We prove that if 6H equals the field bilinear form ¢(x, ¢), then 6E is finite. We show
that the vacuum expectation values of products of fields (Wightman functions) exist and are tempered distribu-
tions. They determine, via the reconstruction theorem, essentially self-adjoint field operators ¢(f), for real
test functions f< $ (R2). We also bound the perturbation of the ®(¢), Hamiltonian by a polynomial (®, (¢))(h) =
oM, s0 long as @ + @, is formally positive. In that case, and with zll,=< 1, 8E is bounded by const(l + diam

supp A).
1. THE MAIN RESULTS

We derive new estimates on the vacuum energy in the

®(¢), quantum field model. These estimates permit
us to establish one of the missing Wightman axioms
for ®(p),.

Theovem A: The Wightman functions or vacuum
expectation values

(R, 0(x1,1)0(xg,t5) - 0(x,,1,)9), 1.1)
for the ®(p), model exist as tempered distributions
in 8'(R2%),

Our estimates bound the shift in the vacuum energy
due to a local perturbation of the Hamiltonjan H. The
simplest such estimate is

Theorem B: The field ¢ (x,?) is a bilinear form on
the domain DH1/2) X D(HL/2),and H + ¢(x,1) is
bounded from below.

Other new results for the ®(p), quantum field model
are established in Theorem 1.1-Corollary 1.3. The
methods and estimates of this paper appear to have
other applications. For example, it should be pos-
sible to show that the Wightman functions (1. 1) have
exactly the singularities predicted by perturbation
theory. Furthermore, the methods used here appear
useful in the study of the more singular ¢% model.

Solutions to the ®(p), model were constructed in
earlier work of the authors and of Rosen. They are
known to satisfy the Haag—Kastler axioms for quan-
tum fields, and most of the Wightman axioms, as was
shown by the authors, Cannon and Rosen. See Refs. 1
and 2 for references, notation, and proofs.

The Hamiltonian operator in the ®(¢), theory is de-
fined as the limit of approximate, or cutoff, Hamil-
tonians H(g),

H(g) = Hy + Hy(g) — E(g)1. 1.2)

J.Math. Phys., Vol. 13, No. 10, October 1972

Here H, = H(0) is the free Hamiltonian for bosons of
massm > 0,and

H(g) = [ :®p(x)):g(x)dx. 1.3)
The space cutoff g has compact support, and
0=g(x)=1. (1. 4)

The vacuum energy E(g) is a finite constant (diver-
gent as g —» 1) and chosen so that

0 = inf spectrum H(g). (1.5)

Certain uniform estimates on H(g) allow us to pass to
a limit g = 1 and so obtain a Hamiltonian without cut-
offs,

H = limH(g), (1.6)

see Refs.1 and 3.

We now describe our new uniform estimates for cut-
off Hamiltonians. We use these estimates to establish
properties of the theory without cutoffs (g = 1), such
as Theorems A and B.

Case 1. Perturbations of arbilrary degvee: Let h
be a real function |#], = 1, D = 1 + diam. supp.
h < ©. Let p = max{deg®, deg®, |, and let

0= g(x),

for all real ¢, x. If deg® = deg®, and ® = ®,, we as-
sume that the coefficient of the degree p term in ®g +
®,h is bounded away from zero on a neighborhood of
supp k. Let

6H= [ 10 (p(x)) : h(x)dx = 6H(R),
oF = inf spectrum {H(g) + 6H} = 6E(g, k).

0=CEg(x) +C(Or(x) (A7)

(1.8)
(1.9)
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| wa/m-chl, = 1 (1.10)

for € = (8p)"1, p = deg®, and let D = 1 + diam supp
h < ow. Let

6H = o) = [@(x)h(x)dx, (1.11)
and let

8E = 6E(g, h) = inf spectrum {H + ¢(®)}. (1.12)

Theovem 1.1: There exists a constant M, indepen-
dent of g and %, such that in Cases 1 and 2

[6E| < MD. (1.13)
Remarks: In Case 2,if 1 < [[u~1/2-¢p|, < o  we
prove (1.13) with M = M(”I.L 1/2-¢p]|,). Formal reason-
ing indicates that € = 3 is possible; but a proof re-

quires improvements in Sec. 3B.

Theorems A and B are corollaries to Theorem 1, 1.
We consider space—time averaged fields

o(f) = [o(x,1)f (x, )dxdt

in the theory with the cutoff Hamiltonian H(g) and
vacuum Q ,, H(g) = 0. The g-cutoff vacuum expec-
tation values are tempered distributions.? The analog
to Theorem A in the cutoff model is:

Theorem A, There exist translation invariant
Schwartz space norms |- Iy , independent of g, such
that

Ky, 0(f1) - (1.14)

oo = 1fly 1,0,
The new aspect of (1.14) is a bound that is indepen~
dent of g. In order to ensure space translation invar-
iance of a limiting vacuum, we average the vacuum ex-
pectation values (Q, ¢(f ) *@(f,),) over space
translations in an mterval of length 0 (d1am supp g).
Since the norms ||, are translation invariant, the
space averaged expectation values are also bounded
by |f1l1°°1f,l,. By the methods of Refs.3 and 5 we
pass to a subsequence as g —» 1. As in Refs. 3 and 5,
the limiting vacuum expectation values (1.1) satisfy
the bound (1.14) with ¢ = 1. Furthermore, the limit-
ing vacuum expectation values (1.1) are obtained as
limitsas g - 1 of a subsequence of the space aver-
aged (Q,, ¢(f1)" " 9(f,)Q,). Applying the Schwartz
nuclear theorem to (1 14) proves that the vacuum ex-
pectation values are tempered distributions. Thus
Theorem A follows from Theorem A, which we esta-
blish below.

We remark that the estimate of Theorem 1.1 is also
valid with a space cutoff given by a periodic box of
volume V. (See Refs.1 and 5 for notation.) In Cases 1,
and 2, we define 6H and 8F as in (1.8)—(1.12), with

an additional dependence on V. We assume supp 2C
[— 2V, 2V].

Theovem 1.1,: There is a constant M independent
of g, #,and V such that in Cases 1, and 2
[6E| = MD.

Our proof in this paper of Theorem 1.1, combined
with the methods of Ref. 5, Sec. 2 that deal with esti-
mates in a periodic box, prove Theorem 1.1,. Like-
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wise, we can establish a relevant Theorem A, and we
pass to the V = © limit in the vacuum expectation
values. With this method, it is not necessary to aver-
age the vacuum expectation values

(Q v (pv(f]_)' o (Pv(fn)Q V>
over space translations in order to ensure translation
invariance of the limiting vacuum Q.

We now assume Theorem 1.1 and turn to the proof of
Theorems A, and B. We use

Lemma 1.1: Let0< H=H* LetAandA =
[¢H, A] be real bilinear forms with domain €®(H) X
C°(H). Let R = (H + I)1,and let

| RY/2AR1/2|| + | RY/2AR1/2| < M. (1.15)
Then A uniquely determines a symmetric operator

{(also called A) with domain D(H) and for a universal
constant a,

lAR| = aM. (1.16)
Proof: Let R(y)=[H + (y + 1)I]-1. Then
1 rw
1/2 . = -1/2
R1/2 = wfo A1/2R(N)dX .
On C*(H) X C*(H),
1
1/2 — p1/2 = 1/2
AR1/2 = R1/24 + nfo A-1/2[A, R(A)dA
= R1/24 — X [® \-12R(VAR(N)dA 1.17)

=2

0

By (1.15), R(A)AR()) is bounded, norm continuous in
A, with norm bounded by (A + 1)-1M. Hence the inte-
gral over A in (1.17) is norm convergent, and by
.17

Ko, ARS)| = |R1/2AR1/2[|8]12 + O(M)ll6]|2
= aM]e]Z.

The constant o depends only on the integral of A-1/2
(A + 1)1, Lemma 1.1 then follows by the Riesz re-
presentation theorem.

Proof of Theorem A,: Let g be fixed. We apply
Theorem 1,1, Case 2, for an arbitrary real element
k/p- (1/2)‘%“2 of (‘3°°(R1) This yields

+ @(h) = const | u-W2)-¢p| ,[H(g) + I]

= const [zl ,[H(g) + I] (1.18)

with constants independent of g, but possibly depend-
ing on D. By taking a partition of unity, 1 = 2;¢,,
where ; is the translate of a fixed C%function, we ob-
tain

+ ¢ (hE;) = const |z¢, | [H(g) + I],
and summing

+ @ (h) = const all[H(g) + I],

with a constant independent of g and %2. For real fe
8$(R2), we integrate over time to obtain
+ ¢(f) < constll fll,[H(g) + I] (1.18")
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with a constant independent of f, g. Likewise

+ ¢(f)=F @¢(D,f) = const D, fll{[H(g) + I],
so by Lemma 1,1

D, £11),

lo (IR = allfll, + (1.19)
where R, = [H(g) + I]'1. On the domain C*(H(g)) X
e*(H(g)),

(x,[H(g) + I]” ¢(f)6)

= 277 (]r) (X, (DI F)H(g) + 1]8). (1.20)

=0
Thus by (1.19)

lH(g) + 1) ()0l = Ifl,. IH(g) + I)7*16l,  (1.21)
where
r+1 .
£, = @2 % Ipisly (1. 22)
]:

is a translation invariant Schwartz space norm. The
bound (1.14), and hence Theorem A, follows from
(1.21) and (1.22).

The Hilbert space X;yg associated with the infinite
volume limit is defined by means of the GNS construc-
tion, see Refs. 3 and 5. The limiting vacuum expecta-
tion values (1.1) can also be used to construct an in-
finite volume Hilbert space ¥, by the Wightman re-
construction theorem. The vacuum expectation values
in these two theories coincide. Hence by the unique-
ness portion of the reconstruction theorem, I, can
be identified as a subspace of ¥;ys-

Proposition 1.1: Iy = Hgyg: That is, the Wight-
man and GNS constructions yield the same infinite
volume Hilbert space. In particular the cyclic sub-
space D generated from Q by polynomials in ¢(f),
f€8(R2), is dense in Xgyg-

Proof: Let X, be the subset of the real elements
Sz (R2) of 8 (R2) satisfying

ID2flly = apm.
Clearly U, X, is dense in 8;(R2). Let §,, be the

linear span of vectors

io(fy,)

eiw(fl)-.-e Q

for f; C"KOLB’ n=0,1, . By definition U, %,
dense in JCGNS Usmg (1 19) and (1.20), we estabhsh
for f;€X,

llw(fl)°"<p(fk)ﬂll =

with a constant B = B(a, 8). (See Ref.4, p. 389). We
now prove that D is dense. For any X we define

B*Ek! (1.23)

FO) = (x, e M0 g U gy

as an 1terated power series, summing first A,, then
Ay, +++. These series converge on account of (1.23).
Thus 1f X LD, f(A) = 0. In that case xLU, T ,,s0

X = 0 and D is dense.
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We give three short corollaries to Theorem 1.1 which
establish further properties of the space-time aver-
aged fields ¢(f).

Corollary 1.1: Let f,D, fe£,. Then ¢(f) is an
operator on D(H) and
lo(F)H + 1) < allfll; + 1D, 7Iiy). (1.24)
Covollary 1.2: Let fbe real,and let £, D, f,D,, f

€&£4. Then ¢(f) is essentially self-adjoint on any
core for H.

Corollary 1.3: Let f€8 (R2) be real, and let ¢ (f)
be the operator obtained from the vacuum expectation
values (1. 1) by the reconstruction theorem. [The do-
main of ¢ (f) is D.] Then ¢(f) is essentially self-ad-
joint.

Proofs: By (1.18’), for real f,

£ (6,,0(F),) = oW fll <0, ,[H(g) + I16,)  (1.25)

for 6, = ¢(fy)-*
6= Qo(fl)"

We recall that the vacuum expectation value

@, ©(f)8) is obtained as a limit of a subsequence
from space translation averages of (6., ¢(f), ), and
similarly {9, H9) is obtained as a 11m1t from ‘the cut-
off expectation values ( , H(g)8, ). Thus we obtain in
the limit g = 1,

x40, 0(£)8) = O)II Il ¢, (& + 1)6).

co(f, )Qgeff. Let

'(,O(fn )Q Ef‘DCGCGNS = JCW = sFren

Furthermore, we have ¢{(f) = — ¢(D,f) on ® X D, as
a consequence of the corresponding identity in the
cutoff theory. Hence Corollary 1.1 follows by Lemma
1.1,

By Proposition 1.1, the domain D is dense. Since D
is invariant under exp(itH), D is a core for H. Hence
Corollary 1. 3 is a consequence of Corollary 1.2. We
infer Corollary 1.2 from Corollary 1.1 and a general
result:

Theovem 1.2: Let 0= H=H* andR=(H + I)1
Let A be a symmetric operator with domain D(H).
Suppose that

IARI + |AR| < =, 1.26)
where A = [iH,A] is defined in D(H 2) x D(H 2). Then
A is essentially self-adjoint on any core for H.

Proof: Let H= f ME, be the spectral resolution
of H. Let C, = E AE, . Then C, is a bounded, self-
adjoint operator with resolvent K, = (C, — iy)yi, We
first prove that K, converges to the resolvent of a
self-adjoint operator C. We then show that A~ extends
C, so A is essentially self-adjoint on D(H). The esti-
mate [[AR| = O(1) then yields essential self-adjoint-
ness on any core for H.

(@) Graph convergence: We note that given (1. 26),
it follows by (1.17) that R1/24 R1/2 is bounded. Since
I(E, — I)RY2| < O@1/2)as n > o,
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IR(C, —ARI = Or1/2), (1.27)
Furthermore, using (1.27) and the identity C R2 =
RC,R —iRC, R, we have

IC, —ARZ| = O1/2), 5 - o, (1.28)
Hence the operators C, have a strong graph limit, a
closed operator C. (See Ref.1, Sec. 6.2). By (1.28) C
agrees with A on D(#2). Since AR is bounded, and C
is closed, C agrees with A on D(H).

(b) Smoothness preserving: For real v, |yl suf-
ficiently large, we prove

#+ DK, R| < 1. 1.29)

In fact, for 6c D(H) and [y| — |AR| = 1,

I + 1), —iy)pl = IC, — iv)(H + 1)8] — €0
= (lyl = C,RINIH + 1)6]
= (H + D)ol

proving (1. 29).

(c) Resolven! convergence: For 8cDH), (K, —
K,)el2 = (K0, (K, — K,)8) — (K0, (K, —K,)6)
By (1.29), for |y| sufficiently large,

ik, — K,)0l2 = 2{R(C, — C)RII(H + I)8]]2

= o()liE + 182

as n,m — ® by (L.27). Since C, = C}, we have |K,]
<= |y|-1, for y real. Hence for |y| sufficiently large,

s-limK, = K. (1.30)
By (a) and (c), C, = C¥ has a graph limit C and a
strong resolvent limit. We infer from Ref.1, Theorem
6.2.3 that C = C* and limK, = K is the resolvent of
C. Furthermore, since H is self-adjoint, the uniform
bound (1.29) ensures K: D(H) —» D(H) and

(7 + KR| = 1.

(d) Essenlial self-adjoininess: We prove that
CCA-. Hence C = A-. Let 6eD(C) or # = Kx . Choose
X.EDH), X, — X. Since K is bounded, 6, = Kx, — 6.
By (c), 8, KDH)CD(H) = D(A). By (@), Cand A
agree on D(H). Thus

(A —iy)o, = (C—iy)f, = x, > X-
Hence 6 D(A-) and A0 = C4.

Proof of Theovem B: In the case of the space—-
time averaged field operator ¢(f), we have identified
¢(f), acting on DC ;g = 3y, With a restriction of
the self-adjoint field operator ¢(f) introduced in Ref.
3. In the case of the bilinear form ¢(x, ¢), we do not
attempt such an identification. Bilinear forms, in con-
trast with self-adjoint operators, do not have natural
maximal domains of definition. The domains for
@(x, t) introduced in Ref. 3 could very possibly meet
D in the zero vector alone. Thus we proceed as fol-
lows.

By Theorem A and the space-time translation invari-
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ance of the vacuum, there exists a bilinear form
¢(x,t) on D X D such that

@, ¢(x,t)x) € €°(R2), (1.31)
and
S0, 0 (x, 00X (x, )dxdt = ©, (f)x), (1.32)

for all 8, xeD and all f€S(R2). It is with this defini-
tion of ¢(x,¢) that we prove Theorem B.

Let x be a real, positive € function of total integral
one and y, {x) = kx{xx). In one space dimension,
flu-1/2-¢5 |l , < const, where &, is the Dirac measure
concentrated at x. Then

lp-rrz<(x w0l < lur@/D-<s |, = M,

Ix Iy =1, (1.33)
lur@/2-(x +6, —6,)l = O(ke/2), (1. 34)
I /-6, — 6., = 0(laler2), (1. 35)

We let f, (x,t) = h, (x)a, (¢). By the remark below
Theorem 1.1, we have for vectors 6, as in (1.25)
£ 0,070, = @M) -2 |l,la ],

x@,,[H(g) + constld,). (L.36)

As in the proof of Corollary 1.1, we space average
and pass to a limit g — 1 to obtain for D

+ 6, 0(f)0) = @M) M A/2-<h Mol

% (6,(H + const)g). (1.37)

We now choose 2, = x, %0, and ¢, = x,*6,. Passing
to the limit k — ©, we have (1.31)~(1. 37)

0, p(f)8) ~ £ 8, ¢(x,1)6) =< 2 (6, (H + const)d).
(1.38)
By taking limits of 6, (1.38) extends to D(H/2) X
D(H1/2), and defines ¢(x,?) on that domain. We note
by (1. 35) that ¢(x,t) so defined is continuous in (x, ¢),

and hence satisfies (1.32). This completes the proof
of Theorem B.

The remainder of this paper is devoted to proving
Theorem 1.1. For convenience, we suppress the «
cutoff or g cutoff and write

Hp) = H(g) + 8H(h), 6E = inf spectrum H().

Both H, and H (k) are self-adjoint operators on Fock
space, and each has a unique ground state vector:

Hfy=0, HEQ®R = oEQR).

The vectors 2, and £ (%) are not orthogonal. See Refs.
1 and 4 for proofs. It follows that 6E (%) is given by
the exact formula

SE() = —lim (1/7) log{®,, e TH(DQ ).

I'—o0
Our proof of Theorem 1.1. is based on estimating

(@, eTHDQ ) (1. 39)
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and bounding it by exp (MDT). The best bound pre-
viously established was [6E| = O(1 + diam supp g),
which diverges as g —» 1. The stronger bound proved
here estimates the finite correction 6E to the diver-
gent vacuum energy E(g) of (1.2).

We base our estimate of (1.39) on function space inte-
gration and the Feynman-Kac formula. Our new esti-
mates can also be proved on Fock space (@ space)
without appealing to probability theory methods. With
some simple modifications to the present proof, we
can eliminate the path space methods and substitute
methods of Refs. 6 and 2.

In our proof of a uniform bound on 6F, a major idea is
totake advantage of localization in configuration space,
as well as in momentum space. We isolate the contri-
butions to 6E (#) from parts of the interaction localized
near the support of 2. We bound these contributions by
the inductive construction of Sec.2. We bound (1. 39)
by a sum of terms; each term represented by a graph.
Each step in the induction replaces one graph by a
sum of graphs with new vertices and new lines. At

the end of each inductive step we decide for each
graph whether to terminate the induction or whether
to continue the expansion for that graph. If the induc-
tive construction continues, the new vertices and lines
introduce convergence factors into the expansion. One
possibility is that the new vertices have a large lower
momentum cutoff « in some new vertex and thus con-
tribute the small tail O(k"9 of a convergent integral

to our estimates. Such vertices are said to be local-
ized in high momentum regions. The remaining new
vertices are localized in space—time regions far from
the vertices of the original graph, so that at least one
line connects vertices with space—time localizations
separated by a large Euclidean distance d. By con-~
struction,d grows rapidly for successive inductive
steps. In Sec. 3, we show that each line so localized in
space—time contributes a convergence factor exp
{(~md/2) to our estimates of the corresponding graph.
Here m is the mass of the particles in H, (bare mass).
The small factors x-¢ or exp(—md/2) lead to the
proof of convergence of our inductive estimate. Inpar-
ticular they dominate the large number of graphs that
occur and yield a convergent sum of small terms to
bound §E.

2. THE INDUCTIVE CONSTRUCTION

A. Introduction

The proof of Theorem 1.1 is based upon an inductive-
ly constructed upper bound to (1.39). The inductive
construction consists of repeating three basic sub-
steps:

(a) the graph expansion,
(b) the squaring operation,
(c) the path space construction.

The estimates which prove convergence of the induc-
tive construction are established in Secs. 3 and 4.

It is convenient to define
Hy =H; + 5H. (2.1)

We also introduce a momentum cutoff indexed by « in-
to the interaction Hamiltonian Hy . Let
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Hy = [:0, (x):g(x)dx
Hy =Hy, + [0o (x):h(x)dx.

We now describe the localization in space and time of
functions on path space. We index the space—time
localization by i = {7, i 1} €97 x 9., We define the
space-time square A, [ orfp T 1) X [iy,4, +1).
Here the first factor [ 0 fp + 1) is a time interval, and
the second factor is a space interval. We define the
space—time localized interaction Hamiltonian H si a8
a time—dependent operator on Fock space

g ()

or as a function on path space,
Hy;(4,q(0) = Hi[8, ¢, 0g0](g (1)
Here €,

Hy ®) = H[L,

is the characteristic function of A, . Thus

Hy= 2, Hp,. (2.2)

Similarly we define 6H,, H; ;. Also we may localize

the interaction both in space time and in momentum
space. We define

Hi, ;= [0 (x): & g(x)dx,

and similarly we define Hy; , ;.

Let X be a union of space intervals [j,j + 1), je4.
We define

H(X) = Z H(C,8), H(X) = Hy + H (X)),
and

E(X) = inf spectrum{H, + H,(X)}.

(Note that we now omit the vacuum energy from H.)
Furthermore, we introduce sets YC R2 which are
unions of squares A;C R2, Let Y(¢) be the time slice
of Y at time ¢. Let | X[ be the length of X and let | Y|
be the area of Y.

With the hypothesis of Theorem 1.1, we establish the
inequality

—MD = §E. 2. 3)

The constant M is independent of g and 2. For Theo-
rem 1.1, Case 2, the bound (2. 3) ensures

0<H—E(g) + o) + MD.
Thus if € is the vacuum for A,

8E = (Q,{H —E(g) + o)} Q)
=R, ph)Q) = (Q,{H —E(g) + MD}Q) =MD,

proving |6E| <= MD. For Case 1 of the theorem, the
desired inequality |6E| = MD follows by an inter-
change in the roles of H and H + 6H in the proof of
(2.3). The bound (2. 3) is a consequence of two in~
equalities.

Proposilion 2.1: There is a constant @, such that
for all intervals X with [X| = a,,

E(g) = E(~X) + |x1. (2.4)
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There is a constant M such that for all intervals X
containing supp #,

inf{E(~X) + |X|:X,C X} <E(g) + 6E(g, h)

+M|X,l. (2.5)
The constants M and a, are independent of g and %,
subject to the conditions of Theorem 1.1.

We choose max{D,ay} < [X,| = max{D,a,} +1. By

Proposition 2.1,

E(g) = E(g) + 6E(g,h) + M|X,]|. (2. 6)
Thus with a new constant M, we have proved (2. 3) and
hence Theorem 1.1,

In Secs. 2 and 3 we prove (2.5). In Sec.4 we modify
this proof to establish (2.4). We now describe the in-
ductive constructionused tobound (1. 39). Ateach step
in the inductive construction, we dominate (1.39) by a
sum of terms of the form

f ds fQR (s) exp[

where R is a polynomial on path space and where Y(0)
defines a localization of the exponent, as above. The
connection between the Fock space inner product

(1. 39) and the path space integral (2.7) is given by
the Feynman—Kac formula. Each inductive step re-
places (2.7) by a sum of similar terms, and our final
bound dominates (1. 39) by the sum of a convergent
series.

— [H(~Y(0),0)(q(0))do)dg (), (2.7)

The first part of each inductive step, the graph ex-
pansion, is an expansion of (2.7) using the pull through
formula. Each term in the expansion is represented
by a graph. For some terms, the polynomial R is a
constant. The associated graphs have no external legs
and are called vacuum graphs. For these graphs, the
inductive construction terminates. In terms for which
the polynomial R is not a constant, new vertices have
been introduced during the graph expansion, as will be
explained below.

The second part of each inductive step is the squaring
operation, in which we replace R by a positive poly-
nomial R’, |[R| = R’. The fact that R’ is positive
makes the next path space construction possible, and
the fact that R’ is a polynomial allows us to perform
the next graph expansion step.

The third portion of each inductive step is the path
space construction, which we use to bound (and re-
move) those parts of the exponent that are localized
near the localization of R. We use the near positivity
of jHI ;(g(s))ds to give an upper bound for localized
portions of the exponent. This upper bound has the
form of a convergent sum of polynomials on path
space. Hence we remove part of the exponent and re-
place R by a sum of new polynomials R’.

In the first inductive step, we omit the graph expan-
sion and the squaring operation and begin with the
path space construction, see Sec. 2D. We then repeat
the three substeps and arrive at a bound for (2.7)

as a sum of vacuum graphs. Each vacuum graph is
multiplied by a factor

fQ exp(— fOTHI(~ Y(0))(q(0))do)
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= (2,,
exp(— fE(~

The vacuum graphs are small, for reasons given in
Sec.1.

e H(~Y(©0) g-H(~Y (1)) . .

(@) do).

L e HEYANQ )

1A

B. The Graph Expansion

The graph expansion is generated by the pull through
formula

a(k)e i = et Hq (k)

A “ds e a(k), H| e ®H

2.8)
Here H = H(X) = Hy + H{(X) and u = (k2 + m2)1/2,
To derive (2. 8) we set

F(s) = [estiig(R)e ¢4 f (R)dk
where f€ Ly, and we evaluate

F(0) = F(t) — fO‘F'(s)ds

By Rosen's higher-order estimates, F(s) is contin-
uously norm differentiable on [0, ¢]. From the more
elementary first order estimates, one can show that
F(s) is strongly differentiable and norm bounded on
10,¢] and continuously norm differentiable on the open
interval (0, {).

We call our expansion the graph expansion because
each term in it can be labeled by a graph; the graphs
provide a convenient way to visualize the expansion.
In order to accommodate our time-dependent Hamil-
tonians, we rewrite (2. 8) as an anti-time-ordered
integral

Ta(k, 0) exp( fH do)
= Ta(k,t)e”t“exp(—f H(o)do)

—Tf ds[a(k, s)e s H (X, s)] exp( fH )

2.9
Here T denotes the anti-time ordering. Later times,
denoted by larger values of o, are written to the right
and precede in the operator product. The time para-
meter s in a(k, s) and H, (X, s) indicate that the op-
erators a{k) or H (X) occur at time s. We replace X
by the space-time region Y, so that H(o) = H(Y(0)),
and then (2. 9) remains valid.

We say that (2.9) is the sum of a term with a()
“pulled through the exponent” and a term in which
a(k) “contracts to the exponent.” When we use (2. 9) to
generate the graph expansion, (2. 9) occurs multiplied
by a polynomial in the fields R. New terms occur,
arising from commutators between a and R, and we
call these terms “contractions to existing vertices.”
For instance, if R(s) equals a product of monomials
Ry(sq) --R,(s,),thenfor {; =¢,5,,...,5, =1,

Ta(k, t)R(s)exp( /, 2H(0)do)
= Ta(k,ty)e’ T Ris)e < jtjz H(o)do)
— TR (S)ftf ds’[a(k,s")e =0 H (x,5")]
X exp<—— £ 1‘2 H(o) do)
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+ J:Zi[a(k J"””,Rj(s]-)]
x TTR,;(s;)e ( sz(o)do> (2.10)
i#j

We apply (2.10) to the basic term in the inductive con-
struction, which we can write either as an integral on
path space or as an anti-time ordered integral

fdszR(s)exp[— fHI(Y(o))donq(-)
- fds<QO,TR(s)exp<__ foTH(Y(o))do>Q(>. @.11)

The integration over s; <s ++= 5, in (2.11)
arises from previous use of (2.10). In this section we
consider the integrands of the ds integration in (2.11).
We choose a linear factor ¢ in R and write it as the
sum of an annihilation operator a and a creation op-
erator a*. Then we use (2. 10) to move a to the right
and the adjoint of (2.10) to move a* to the left. The
terms in which a or a* are pulled through equal zero,
since a2, = 0. The remaining terms from (2.10) are
functions of ¢, but not 7, and hence they can be written
as integrals on path space.

We now explain the graph terminology. Vertices in
our graphs arise from monomials ¢” which occur in
the interaction Hamiltonian H;;. These vertices may
be produced in R during the graph expansion, the
squaring operation, or the path space construction. In
applying our expansions, we always use the represen-
tation (2.2) to express H; as a sum of parts H, ; local
ized in space—time cubes A;. Hence each vertex in
our graphs has a space~time localization index i.
Each vertex also occurs at a definite time, corres-
ponding to the time s’ in the integrand of (2.10). Later
vertices are placed to the right, in accordance with
the anti-time ordering. A vertex arising from ¢” has
n legs connected to it. Of these legs, j are contracted
(connected) to legs of other vertices and n — j are not
contracted. The uncontracted legs have no specified
directions and label linear fields ¢ in ¢”. The con-
tracted legs necessarily point to the left or to the
right, according to whether the vertex to which they
contract lies at an earlier or at a later time. The
legs pointing to the left are creation legs, and those
pointing to the right are annihilation legs. These legs
label creation operators a(%)* and annihilation opera-
tors a(— k), respectively. Each use of the commuta-
tion relations [a(— k), a())*| = 6(k + 1), replaces R by
a new monomial. The graph of the new monomial R’
is formed by contracting the legs of a(— k) and a(l)*
in the graph of R. Two such contracted legs are cal-
led a line. Each use of the pull through formula (2.10)
also replaces R by a sum of new monomials. The
second term on the right of (2.10) has a new graph
formed by introducing a new vertex at time s’, and one
leg of this vertex is contracted to the leg of a(k, s’).
We also say that this new vertex results from the con-
traction of the leg of a(k,s’) to the exponent.

Associated with each vertex is a kernel. If the vertex
comes from ¢” and if it has j contracted legs, then

the kernel is
vy, ..., k;) = [ab(Ry), [k (ky), - -, [ak(k)), 07+ -],

where afi(k) = a(— k) or a*(k). If j = n, then v is fully
contracted.
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We label the vertices of the graph of R by a variable
v,v=1,2,...,N and the momenta k, , at vertex v.
For a fully contracted @ vertex we introduce the
kernel

Uu(kl,y, cee, kn'y) = (Cig)~<2l;\l kr,l/>
[ne, )12 Xk, k1),

where {; gives the space—time localization of the ver-
tex and X(-«x~1) is the upper momentum cutoff function
for the H; ; vertex. In the path space construction
of Sec. 2D, We will encounter lower cutoff vertices of
the form HLZ —H For such a vertex, we replace

X (2.12)

<
IIES
-

Lk,d*

?’::

X, ) by 1— I %k, k1) @.13)

1
in (2.12). For such vertices we define the lower mo-
mentum cutoff k(v,) = max{1, k}.

A @ vertex which is not fully contracted has a kernel
obtained as follows: Multiply (2.12) by a Wick order-
ed product of fields ¢ (k), one field for each uncon-
tracted momentum variable. Then integrate this pro-
duct over the uncontracted momenta.

We also introduce energy factors u(ky, ,,)Efr V= uy',f”
and define the kernel
EUZvU[;!ur,yey'u' (2'14)

We use these factors u ¢ in order to transfer powers
of the energy from one kernel to another. Hence they
satisfy

1, @2.15)

€
HU« U
by Ty

and then (Iblv

We choose —

EU=E 6;,1;
v

Mz,).
€

)=
3 , and

=

1
<3

where €, = max{0, €, ,}. We note that for 5 > 0,

“17'/ HZ < O[K(UU)'(l/z) t€y+5].

In addition to the vertices, each line (two contracted

legs) has associated a function of the momenta and an

integration over the momenta of the two contracted

legs. Suppose the annihilation leg with momentum

k, , of vertex v (localized at time s, = s, ,) contracts

w1th the creation leg with momentum k,, , of vertex
v’ (localized at time s, ,,). Associated with this line

1s the factor

6(kr,u + kv',ul) eXp[_ (Srl,ul Sy, u)“'r,u]

=6k, , + k. ) exp(—bs, ,u, ), (2.16)

where 0 = &s, , is the time difference of the contrac-

tion. The factor exp(— 6su) introduces a time locali-

zation. We insert this factor in the kernel by defining
7, =T, exp(— 3 25 65, iy ). 2.17)

r

Hence we assign half the time localization factor for

a given line to each of the two vertices which the line

connects.
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A polynomial ﬁ(s) is then constructed from its graph
by the formula

R(s)=T[[19,(k, ;a1 0k, + &y, )] dE
(2.18)
We define the polynomial
R(s) = BLR(s), 2.19)
where B and L are constants, depending on the indlbc-
tive construction. B is a product of constants e/, 0,
and n from (2. 32) or (2. 34), while L is a product of

distance localization factors [, coming from (2. 22) or
(2. 24).

The polynomial R and the kernels ¥, contributing to

it are unbounded operators in the anti-time ordered
formula {2.11). When this formula is interpreted in
path space, R and the kernels 7, become multiplica-
tion operators on path space. If ¥, is fully contracted,
then it is a constant as a function on path space. Simi-
larly, if the graph of R has no uncontracted legs,

then R is a constant as a function on path space. Such
a graph is called a vacuum graph.

To complete the graph expansion, we must specify
which legs of the polynomial are to be pulled through
and which are not, since the infinite series expansion
obtained by pulling through all legs appears to di-
verge. We treat on a different footing the vertices
which were present at the start of the graph expan-
sion part of the given inductive step. We pull through
all these legs until they contract to yield lines. We do
not pull through legs of vertices added in the course
of the graph expansion of the given inductive step.
Thus the graph expansion in a given inductive step
yields a finite number of terms, and at the end of a
given graph expansion step all vertices in B with un-
contracted legs are new (pull through) vertices intro-
duced during that graph expansion step.

C. The Squaring Operation

At the conclusion of the graph expansion for (2.11),
we have replaced (2.11) by a sum of similar terms,
We now replace R in each term of the form (2.11) by
a positive polynomial on path space. We make this
replacement for two reasons: During the PS construc-
tion we take absolute values, which could replace the
polynomial R on path space by the nonpolynomial func-
tion |R|. In that case we could not perform the next
inductive step, since the graph expansion is only de-
fined for polynomial R. The second reason to modify
R is to improve our estimates in Sec. 3 for the pull
through vertices in R (vertices introduced by contrac-
tions to the exponent). For this reason we sometimes
choose to replace R by a polynomial of high degree.

A simple estimate for R is obtained by repeated ap-
plication of the Schwarz inequality to (2. 18). We obtain
IR =117,1, = IlI7, 1, (2.20)
where the £, norms [[7], or |7[l, are £, norms in
the contracted momentum variables. Unless v, is
fully contracted, [7,ll, depends on the uncontracted
legs as a function on path space. In Theorem 3.1 we

improve (2. 20) to take into account the space—time
localization of the vertices. We prove
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IR| = T Ge™ 5,1, (2.21)
where 4, is the contraction distance for vertex v, as
defined below in Sec. 3B,

We use the bound (2. 21) as the first step in our squar-
ing operation. We give the graphical interpretation of
l,ll5. Suppose the set € of contracted legs 7, has #
elements. We start with two identical 7, vertices and
contract the 7 legs of the first set C to the # legs of
the second set C. We then take the square root, yield-
ing the graph of {7,]l,. In case that 7, is fully con-
tracted, 1|7,/ is the square root of a vacuum dia-
gram, It is a constant on path space, so we do not
need to square: Otherwise, [7,], is the square root
of a polynomial function on path space.

In the latter case, we use the bound ab < a(l + b»)
with a = exp(—md,/6) =1 andb =y exp(~md,/6)
(7, to obtain

ye "B, = 1, + (3,17,15)". @.22)

- a .
Here [, = ye ” ”/6, and the squaring exponent %, is a

positive even integer, chosen below. Since n, is even,
7,137 is a polynomial on path space.

We define the graph of the constant term [, in (2. 22)
to be a single vertex with no legs. We define the ker-
nel corresponding to this vertex to equal one. The
constant [, becomes a factor in L of (2.19), reflecting
the history of previous contractions to #,. It assigns
a space—time localization factor for each such con-
traction.

The second term in (2. 22) yields a graph in which

n, pull through vertices have uncontracted legs. The
contracted legs of this graph are all localized in a
single square A, the localization of the original ver-
tex ¥,. Therefore these lines contribute no small
localization factors. Each vertex, however, is accom-
panied by [,, which becomes a factor in L for the poly-
nomial R.

Let ¥, be a pull through vertex with uncontracted legs.
We define d ,(v,) as the (integer part of the) Euclidean
distance of the contraction giving rise to the vertex
7,. We choose n, as follows: Either

n,=2 or n,=[4_.(v,)8. (2.23)

v

To choose between the two possibilities, consider a
fixed cube A and apply (2. 22) successively, in order
of decreasing value of d,(v,), to the kernels 7, local-
ized in A. Each application of (2. 22) yields two
terms. Thus the j-fold application to j vertices in A
yields 27 terms. In these terms », enters only when
the second term in (2.22) is selected at least once.
For the (j + 1)th application of (2.22) we choose

n, = 2 in the above case, that is when the second term
in (2.22) has been selected at least once in the first j
applications of (2.22), Otherwise, we choose n, =
[4d . (v ,)]®. With N vertices in A we obtain 2% terms.
In each of these terms we define d,(4) = d, (v ), where
7, is the vertex for which n, = [4d, (v,)]6.

For uniformity of notation, we use the bound
re V3T, lly = 1,07, 1,, (2.24)
for fully contracted vertices in (2.21).
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D. The Path Space Construction
The path space integrals

SR exp[— fHu(q(o))do]dq(-) (2.25)
cannot be evaluated or estimated directly. On the
other hand, integrals of polynomials on path space can
be estimated easily. The purpose of the path space
construction is to bound (2. 25) by a sum of integrals
of polynomials on path space. The term by term inte-
gration of the exponential series in (2. 25) converges
only if p =< 2. In the case of linear perturbations we
make a power series expansion of exp[—
Otherwise, we use an asymptotic expansion of

exp[— [ H;(q(0))do] to obtain our bound. We use the
formal positivity of H;; and undo the Wick ordering in
low momentum regions. This bounds the low momen-
tum part of the exponent from above by a constant.
The high momentum tail is bounded by a convergent
sum of polynomials on path space.

More precisely, for Theorem 1.1, Case 1, we write

Hy, =Hyp,;  +0Hy; - 2.26)
By undoing the Wick ordering in the low momentum
part of Hy;; , we obtain

— M, (logk)?/2 + 2 < Hyp; oo 2.27)
The constant M, is independent of g, %, ¢ and « (see,
e.g., Refs.1 and 2.) It is convenient to choose a se-
quence of cutoffs «; = exp[(j/M;)?/?], so that by (2.27)
and the localization of H;; in a time interval of unit
length,

—j+2= fHH’i,K]_ (g (o)) do. (2.28)
We bound exp(— [H 11,,40) by writing path space @ as a
countable disjoint union @ = Uj; Q,, where for j > j,

Q; =1Q:—j= [Hydo=—j+1}. (2.29)
Then
Q; =1Q:—jo=JHy,dd}. 2. 30)

By (2.28), paths in @, for j > j,, yleld the bound

1= ]féHII,i,Kj do | =R, ;. (2.31)

Hence for n = 1, we have 1 = (R, ;)® on Q;. For

j > jo, We choose n = n(j) to be the largest even inte-
ger less than «}/8?, We define n(j,) = 0. Then

exp(— [Hydo) = T, iR}, (2. 32)

it i,j
jzi,
For Theorem 1.1, Case 2, we write
fGHi do = f‘P(h)i do = f‘P(h)i (9(0)) do
and expand

exp(— [0H,do) = % +n kgo(—f};)_![ [o(r), daj2®, (2.33)

Here 7 is a universal constant, independent of J,. We
apply (2.32) to H;; rather than Hy;;. Since Hy; =
Hp, + 0H;, we have
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exp(— JHy, do) = (eJO +tn kg‘;fo (—2176'_ (Jo ), d0)2k>

x 2y e]R?’(j“.
i3,

(2.34)

The “path space construction” is the use of (2.32) or
(2. 34) in squares A;. We also say that we “remove
portions of the exponent” from (2.25). Our choice of
Jo =Jo(4A;) will be made in this and later sections.

We begin the inductive construction (the first induc-
tive step) by applying (2.32) or (2.34) in each square
A, €D, where D is a given union of squares A. For
our proof of (2.5), we choose

D, = Xo X [0, T},

so the perturbation 6H is localized in Dj. In these
squares we choose j,(A;) = J,. After this initial use
of the PS construction, only H; remains in the expo-
nent, 6H has been completely removed. Further appli-
cation of the PS construction introduces new H; ver-
tices into graphs, but no new §H vertices.

For each term in the PS construction we decide when
to terminate the PS portion of an inductive step. An
individual term has the form (2.25) and is labeled by
a single graph. For each term we make some defini-
tions: We let D, be the set of squares A; with a non-
zero exponent. For a square A, we let

do(a) = dist(a, Dy), d,(A) = dist(a, D,),
where dist(X, Y) is the Euclidean distance between X
and Y. We let #(A) equal the number of vertices with
uncontracted legs that are localized in A. If n(A) = 0,
let I'(A) be the square of side length 8r(A)1/3, centered
at A, and with sides parallel to the space and time
axes. Note that n(a), ©,,and d_(A) change during the
inductive construction. We let #(4a), denote the value
of n(A) at the end of the rth inductive step, ete.

Our condition for terminating the PS construction of a
given inductive step (and hence for terminating the in-
ductive step) is the following:

If n(A) = 0, then I(AND, = P, (2.35)
for every square A in our space~time cover. If (2.35)
is not met in some square A’, we apply (2. 32) to re-
move the exponent in each ACT(A)ND,. We say that
A’ has forced the PS construction in A, and we choose
jp(A) in this case as

Jola) = [Jn(an)i/6] + 1, (2.36)
Here [-] denotes “integral part.” Also we choose J;
sufficiently large so that for x = 1 we have

(15)3x2 = 3 exp(x1/324,),
where M, = (8p)"1(Jy/M;)2/¢. By (2.36), if n(a) = 0,

(15)3n(A72 = & exp[n(A’)1/35M,)

= K@) /8 < n, (A) = n(a). (2.37)
Remark: Note n(A) = npt(A) + nps(A) + n,(A), where

n, (4) is the number of PT vertices in A with uncon-

tracted legs, 7, (4) is the number of PS vertices in A
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with uncontracted legs, and n,(A) is the number of un-
contracted ¢ () vertices in A. Here we call the ver-
tices from Ri'fj in (2. 32) PS vertices in A;, and we call
the vertices from f(p(h)i do in (2. 34), the ¢ (k) verti-
ces in A;.

Pyoposition 2.2: Tf DyND, = @ and n(4a) =0 dur-

ing the PS contruction, then
do(a) = n(a)r/s, (2. 38)

Pyroof: Step 1: Assume that the proposition holds
at some point during the PS construction of the »th in-
ductive step. We show that the proposition remains
valid after the application of PS construction in any
square A and, hence, at the end of the inductive step.
Ifn,,(a) = 0, the PT vertices in A were present through-
out the »th PS construction. Hence, by assumption,
do(a) = n, (A)1/3 < n(A)1/3 and (2. 38) is valid. On the
other hand, suppose #,,(A) = 0 and A’ forced the PS
construction in A. Since I'(A’) has diagonal length
V2 8n(A")1/3 = dist(a’, A) and since d,(A’) = n(a’)1/3,
the triangle inequality yields

do{a) = n(a’) + dist(a, A)

= (1 +V28)n(a)1/3 < 15n(A")1/3, (2.39)
In this case (2. 38) follows by (2. 37). Since A¢D,,
n,(A) = 0 and step 1 is proved.

Step 2: The proposition holds for the first PS con-
struction. In the configuration immediately after re-
moving the exponent from D, if #(4) = 0, then A€D,
and d,(A) = 0. Hence the assertion follows by step 1.

Step 3: Assuming the proposition holds for the »th
PS construction, we establish the proposition for the
(r + 1)th PS construction. By the definition of I'(a),
whenever n(a), = 0,

dy(a) =n(a)l/3 = 3d,(a), . (2.40)
We consider the start of the (* + 1)th PS construction.
Only PT vertices v formed in the graph expansion of
the (» + 1)th inductive step can have uncontracted
legs. These vertices have been squared during the
squaring operation of the (» + 1)th step. Hence if
such a vertex v is localized in A, we have n(4) =
[4d_(A)]® by (2.23). Suppose v was formed by the con-
traction to the exponent of v’ localized in A’. By the
definition of the graph expansion, the vertex v’ must
be present at the end of the »th PS construction. Thus
n(a’), = 0,and by (2.40) we have dy(a’) =d (A7), .
Note also d,(v) = dist(4, A’) = d,(A) andd,(A'), =
d.(A). Hence by the triangle inequality,

do(4) =dy(a’) + dist(a, &) =d, (87), +d (2)

= 2d_(A) = n(A)1/6 < n(a)1/3, (2.41)
establishing (2. 38) for A. By step 1 the proof of the
proposition is complete. We have also proved

Corollary 2. 1: At the end of the PS construction
of each inductive step, (2.40) holds in every A with
n(a) = 0.

Let n(A) = 0 during the PS portion of some inductive
step. We assign a square
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A ED, n(Ah), =0, (2. 42)
and an integer k(A) € 97 to A in the following manner:
If AcD, let A# = A, k(A) = 0. If AdD,, suppose we
are considering the »th PS construction. In case
n,5(4) = 0, let A(D be the square that forced the PS con-
struction in A, and we consider AW at the time (dur-
ing the 7th PS construction) that the exponent is re-
moved in A. In case n, (4) = 0, then My (4) =0, and we
choose any PT vertex v in A with the maximum con-
traction distance, i.e., d,(v) = d.(A). We define A
tobe the square with the vertex vV that contracted to
the exponent forming v, and we consider A® at the
end of the (» — 1)th inductive step. Continuing in this
fashion, we assign A(® to A(%¥-1) yntil we arrive at a
square A{®eD; (and the first inductive step). We let
A# = A(k), kA =Fk=7.

Let

Ny = min{n(A)1 :A€D;, n(a); = 0}. (2.43)

We note that in the proof of (2.5), either n,(a) = 2J,

or n,.(4) = éx}o/si’ for A€Dy, n(a); = 0. Thus N,
— ®© as JO — o0,

Corollary 2.2: I n{A) = 0 during the PS construc-
tion of the rth inductive step,
n(ay = N3". (2.44)

Proof: I m, (A) # 0, we have by (2. 37) that 0 =
n(AM)2 =< n(A). I n,(A) = 0, we have by Corollary
2.1 and Eq. (2. 23),

0= n(a®)2 ; <d (AMW)E ; =d (A)6 < n(a).

By induction we obtain

n(a) = n(a#)3* = N3, (2. 45)
since n(a#); = 0.
Corollary 2.3: For any PT vertex v,
d, (v) = N,,. (2. 46)

Proof: Let v be a PT vertex formed by the con-
traction of a vertex v’ in A’ during the rth inductive
step. By Corollary 2.1, d.(v) = d,(a’),_; = n(Aa")1/3
and, by Corollary 2.2,d,(v) = N,,.

E. Special Procedures for ¢ (k) Vertices

We modify the inductive construction slightly in order
to improve our estimates on ¢ (%) vertices. These
vertices are introduced with the first path space con-
struction by applying (2. 34). They are contracted
during the first graph expansion. All the ¢ (%) vertices
are localized in Dg; but they may contract to vertices
localized in any square A.

The Schwarz inequality of Sec. 2C introduces into our
estimates the factors |[;r1/2%(,. We modify Sec. 2C to
arrive at constants | r1/2-%/||, required for Theorem
1.1. The extra factor u ¢ is obtained from the conver-
gence of the £, norm of the kernels of H; or from

the integration over some times s. Formally the
method yields € = 3, while the bound should fail for

€ > 3. We give the proof for € = (8p)-1.
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In the graph expansion, a ¢ {#) vertex contracts either
to an H, vertex or to another ¢ (#). If ¢ (k) contracts
to an H,;, we multiply the kernel v, (k) of the contracted
@(h) vertex by u (k) ¢, and we multiply the kernel of #,;
vertex by u¢. Hence our kernels, with the y*¢ factors,
have the general form (2.17) that we estimate in Sec.
3. We choose € = (8p)1. [To deal with € = (2p)1,it
would be necessary to integrate over times s in such
graphs. ]

The remaining ¢ (k) vertices contract to each other,
The polynomial of a corresponding connected compo-
nent of the graph of R(s) is

7, = [ 0,(k)v,, (— ket dkds,ds,,, (2.47)
where the s,,s,, integrals are restricted to the time
localization of the vertices and also 0 = 6s. We per-
form the s, integration, We obtain a denominator p1
and two terms coming from the two endpoints of inte-
gration. Thus we obtain two graphs, of the form (2.47),
each with only one time integration and with the ker-
nels w1/2y, replacing v,. The application of (2.21) to
such graphs yields for the integrand of the s,, integra-
tion

70, 8,01 = 2811220, 05 15220, [l 5. (2.48)

3. ESTIMATES

A. Estimates on Kernels

In this section we derive estimates on kernels in the
inductive construction. These estimates deal quantita-
tively with localization in configuration and in momen-
tum space.

Lemma 3.1: Let0=o,B, a2 + 82 < m2, 0<¢,
p<Rs, and

flx,t) = DD [’ P ap.
Thenfor A = [v +j + |k| + s],

e = 2 2561207 70

n=

= O(e- ). (3.1)

Remavrks: The function f (x,t) is smooth except
possibly at x = 0, = 0. Our estimates are uniform
for £ > 0. For |x| > € > 0 we have

|f(x, )] = O(e-ot-811) 3.2)
by the lemma. For ¢ > € > 0, our proof of (3.1)
proves (3.2). We take the limit £ — 0 and define f(x, 0)
which satisfies (3.1) and (3.2) witha =0, g <m.
Furthermore, if A < 0, then f(x, {) is continuous and
(3. 2) holds for all (x, #).

Proof: We establish the case s =1, v=j=%k=0.
Then A = 1. The proof in general is similar. We use
the Cauchy formula to estimate the derivatives of

exp[— tu(p)]

n! e-trg)
Dreth® = — § ———— d,
f 2mi 7 (§ —p)nL

and we infegrate over a circle centered at p. For Ip|
= m,we choose a circle of radius g + €, where a2 +
(B + €)2 <m?2, We note that if Rez = 0, then

(3.3)
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(Rez)l/2 = Re(21/2), (3.4)

Thus on our circle of integration (Reu2)1/2 < Rey
and

a =[p2 +m? — (B + €2]1/2 < Rep. 3.5)
Thus (3. 3) yields for [p| = m,
|D e 4@ | < nl(g + €)neet,

For |p| > m,we use a circle of radius {p|. On this
circle m = (Rep2)1/2 < Rep, and

|Dze-t®)| < nl|p | re-mt,

Expanding e8'*! in (3.1) in a power series and using
lx7fle = ID7f7l4,

Hesst — (1 + plx D} 7Gx, )
L (Blx s, o)

n
!

_B \" © . (BY?
p m<B+€>e ‘+2fmdp<p>

O(eot) + O(e""‘)fniO p2dp = Ofeot),

IA
M8

]
1
N

IA
8

ID ety

=
1
N

IA
8
[

1
[\

X

1A

Lemma 3.2: Let e; be the characteristic function
of [4,4 + 1]. Thenfor 0 =¢, a2 + 82 < m2, u, =
Fu(p)F-1, we have

”ei exp(—' If/.Lx)e] H < 0(e—ott—B|i—j |).
Proof: U |i —j| = 2, the bound follows from |e,|

=1, et =™ I i —j| > 2,the kernel &,(x, y)
of e; exp(—tu,)e; is k, (x,y) = e, (x)f (¥ — y)e;()
where f, is the Fourier transform of exp[— £ (p)].
Note that %, has support in the region |x —y| > 1. We
apply Lemma 3.1 with a2 + (8 + €)2 < m?2, j=k=
v=0,
|k, (%, )| = O@)eat-Bix-sk-clx=3le, (x)e, (y)

= O(got-Blidlygelx-31,

Since exp(— €/x — y|) is the kernel of a bounded opera-
tor, Lemma 3. 2 follows.

Lemma 3.3: Let¢e@y, g<m, —1=17=<1,
Then

leu; Cur |l = O(e®').

Proof: We lete =23 ; -y €;, where [— N, N] is
sufficiently large to include the support of {. We
write w; = e;u-T{u" as

w, =w,e +wl(l—e)

and bound each term. Let v(x, v) be the kernel of
w,(I— e). By Lemma 3.1, for |Z| sufficiently large,

l7(x, y)| < O(e-®lil-€lx-31),

Thus for |i| large,
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llow; (1 — e)|| = O(e~814).

We now assume 7 = 0, and note that |w;| = const,
since
w; = e + e p7[¢, u7],

and [, u7] is a bounded operator. In the momentum
representation, the kernel i(p,p’) of [{, u7] satisfies

[h(p, b)) = |E(p — UM D)™ — 1(p")7}]

= 0()u(p — p)T|tp — 1)1,

which is a rapidly decreasing function of p — p’ and,
hence, the kernel of a bounded operator. We use this
to bound [lw;|| and |lw,ell for |i] = O(1). If 7 <0, we
use the representation

w,=el + [p7,Llur.

For || large, we bound the kernel 7,(x,y) of w;e as
follows:

r{x,9) = efx) [f.(x — 2)C2)f,(z — y)dze(y),

where f, is the Fourier transform of p(p)*T. For [x |
sufficiently large, f (x — 2){(2) = h (2) is a @0 func-
tion of z, and, by Lemma 3.1, D%k (z) is bounded by
O(e‘ﬁ'*'), le >R. Furthermore,

Jf (x = 2)8(=) (2 — y)dz = (f, ,, )

is the evaluation of a tempered distribution £, , trans-
lated by y, with the € function %,(-). Since transla-
tion is continuous in S » fo,e®) Varies over a bound-
ed set in 8’ as y varles over the support of ¢. Hence
for some Schwartz space norm |||, independent of x,
¥,

le(y)(f,,,y, hx> | = ”hx“s = Oe 8%,

for |x| sufficiently large. Thus for |¢| sufficiently
large

[7(x, 9)| = O(e~B1 e (x)e(y),

and, since e;(x)e(y) is the kernel of a bounded
operator,

lw;el = Ofe-8"4),
to complete the proof.

We now apply these bounds to a ¢ vertex 7, of the
form (2. 17). Suppose 7, has % contracted legs and is
localized in A;. (Thus the time s, , of the vertex v
lies in [ig, iy + 1) ) Let E be the locallzatlon projec-
tion

and 7 E; =L
Proposition 3.1: Let a2 + 82 <m2, Then
7
- - - 85, ,-( 1, =iy
13,015 = 13,y T (¢ W/2ert o "WREETH), (3. 6)

Proof: Let 6S =323, u,,0s, ,. For 0<0, 6 suf-
ficiently small, we have by Lemma 3. 2,

1579
IE,Il, < E IE,e**E; 3,1,

Z; l—I '(1/2)0(765 “(1/2)(By+6)|j,r -],;. |) ]IE]’;I-}U ”2 .
it el 3.7
In order to display the localization of 7,, we write

(H K, )17,, = I_{z“}y.
=1
Here

K . = ux(1/2)+e, e, ( x,) (1/2)- v,

'r,i *,

(3.8

C. € €y, and C- equals one on a neighborhood of

[#1,7, + 1], sufflclently large so (3. 8) holds. In fact,
we take ¢, to be the translate of a fixed €y functlon

so the ‘Sp norms of its derivatives are independent of
;. ByLemma 3.3,

«1/2)(B,,+8) 13y - i,

IE, Kl < 0(1) T e
r=1

Thus performing the sum in (3. 7) yields (3. 6).

We remark that for an optimal choice of (@, 8) satis-
fying a2 + B2 = (m — €)2,

e-at-Blxl < p-(m-ed ,

where d = (12 + x2)V/2 ig the Euclidean distance.

B. Estimates on Graphs

We use the estimates of Sec. 3A to establish estimates
on a single polynomial R We consider kernels 7,

of the form (2. 17), whnre v=1,2,..., N labels the
vertices of the graph of R, . Each kernel AT

k¢ ,. q(+)) is a function of contracted lines w1th
momenta &, , and of the path space variables ¢(-) for
uncontracted legs.

Each vertex has a space-time localization and a
lower momentum cutoff «(v,). The norm [7,],

[2(-; ()5 is the £, norm of 7 in the contracted
momentum variables, and it is a function on path
space. (Itis a constant on path space for fully con-
tracted graphs.)

Let the line (i.e., the pair of contracted legs) with
momentum &, connect vertices vy, and y,, with space-
time locahzatlons A and A’ respectlvely We define
the contraction distance d, , of this line as the Eucli-
dean distance between A and A'. We define the total
contraction distance d(y,) = d,, of the vertex v, as

d, =d(v,) = 2 d'r,u ’ (3.9)

r

where the sum extends over the contracted legs at
vertex v. Given € > 0, we introduce the localization
factor I, of the vertex v,:

ye ™3, (3.10)

Here y is a sufficiently large constant, chosen below.

Let Ra(s) be a polynomial of the form (2. 18).

Theovem 3.1: Given 0 < ¢, there exists a constant
v such that

|Ra<s)|s( I ynvynz>( y e“'"'é"’v-v)
vertices lines

sgwe""'%nvynz). (3.11)
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Remarks: For a fully contracted graph, |71, <
O(k(n,) " /P*<*% 5 > 0. Thus for a new constant ¥,

[Ra(s)l =1 ['}’K(Uy)-(1/2)+€“+6e_md"'/3]-

v

(3.12)
With our choice ¢, < § in Sec. 2E, fully contracted
graphs arising in the inductive construction satisfy

IR(s)| = N[yk(v,) Y4 ™0,
v
The proof of Theorem 3.1 follows from Proposition
3.1 in an elementary fashion. We localize each leg in
space, and apply the Schwarz inequality to obtain

B| = Z nlE, 3,1,

le v

Using the fact that each pair of contracted legs has
the same space-time localization, we bound the sum-
mation over 7, with Proposition 3.1. We choose

(2, ,,8,,,) to optimize our bound and so obtain (3. 11).

(3.13)

C. Combinatoric Estimates

At the conclusion of the inductive construction, we
obtain an upper bound for (1.39) as a sum of constants
on path space, with each constant represented by a
vacuum graph. We now estimate this sum, which in-
volves among other things, counting the number of
terms in the expansion. We assign a positive con-
stant c(v,) to each vertex v, in the inductive construc-
tion; c(y,) is called a combinatoric factor.

One use of combinatoric factors is to estimate sums
by supremums. For instance,

‘Zaal = Suplcqaa )
a o

provided 2 c;! < 1. We also use the combinatoric
factors to absorb the constants ¢7 or 7 in (2. 34),
except those coming from squares A € D,. Since
each vertex is localized in some square A, the time
integration in (2.11) extends over a region of volume
at most one. Thus we replace the integral over s by
the supremum norm of the integrand. We note that
for each @(h)-@(k) contraction, the integral over one
@(h) time has already been estimated and is not a
part of the ds integration in (2. 11}, see Sec.2E. We
have

~T(H,+H +6H)
(Qg,e " LI

= fQ exp<— fOT HH(CI(O))dO)d(I(')
= T fdsh(s) exp(~ T A~ ¥ (0Nalodo)

[+
<2 [ds|R(s)] exp<— JJ B~ Ya(o))do>.
@ (3.14)
Each polynomial R (s) is defined in (2. 19) and is
estimated in Sec. B:

|R(s)| = B, L, I} (O DRIPYE

The constants in B, with the exception of factors e’o
from applying (2. 32) or (2. 34) in squares A € D;, are
parts of combinatoric factors c(v,). With c(v,) as
chosen below we will obtain

—T(HO+HI+6H) eZJOIXOIT

sup I1 (c(2,)1, 113, 115)

[e2

x exp<— fOT E(~ Ya(o))do>. (3.15)
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The factor exp(2J, |X,|T) bounds the product of the
constants e® from squares A € D,. We also prove

Proposition 3.2: For N of (2.43) sufficiently
large, we have
(v, 17, lly) = e-N@
v

= exp(— fOT | Y (0)|do — IX0|T>, (3.16)

for every graph R in (3. 14), where N(a) is the num-
ber of vertices inR,, .

The inequality (2. 5) follows immediately. By (3.15)
and (3. 16), we have

-T(H,
<QO’e T °+H1+6H)Qo>

< (2% DIXIT sup exp<_ fOT {E(~ Y (o) + IYa(O)I}d°>

o290+ 01X 1T —T{E(~X)+IXI).

supe
XoX

Thus, by the formula above (1, 39),

(3.17)

— E(g) — 0E(g,h) = M|X,| — Xm;f {EeXx) + |x1},

where M = 2J + 1, which proves (2. 5).

We now assign the combinatoric factors ¢(v,) to ver-
tices v,. We denote these factors ¢, , ¢, or ¢, for
PT, PS, or ¢(k) vertices, respectively.

Proposition 3.3: Let By > 0 be given, and let N,
of (2. 43) be sufficiently large. There are constants
B, N, independent of 8, and ¥, such that

¢y (v) = Bd(v)N, (3.18)
€y () = Bd(v)Vk(v)1/8, (3.19)
¢, (v) = Bod(v}¥ (3.20)

and such that (3. 5) is valid.

Proof: We assign a finite product of combinatoric
factors to each vertex. Each factor in the product
has the form O(1)d(v)"k(v)¢ and, hence, so does the
product. Therefore, we only need to keep track of
which powers k(v)¢ occur, and we need to show that
some factor for ¢(k) vertices can be made small.

1. The Graph Expansion

We start by assigning combinatoric factors to a given
graph expansion step. This is our major assignment
of combinatoric factors, since we count the number of
graphs R, that are formed during a graph expansion
step. At the start of a graph expansion of a particular
term, n(A) vertices in A have uncontracted legs.
These “old” vertices contract to each other during the
graph expansion, and they also contract to the ex-
ponent to form “new” PT vertices. The old vertices
may contract further with the new vertices;but the
new vertices do not contract to the exponent. A given
PS or ¢ (k) vertex can contract during at most two in-
ductive steps. We assign combinatoric factors to
vertices from the time they are introduced until the
graph expansion when they fully contract.

If the rth leg of the vth vertex contracts to a vertex
localized in A;, we setj = j(r, ). Consider the set of
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all graphs in which the contraction localizations j =
j(r, v) of the old vertices take on fixed values. We
count the number of such graphs N({j(r, v)}), and then

we sum over the allowed { jlr, V)} . Suppose that ver-
tices v and v’,localized in A and A, respectively, are
connected by a line with contractlon distance dist

(4, A") = min{d(v), d(v')} . Since

2 dist(a, A')3 =g < «,
A/

a combinatoric factor §,d(v)3 assigned to each leg is
sufficient to deal with each sum over contraction
localizations.

Thus we may consider a fixed set of {j(», v)}. Sup-
pose that in a given graph expansion step /;; old legs
localized in A; contract to legs localized 1n A js and
that 1/ ; new legs localized in A, contract tolegs local-
ized m A; . (Either l;; or I; is zero, ) The contrac-
tion locahzatmns { ](1' v)} determine the {I;;} and the
{1{;}. However the {]('r v)} do not determine the num-
ber of new vertices, their degrees, nor the number of
contracted legs at each new vertex. Since new ver-
tices need not be fully contracted, the number of new
vertices in A; with legs contracting to A; lies be-
tween 1/;/p and l/;. Each new vertex is a monomial

,1=n=p, and l;; values of n may be chosen in

pl” ways for a total of at most I plw possible
choices of the number and degree of new vertices in
A;. We assign a combinatoric factor g, = b2 per

new PT vertex, or at least Béii/" = pzz“ to count new
vertices in A;, and we assign a factor 2# per vertex
to count whether each of the (at most) p legs at a new
vertex contracts. For new vertices, the localization
factor 8,d(v)? per leg deals with the sum over local-
izations, as above. Thus we now may fix the contrac-
tion locahzatlons { jlr,v) '} of the new vertices as well

as {j(r, v)}. Let l# denote Z;; or I;;.

For new or old vertices, the l # legs from A; to A,
can be connected in Z# ! ways 1f i#jorinl;ll =
(1;;1)12 ways if { = j. ’We need to count the contrac-
tions from A; to A; or from A; to A; but not both, so
N{j, it =< H(l.#.!)l/z. (3.21)
i1/, =0,we d1v1de (1012 = (15 ) is/ 2 equally
among the Ii; legs and thus, ass1gn a factor (l’])xﬁ/2
per new PT vertex. In the (k + 1)th inductive step, by

Corollary 2.1, any PT vertex » in A, contributing to
l;; satisfies

lj; = pr(A), = pd,(A)} =pd(v)3.

Hence a factor [ pd(v)3]#/2 per new PT vertex in A,
dominates the contribution of A, to (3.21).

We now consider the case of old vertices /;; # 0. Let
m,;,, 1 =1,2,3 denote the number of uncontracted
legs in A, at the end of the %Zth inductive step and be-
longing to PS vertices (I = 1), ¢(h) vertices (I = 2),

or PT vertices (I = 3). Thenm;, =< pn, (A;),, m;y <
h(A )k7a'nd m1,3 == (p - l)npt(A )k A].SO
l _E l _mzl+m12+m
n(l 1)1/2 < (m |)1/2 < H (gm )m,l/z (3'22)
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We assign the factor (9m; )'”“/ 2 among the vertices
of type ! localized in A;. For l=1,we have m; =
pn,(A;) = k(v) /82, We divide the factor m2
equally among the PS vertices in A, y1e1d1ng a factor

m2? < O(1)k(v)1/16 (3.23)
per vertex.
For ¢(h) vertices, we assign the factor
3my? < 3n,(a,) "2 (3.24)

per vertex, as well as a factor 2 per vertex for the
two terms formed by the time integration for each
¢—¢ contraction (see Sec. 2E).

Finally, we consider PT vertices m ;. We assert that
there exists a constant 8, depending only on p, such
that

d (A,)8/3.

Our combinatoric factor (3. 22) for ! = 3 is bounded
by

[0(1)d ()] Bs%<@,

myq < By (3. 25)

(3.26)

The squaring exponent (2. 23) of Sec. 2C ensures that
if m;3 = 0, then at least d_(A,)® old PT vertices v,
each with d (A;) = d (v), are localized in A;. We
assign a combinatoric factor O(l)dc(v)ﬂ3 to each old
PT vertex, which dominates (3. 26).

We now prove (3. 25). Let N, be the number of new
PT vertices produced in the graph expansion of the
kth inductive step, and which retain uncontracted legs
after squaring. Hence by (2.23),

Mg < (p —1)n, (), = (p — I] 2N, + [4d,(A))]6}.
But the vertices N, are produced by contractions to
the exponent, so

pZ A )pa s (3.27)

where the sum extends over squares A ; satisfying
A j), 1 = d(5;)F1,by Corollary 2. 1. Since the ver-
tlces remain after squaring, d (4,3, = d.(A;)%, and

at most 44,(A;)? squares 4, enter the sum (3 27).
Hence N, < 4pd (A;)5, proving (3. 25).

2. The Squarving Operation

The squaring operation (2. 22) introduces two terms;
50 a combinatoric factor 2 is sufficient for each
application of (2.22). We assign this factor to the
vertex v’ which contracts to the exponent forming the
new PT vertex v requiring the use of (2.22). Each
vertex v’ can form at most p new PT vertices during
the graph expansion, and we assign a combinatoric
factor 2# per vertex to deal with the squaring opera-
tion.

3. The Path Space Construction

Let us first consider (2 32). If j > j,, we assign a
combinatoric factor exp(8,) per PS vertex. This fac-
tor exp[g, n, <(A)] dominates both e/ and the factor
0(1)j2 for summation over j. In fact, j = O(1)

J. Math. Phys., Vol. 13, No. 10, October 1972



1582

(log;)#/2 =< O(1)k; /8, and n,(A) = k}/8¢ if the lower
cutoff in A is «;. Thus for 8, sufficiently large,

O(1)j2e7 = exp(B 41/80) = exp[B n,(A)].

In case j = j,, there are no PS vertices in A;. For
A; C Dy, we include the factor exp(J,) explicitly in
our bound (3.15). For A; ¢ Dy, we assign exp[jy(4,)]
as a combinatoric factor for the vertices localized in
A;,where A; forced the PS construction in A;. By

(2. 35), the n(Aj) vertices in A; with uncontracted legs

force the PS construction in at most 64n{A ;)2/3
squares A;. [This is the area of I'(A;).] By (2. 36),
we assign at most exp(64n(A;)2/3{[J;7(a;)1%] + 1})
among the vertices in A;. Hence a factor O(1) per
vertex is sufficient.

Finally we consider (2. 33), the part of (2. 34) not
analyzed above. The factor exp(J,,) is kept explicitly
in (3.15). For 2% ¢{h) vertices we have a factor
1/(2k)! = nk-2* or a factor

OV, (a,)*"

i

(3.28)

per vertex. A combinatoric factor O(1) per vertex
dominates the sum over k. We choose N, < 7,(A))
sufficiently large so that (3.28) dominates (3. 24),and
their product is sufficiently small to ensure (3. 20).
This completes the proof of the proposition.

Proof of Proposition 3.2: We use Theorem 3.1
and Proposition 3. 3. For a PT, PS, or ¢(k) vertex v,,
we have

’ Byd(vy)Ne_M(v")/s, PT

c(w), |17, I, << Byd(v,) e ™ ok(u 8,  PS

Bo'yd( Uy)Ne—md(Uy)/G ” “-(1/2)—1/8ph “2’ qo(h)

We use Theorem 3.1 to give the estimate
O[x(u,)-(1/2)+1/8+8] for PS vertices, the k1/8 coming
from Sec. 2E, and this dominates the O[«(y,)1/8]
growth of (3.19). By Corollary 2.2, x(7,) for PS ver-
tices tends to infinity with N, of (2.43). Similarly,
for PT vertices, d(y,) - © as N, — © by Corollary
2.3. We choose g, sufficiently small and N, suffici-
ently large so

(), I1o,lly = e 1.

To complete the proof of (3. 16), we show that each
polynomial R, has a graph with N(a) vertices, where

N(@) = [ ¥ 0)|do — X,T.

The right side is the area in ~ D; in which the ex-
ponent has been removed. Let A ¢ D, and let A’
force the PS construction in A. We count the vertices
in A’. The square I'(A’) has area 64n(A’)2/3 and if
N, > (64)3, then by Corollary 2.2, 64n(A")2/3 < n(a").
Hence R, has more vertices than squares in ~ D,
with the exponent removed.

4. COMPLETION OF THE BOUND ON 5E

Theorem 4.1: There exists a, such that for all
intervals X with |X| = a,,
E(g) = E(~X) + |X]|. (4. 1)
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We use the inductive construction to bound E(~ X)

and prove (4.1). In this section we describe the modi-
fications to Secs. 2 and 3 required to establish (4. 1),
i.e., (2. 4) and, hence, to complete the proof of Propo-
sition 2.1 and Theorem 1. 1.

A. The Inductive Construction

Let X, = X,(g) minimize E(~ X) + |X| under the re-
striction that X is an interval of length |X| = a.
Then, for |X| = aq,

—E(~X)=—E(~ X))+ |X| — |X,]. (4.2)

We assume that (4. 1) is false, namely for a = q,,

—E(g) =— E(~X,) — |X,]. (4.3)
We use the inductive construction and (4. 2) and (4. 3)
to bound E(~ X_); we thereby obtain a contradiction,
establishing (4. 1). We bound

J exp(— S~ X,,>(q(o»do)dq(-).

The only change in the inductive construction occurs
at the start of the first inductive step, i.e., the start
of the first PS construction. Roughly, the idea is to
begin the inductive construction by inserting and re-
moving the factor exp(— H;(X,)) in the integrand of
(4. 4). For this purpose we use the inequality

(4.4)

1=e 75+ (r/s)2n, (4.5)

valid for real 7,for s > 0 and for » € 9+. We choose

n=[|Xx,|18],s=3|X,l,and
i0+1

r= [ H/(X,)q(0))do. (4.6)

0

We begin the first PS construction by inserting (4. 5)

and (4. 6) in the integrand of (4. 4) at each time ¢

such that 0 =i, = T, i, € 79", where 7 is a positive

integer to be determined later. Thus we apply (4. 5)

and (4. 6) in the union of squares

Dy ={a;:4, € X, 5 € 79", 4y =T},

producing 2[7/7] terms. For each such term, let D, be
the subset of D, in which the exponent is removed,
i.e., the squares in which the second term in (4.5) is
selected. Let D be the complementary subset of D,
in which the exponent remains. Then D; = Dy U Dy,
and each square A; € D, contains 2[| X, |1/8?] vertices,
each of the form 2|X_|-1H; ,. We call these vertices
PS vertices, we include the factor 2|X, | with the
kernel of these PS vertices, and we assign the func-
tion k(v) = |X,| to such PS vertices. Then x(v) plays
the role of a lower cutoff » = [«()1/8?] and [lvll, =
O(k(v)1/2).

After starting the PS construction in this manner and
obtaining PS vertices in D, we continue the inductive
construction as in Sec.2. With our definition of the
PS vertices in Dy, the estimates of Sec. 2 and 3 con-
cerning the inductive construction apply. In the case
of (2.43), Ny = 2n= 2a}/82—> ® as ay — «.

At the end of the inductive construction, we will obtain
exp[— E(~ X)], which we bound by (4. 2) or (4.3). Here
X is the space region (at some time) in which the ex-
ponent is removed. The inequalities (4. 2) or (4. 3)
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apply if X is an interval and either |X| = aor X = 9,
respectively. We now verify these conditions for any
X appearing at the end of the inductive construction.
If A; & X, X [0, T],then dy(A,) exceeds the horizontal,
or equal time distance from A, to X, X [0, T]. By
Corollary 2.1, if n(a;), # 0,then at the end of the »th
PS construction d,(4;), > dy{A;). Thus we ensure that
X has the desired form if whenever the exponent is
removed from A € Dy, it is also removed from all
other squares in w1th the same time localization
as A.

Suppose that A’ forces the PS construction in A € D).
If dy(A’) = 81 dist(a, A") + 81X,]|, then by (2. 38)

n(A")13 = dy(A") = 81 dist(a, A") + 8-1[X, .

Thus A’ forces the PS construction in a square I'(A")
with side length 87(A")1/3 = dist(A, A’) + [X,| and
centered at A’. This T'(4’) includes all squares in D
that are localized at the same time as A.

On the other hand, if dy(A’) = 81 dist(a, A") + 871X, |,
let dy(A') = dist(Aa’, A"), A" € Dy. Then

dist(a, A’) = dist(A, A”) — dist(A”, A")
=7—dy=7—81dist(a, ") — 81|X,].

Suppose 7 = 10|X,|. Thus

|X,| = 81 dist(a, A"). (4.7
Let d,(A’) be the distance between the space localiza-
tion of A’ and the center of X { A=A, and X, =
[a, B], then d,(A") = |i; — 1(a'+ p)|.} Half the side
length of I'(A’) is greater than 2-1/2 dist(a, A"). We
show that
d{(a") + z1X,| = 2-1/2 dist(a, A"), (4.8)
so A’ forces the PS construction in all squares in D
localized at the same time as A. By the triangle in-
equality, d,(A") =dy(A") + 3|X,|;s0 by (4.7),

d,(a) + 31X, =dy(an) + |X,|
= g dist(a, A") + 51X, |
=3 dist(a, A") = 2-1/2 dist(a, A').

Thus we choose 7 = 7(a) = 10|X,| to ensure the de-
sired geometry.

B. The Combinatorial Estimates

The combinatoric factors for the graph expansion and
the squaring operation are assigned as in chapter 3.
In the path space construction, we now consider the
combinatoric factors from the application of (4. ?L
and (4.6) in D,. Let 9, =1{ig:0=iy=7T,4, € 79,{.
For a vacuum graph R at the end of the inductive con-
struction, let 9, = 4,(a) C 9, be the subset of times
for which the second term of (4. 5) was chosen. Let
9ola@) C 9, be the complementary subset of times for
which the first term of (4.5) was chosen. Let 95 C §;
be the subset of times in ¢; when the PS constructlon
was not used in X,. We note that Y (o) in (3. 14) has
the form

o) (2, [0 € sg@
o 4.9
)X X5X, [o]¢ (). -9
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Thus H,(~
cases.

Y, (0)) = H/(g), H;(~ X) in these respective

Each application of (4. 5) yields two terms, so we
assign a combinatoric factor 2 to each time ¢, € 9;.
I iy € 9y, there are vertices in X, at time i, and we
assign the factor 2 to any such vertex. If i, € 95 ~ 9,
we assign the factor 2 to a vertex in the square fore-
ing the PS construction, as with the factor e ¢ below.
The remaining factor is exp(| 95| log2), where |94 | is
the number of elements of 3.

The other relevant factor is the constant exp(z IX =
es from the first term of (4.5). If i, € ¢ ~ gg,then

exp(z |X,|) is a combinatoric factor exp(%) per
square A = A; ;. for ¢, € X,. We distribute this fac-
tor among the vertices in A’ that forced the PS con-
struction in A. Since #(A’) vertices in A’ force the
PS construction in at most 64n(A")2/3 squares, we
assign at most a factor O(1) per vertex in A’. For
times i, € 9§, we obtain a factor exp(z |X,[|9§1) in
our expansion,

Thus the inductive construction yields

(Qo,e—T[HmHl("Xa)]QO) — fe_HI[.(Xa)(q("»]dodq(,)

=Z [dsIR () expl— [ ' ¥, (0))g(0))do)

" 1
< supe 19g¢a){log2+51X, 1}
a

X 1{e(z,)1,7113, ) exp(— [7 E(~ ¥, (0))do).
v (4.10

For |9{(a) | time intervals o € [3 0 g T 1), we bound
— E(~ Y,(0)) = — E(g) by (4. 3). For the remaining
time 1ntervals we use (4. 2). Thus

exp(— [E(~ ¥ (0))do)

-|90(oc)lIXaIe—TE(~Xa)eXp(fT !Y (0)

=e o o

~ X,|do).
(4.11)

By Proposition 3. 2, for N, sufficiently large,
ely)1, 713, 1,) =V,

In our case

N(e) = [T{]Y,(0)

~X,|}do +{1/7— |55}
(4.12)

The bound N(a) = [, {|¥,(0) ~ X, |} do follows as in
the proof of Proposition 3. 2, neglecting squares in Dy.
In a strip X, X [4,, i, + 1], i, € 9,, there is at least
one vertex. For a square A € X, X g5 ~ 97, we count
one of the n(A’) vertices in A’, where A’ forced the
PS construction in A. Thus we count at least one ver-
tex for each time interval in 9, ~ 97. There are
T/T— |95| such time 1ntervals estabhshlng (4.12).

From (4.10)—(4. 12), we find

<Qo, e—T[H0+HI(~Xa)]QO>

1" l
< supe —TE(-Xa)e—T/‘re -1, {-log2-1+3 1 X, |

o
= e—T[E(~Xa)+'r ‘1],

if a (and hence |X,| = a = a, and N,) are sufficiently
large.
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Taking the logarithm, dividing by 7 and letting 7 — w0,
the left side converges to — E(~ X_). This gives the
contradiction 0 = — 7-1, and proves (4. 1).

5. A CORRECTION

Our proof5 of the spectrum condition P2 < H2 con~

tains a gap, as was pointed out by Frohlich and Faris.
Namely, we required the Lorentz rotated Hamiltonian
in a periodic box to have a simple ground state, which

Jo GLIMM AND A, JAFFE

does not follow, as claimed, from standard methods.
The remaining results in Ref. 5 are either indepen-

dent of this gap or are proved (and improved) by the
present paper, with the exception of the estimate

+ Vo(h) < constllh{o(H + I).

This bound is Theorem 1.1, Case 2, € = 3, and it
should follow from the methods of the present paper.
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Some Remarks on Three-Waves Interaction
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The problem of nonlinear interaction among three waves is analyzed in the case in which one of the waves is

initially absent. Clarification is made of some mathematical aspects of the interaction mechanism.

The study of the nonlinear interaction among differ-
ent waves in a plasma is of primary importance, espe-
cially in connection with the possibility of exciting
proper low-frequency modes, e.g., ion acoustic waves
of the plasma by external transverse waves.

The subject has been extensively explored by many
authors,!~7 but there are some aspects of the way in
which solutions are obtained that it is worthwhile to
reconsider and clarify. In particular we refer to the
case in which two waves excite an initially absent
third wave, when matching conditions w; + w,; = ws,
ky + ky = k3 are fulfilled.

The procedure used by several authors in this case
seems tobe not completely correct, and we reconsider
the problem through a different calculation scheme
which yields the correct solution.

It is well known that the problem of nonlinear three-
wave interaction generally leads, in the usual scheme
of approximation6—28 to the following truncated sys-
tem of equations for the evolution of amplitudes:

”’3*

|
2 5
!
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!
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1
!
0 } ..
I hi¢
% 3
FIG. 1.
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db
Ly p*

dby

b, .
v = A,b0%b,, d(Tt)Z

e — A3b1by,
(1)

where the b; are the complex amplitudes of the three

waves, € is a small expansion parameter and the A

are the coupling parameters.?

This system is usually solved with the method em-
ployed in Ref. 9. Through the substitution
u; = VAN 00 1, by = 10le™i = (u /NN ) ', (2)

one obtains

dug

E('ar)‘ =—UjlUgy coso, (3)

do Uty Uiz UgU3Z\

d(ety — < uz | Uy Z1 ) sing, @
where

¢=¢3— ¢2— ¢
This system of equations is solved by a suitable set
of elliptic functions.6.79

In the simplest case of physical interest, when the
third wave is initially zero, it can be easily verified
that the Lipschitz condition is violated in the equation
for ¢. On the other hand, it is evident that in this
case the substitution (2) is meaningless as the phase
is completely undetermined. It may be useful to show
these considerations by looking at the curves in the
plane u5, ¢ .

From Egs. (3) and (4), in fact, we easily obtain

_ (¢, — ug)cy —uj) us coso (5)
do 3(a — u3)(B — ug) sing

du3 _
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Taking the logarithm, dividing by 7 and letting 7 — w0,
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does not follow, as claimed, from standard methods.
The remaining results in Ref. 5 are either indepen-

dent of this gap or are proved (and improved) by the
present paper, with the exception of the estimate
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This bound is Theorem 1.1, Case 2, € = 3, and it
should follow from the methods of the present paper.
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The problem of nonlinear interaction among three waves is analyzed in the case in which one of the waves is

initially absent. Clarification is made of some mathematical aspects of the interaction mechanism.

The study of the nonlinear interaction among differ-
ent waves in a plasma is of primary importance, espe-
cially in connection with the possibility of exciting
proper low-frequency modes, e.g., ion acoustic waves
of the plasma by external transverse waves.

The subject has been extensively explored by many
authors,!~7 but there are some aspects of the way in
which solutions are obtained that it is worthwhile to
reconsider and clarify. In particular we refer to the
case in which two waves excite an initially absent
third wave, when matching conditions w; + w,; = ws,
ky + ky = k3 are fulfilled.

The procedure used by several authors in this case
seems tobe not completely correct, and we reconsider
the problem through a different calculation scheme
which yields the correct solution.

It is well known that the problem of nonlinear three-
wave interaction generally leads, in the usual scheme
of approximation6—28 to the following truncated sys-
tem of equations for the evolution of amplitudes:
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db
Ly p*

dby

b, .
v = A,b0%b,, d(Tt)Z

e — A3b1by,
(1)

where the b; are the complex amplitudes of the three

waves, € is a small expansion parameter and the A

are the coupling parameters.?

This system is usually solved with the method em-
ployed in Ref. 9. Through the substitution
u; = VAN 00 1, by = 10le™i = (u /NN ) ', (2)

one obtains

dug

E('ar)‘ =—UjlUgy coso, (3)

do Uty Uiz UgU3Z\

d(ety — < uz | Uy Z1 ) sing, @
where

¢=¢3— ¢2— ¢
This system of equations is solved by a suitable set
of elliptic functions.6.79

In the simplest case of physical interest, when the
third wave is initially zero, it can be easily verified
that the Lipschitz condition is violated in the equation
for ¢. On the other hand, it is evident that in this
case the substitution (2) is meaningless as the phase
is completely undetermined. It may be useful to show
these considerations by looking at the curves in the
plane u5, ¢ .

From Egs. (3) and (4), in fact, we easily obtain

_ (¢, — ug)cy —uj) us coso (5)
do 3(a — u3)(B — ug) sing

du3 _
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where ¢4, c, are two constants of motion

ey = uf +uf, ©)

(M

a=3lc; top t (et +cq—cicy)t?),
3ley tep—(cf + g —cyc)t/?].
The plot of u; versus ¢ is constituted by closed cur-

ves that degenerate to a rectangle when u4(0) is zero
(see Fig. 1).

It is just on the border of the rectangle that the Lips-
chitz condition for Eq. (5) is violated.

In the current literature®.7.9 these facts have been
overlooked, and this may lead to consider a system of
equations for the amplitudes that does not have solu-
tions, as is the case of Eq. (27) in Ref. 7.

We show in the following that a simple way to over-
come these difficulties is to avoid the use of polar
representation of complex amplitudes. We put

bj:(l/"hkxz) (Kj+i}‘j), (8)
thereby obtaining the system

Kq = Kokg t ¥2¥3, V1 = Ka¥3 — K3V,
KiKz T ¥1¥3, Vo = K1¥3 — K3V1, (9)

Ry =— KKyt ¥1¥g, V3= = Ki¥g — K3¥q,

Ko

which we want to integrate with the condition K3(0) =
y3(0) = 0.

It is easily verified that a constant of the motion is
H=y1y5Y3 * ¥1KoKz T K1¥3K3 — K1KpY3, (10)

which is equal to zero with the considered condition.

THREE-WAVES INTERACTION 1585
From Eq. (10} we thus obtain
_ Kalk1y3 — K3¥4) _ K1(ysKa — K3¥5) (11)

z Y1¥3 T KKz 17 yays t KoKy
By comparison of Egs. (11) with Egs. (9) it follows
that

’21/K1 :3"1/3’1, kz/"z :5)2/3’2;

and therefore

y1/K1 =81, Ya/Kg =Sy; (12)
by sutstituting Eqs. (12) into Eq.(10) it follows then
that

Va/Kkg = (51 + 85)/(1 —5:S5). (13)

System (9) reads now

ky =[1+s5(sq +55)/(1—5.85)|KgK3,
ko = [1+5y(sy +52)/(1—5185)]kqk3, (14)

kg =—(1—s,8,)K Ky,

and its solutions are the usual Jacobi functions. On
the other hand, remembering that y, /k; = tang, , from
Eqgs.(12) and (13) we obtain

tang; = tan(¢, + @),
that is,
¢6=0 or o¢=m.

It turns out that the phase ¢ is a discontinuous piece-
wise constant function which takes the value 7 during
the time of growth of u; and the value zero during
the decrease. Taking into account this behaviour of
the phase ¢, system (3) gives now the correct Egs.
for the evolution of the amplitudes.
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The representations of the Poincaré Group for spinless particles, reduced with respect to the Lorentz subgroup,
are investigated. They involve the principal series of representations of SL(2,C) and use is made of a basis,
introduced by Gel'fand in which the states are labeled by a complex number z. The transformation matrices
relating to the Wigner basis are derived. The matrix elements of the momentum operators are obtained. The
general form of the § matrix in the new basis is discussed. This basis may be relevant for a field theoretical

description of the Veneziano model.

1. INTRODUCTION

In the relativistic quantum theory of massive parti-
cles, physical states are generally described by vec-
tors in Fock space, which is the Hilbert space of the
direct product of single-particle states. The single-
particle states form a basis for unitary irreducible

representations of the Poincaré group. The basis
most commonly used is the Wigner basis in which the
Poincaré group is reduced with respect to the Abelian
subgroup of translations. In addition, one operator
commuting with the translation subgroup is given to
specify the spin, such as in the helicity basis or in the
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relating to the Wigner basis are derived. The matrix elements of the momentum operators are obtained. The
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1. INTRODUCTION

In the relativistic quantum theory of massive parti-
cles, physical states are generally described by vec-
tors in Fock space, which is the Hilbert space of the
direct product of single-particle states. The single-
particle states form a basis for unitary irreducible

representations of the Poincaré group. The basis
most commonly used is the Wigner basis in which the
Poincaré group is reduced with respect to the Abelian
subgroup of translations. In addition, one operator
commuting with the translation subgroup is given to
specify the spin, such as in the helicity basis or in the
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spinor basis. In principle, however, any basis is suit-
able for the description of one-particle states. The
choice of a particular basis is dictated by its sim-
plicity or convenience in exhibiting some important
feature of physical systems, The Wigner basis is
particularly useful because, by diagonalizing the gen-
erators of translations, one obtains a straightforward
description of momentum conservation.

We propose here to investigate a basis which is ob-
tained by reducing the Poincaré group with respect

to the Lorentz subgroup. We shall call it the Lorentz
basis. Our original motivation for doing this resulted
from some work by Domokos ef al.l in which they
draw attention to the formal resemblance between the
Koba-Nielsen representation? for the dual resonance
model and irreducible representations of SL (2C), in
a basis introduced by Gelfand,3 defined in terms of a
complex number 2. It suggests the possibility that
the dual resonance model would correspond to a par-
ticularly simple form of the S matrix when expressed
in this basis. Our efforts in establishing such a re-
sult were not successful. However, we have obtained
the matrix elements of the momentum operators in
this basis which turns out to be of mathematical inter-
est in itself. This problem was, to our knowledge,
first discussed by Chakrabarti et al.4 using the
(J2,J,) basis studied by Joos.5 However, their re-
sults, although essentially in agreement with ours,
are presented in a somewhat paradoxical form. They
state that, for the case of spin-zero particles,P“ Ia,
z) is a linear combination of states |x + i,2) and

x —¢,2). However, Joos has shown that in the de-
composition of a representation of the Poincaré group
with respect to the Lorentz group only real positive
values of A occur. Thus the states |A + ¢, z) and

A — i, 2) are not in the Hilbert space. The source of
the paradox is that Pu is an unbounded operator, and
therefore,is defined only on a subspace of the Hilbert
space. We feel that our analysis completely clarifies
this question.

Similar problems arise in studying the Lie algebras
of unitary representations of noncompact groups
when diagonalizing operators which do not generate
compact subgroups.® Some of our results are con-
tained in Ruhl's work.7 However, the two approaches
are so much different and the subject so unfamiliar
that we think the presentation of our methods to be
warranted.

Our paper is organized as follows: In Sec. 2 we des-
cribe our choice of basis and show how it is related
to the usual Wigner basis. For simplicity we confine
the discussion to spinless particles. In Sec. 3 we ob-
tain the matrix elements of the momentum operators,
in the subspace of the Hilbert space where they are
defined, for the principal series of unitary represen-
tations of SL(2, C) with continuous eigenvalue A and
discrete eigenvalue M = 0. It is found that the mo-
mentum operators, considered as distributions, are
defined on the set of functions f,(z) which are analy-
tic in the variable X in the strip {ImA|< 1,and a
characterization of these distributions is given.
Another characterization is given in Appendix B. In
Sec. 4 we indicate the implications of our results for
the S matrix in the Lorentz basis, and in Sec. 5 we
give the transformation of the T matrix from the
Wigner basis to the Lorentz basis.
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2. THE LORENTZ BASIS

Let J, be the generators of the Lorentz group. The
irreducible representations of SL(2,C) are charac-

terized by two numbers ¢ and M related to the Casi-
mir operators of the group by

%quJuU =M2 + o{c + 2), (2. 1)
(1/41)g,  J#Jrw = M(o + 1). (2. 2)

L pd

Gel'fand3 has shown that the basis vectors for a
unitary irreducible representation of SL(2, C) can be
labeled by a complex variable z. If L is an element
of SL(2,C) given by

L=<$§> ab—py =1,

(2.3)
and if D(L) is the operator associated with this ele-
ment, on the space of vectors |0M;z> of an irreduci-
ble representation of SL(2, C), then these states
transform as

D(L)|oM;2) = (a — Bz') o M(a* — B*z'*)"o+M |gM; 2'),
(2. 4)
where

z' = (az +y)/(Bz + 9). (2.5)
The Poincaré group has generators Jp,, of Lorentz
transformations and F, of translations. The irredu-
cible representations are characterized by the Casi-
mir operators P2 = P Pt and W2 = W W, where W, =
2 €,,0J"PP°. For the unitary representations P2 is

a real number. If P2 =m?2 > 0 then W2 =

—m2s(s+ 1) where s is an integer or half integer.
The representation is then associated with a particle
of mass m and spin s.

Joos® has shown that in the SL(2, C) decomposition of
a unitary irreducible representation of the Poincaré
group corresponding to a massive particle with zero
spin the only representations that occur are the rep-
resentations in the principal series with M = 0 and

0 =—1+ i > 0). For each A the representation
occurs once and only once. Therefore the basis
states shall be labeled as |xz) and are normalized in
the following way:

Moz lng20) = 8(x, — X1)02(2, — 27), (2. 6)

where 62(z, — 2,) = 6(Rez, — Rez;)6(Imz, — Imz,).

On the other hand the states in the Wigner basis for
a representation of particles of mass m and zero
spin are labeled by the eigenvalues p of the momen-
tum operator P, as |p).

The two bases are connected by the transformation
matrix {p|Arz). In order to obtain this matrix let us
consider a Lorentz transformation L and, taking
(2. 4) into account, write

@lrzy = @IDEL1)1D(L1) r2)
= la—gz'|2o@ (a2, (2.7

where p’, 2’ are obtained from p and z by the Lorentz
transformation L1,
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Now we notice that the transformation of z into z’,

as given by (2. 5), is the same as that of the ratio

(— ¥,/¥,) where ¥,,Y, are the components of a
spinor ¥ in the + representation of SL(2,C). Letting
0, = (1,0) then (7,0 \J/) transforms under SL(2,C) as

a null 4-vector and if ¢ = (1,),then

=(¢",0,¢) = (1 + {z]12,—2 Rez,— 2 Imz,1— |z]2)

(2.8)
transforms in the following way:
(¢, 0,¢) = Bz + 61 2K 1(¢'",0%)
or
(0%,0%) = la — Bz’ |2, (¢", 0%), (2.9)

where A , is the transformation matrix of vectors
corresponding to the Lorentz transformation L.
Therefore it follows from (2. 7) and (2. 9) that

P Irz) = ic(n, m)[(p/m)-n]e,

where c¢(x,m) depends only on X and » and can be
chosen to be real. In order to determine c(r, m) we
use the normalization condition (2. 6) together with
the completeness condition

d3
[ Ip)pl ﬁf,: 1;

then
o, * 6. 43

c(hym)? f(‘;bn-
=08y — X;)02(2, — 27) = (2/7)6(Ay — Ay)B(nyny).

(2. 10)

(2. 11)

(2. 12)
One obtains
c=7132(0/m) (2.13)
so0 that
®IAz) = 773/2 (ix/m)[(p/m)-n]°. (2. 14)

In order to simplify the notation we shall from now
on set all the masses equal tom = 1,

3. THE MOMENTUM OPERATORS

Since the generators of translations P, are unbounded,
they are not defined in the whole Hilbert space but
only in the subspace of vectors

1) = Jlpro) &2 (3.1)
for which p, f(p) is square integrable. In the A, 2z

basis this corresponds to the subset § of functions
f(x, z) defined by

Fn,2) =

with p f(p) € L2 (with measure d3p/2p ).

One can show? that these functions are analytic in
the strip |Imx|< 1. These functions also have the
following property:

-ixf(p) gﬁ (3. 2)

Fl=n,2) = (@x/m) [ 3(nn’)1+i0(x, 2")d22", (3.3)

1587

which establishes the equivalence of the representa-
tions for values of x of opposite signs.

Let us consider the matrix element
I=0y2,|P 1 f) = [ yz,y |P, lezl)f()ulzl)d)\ldzzl
= f(kzzzlp |P>f(p
= [ = ()™ ”‘pr(p)

In Appendix A the following identity is proven:

(3 4)

— iNg(myp) T, = F(hy — i) (myep) O,

+(1/2m) [ ag(Enyng) e ny [(— i —2,)/n32]

X (ny-p) e g2z (3.5)
Substituting in (3. 4), one obtains
S Qaza | BN 2 )Ny, 2 ) A0 d22) = Sny, TRy — i, 2,)

+(ing/2m) [ Gryomp) Peng Fl— ny —i,24)d22,.
(3. 6)
The A, integration in (3. 4) and (3. 6) is over the inter-
val (0, ). Therefore one can write the following
expression for (A,2,| P, [1;z,) considered as a distri-
bution on the set of analytic functions f(x, 2,):

Mozp PNy 2e) = (ixy/2m)(Fmy ma) P 702600y + Mgt iYnyg,

+ 30y — Xy +0)B(2y — 21)ny, (3.7

to be understood in the sense of (3. 6).

Similarly, this matrix element considered as a distri-
bution in the space of functions f(r,, 25) can be
written as

(A2 |PINj2y) = 58(0y — Ay + 0)0(25 — 29)m5,

— (iny/2m) 3y ng) MO t Ay —imy,  (3.8)

which is the Hermitian conjugate of (3. 7).

Let us now consider the matrix element

Ny2, IPPI)\lzl) as a distribution in the topological
product of the space of functlonsf()\lz ) andf()\zz
We have

S ayzy | BIxy20)f (A q21)dN d22, fo(Rg, 25) ANy d22,

=4 JR0g =i, z0)ny, fo(Xg, 25) dhydz,
+ f (iA2/21r)(§nl- ”2)_1_”‘2"1“f(— Ay — i, 31)
X d22; fo(Ay, 25) T dAyd2z . (3.9)
In the second term we have
ix N4 Mo\ ~1-i
—2 f( L 2) )\zfz(hlyzz) td2z,
2T 2
I Ny Mg\ 178hy — A ;
_ 2f<1 2) z(nzp)l*)“zf(P
2m 2
dsp
x —2 g25. = 1 _ =1-iX, v 2
. P =t 3/2< 1) P E) = Zpo
= %fz(— Ag, 27T, (3.10)

The derivation is given in Appendix A. Therefore we
can write
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Mo25|BINg2y) = 3ny 500 — Xy + 1)0(zy —2,) (3.11)

when considered as a distribution on the topological

product of the space of functionsf()\l,zl) and f(x,, 25).

In Appendix B we give an alternate representation of
the matrix element (1,2, | P,Ix,2,) defined as a limit
of distributions with support entirely on the positive
real A axis. We consider the function

E(a,n) = (\,z,le ™ Pl z,), (3.12)
where a > 0,and » is a null vector with ny > 0. Since
P is timelike n#- P > 0 so that e~ » P is a bounded
operator, therefore, E(a,n) is well defined. We
expect to recover the matrix elements of P-» (and
therefore P“) by formally writing

Mgzl Ponlrizy) = lim — £ Bam).  (3.13)

da

It turns out that this limit only exists on test func-
tions analytic in the strip |Imx|< 1. An outline of
the procedure is given in Appendix B.

4. THE T MATRIX IN THE (\z) BASIS

In this section we consider the matrix element of the
T matrix for a scattering process A, + A, 2> A; +
A,, with the states given in the (Az) basis. From
Lorentz invariance one can readily seel that the
matrix element of the 7 matrix is of the form

*
. Y2
(Ma235 0424 | TNy 2450025) = T, (n;-my) Y
j=314

i

X (1, ny) oD 2y YO 23 g, (4.1)

where 0, = — 1 + i\, and
£ ={(e1— 2) (25 — 29/ [e1 —24) &5~ 2,)]} (4.2)
so that

11— gl =T20s

- 3 . ?
Ny-NyNy-Ng
Ny Nghz® Ny

Ny*NgNye Ny ’ (4.3)

l1—¢12 =

We want now to find the restrictions on M(x,, £) that
come from invariance of the 7 matrix under trans-
lations as given by the condition [T,P#] = 0. We have

00 o0
fo l'ild)\ifo [1d2z (32350424 |[T, P, ] INy2150525)

X .‘f-3()‘323)Tf4(7\4z4)‘rf1()\121)]?2(7\222) =0. (4.4)

From the unitarity of the S matrix we shall now show
that the function

(pg + P4)2 <p3;p4 lTlf]_ifz)

= (Pg + P4)2 f (p3;p4|Tlp1;p2)
dasp, d3p,
X fl(p1)f2(pz) —Z_PT(; '27,;6

f <P3;P4 \T‘P1592> (Pl + P2)2f1(P1)f2(p2)
d3py d3p,
" 10 P20
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i§ square integrable in the pair of momenta P3;P4-
Since (py + p5)2 = 2(1 + py-py) and py 4 f1(p4), Dao
fa(ps) are by hypothesis square integrable, then it
follows that

dspy d3py
2Py 2050

(4. 6)
is a vector in the Hilbert space where T is defined.
Therefore, unitarity gives

. d3pg d3p,
S p3541T1715)12 %30 2ao
which proves the assertion. It follows that
(A323; 0,24 IT| f1f5) is analytic in the pair of vari-
ables A, A, inside the domain {| Im>\3F< 1, [Imh,|
< 1}. Moreover, as in (3. 3), the following relation
obtains:

(— 3255042, | TIf 1 f) = (Eng/m) [ (Gmge npy1Hits
X Q32550424 T1f S 5) d225.

1120 = J 1p1,09) (b1 + D3)2F1(D1) (Do)

= Im<f12 |T|f12> <o
4.7

(4. 8)

Therefore one can use in (4. 4) the expression (3. 11)
for the matrix element of Pp. One obtains

A —E,2
fl;[ Axd2z,(Xz25; 0,24 ITIN 215 0025) nlpﬁ—(—:l——l—l)
fl(xlyzl)
- oo —i,25) , fahs —i,25)"
# fz()\zyzz) g };S(AZS’ZS)T
Jalhg —i, 29" % = = =
Ny f1(A12) fa(Xoz,) fa(Aa, 20) T
~“f4()\4,z4)’f 118112\ 2251  3lA 3, 83
X fa(hgz2y)T= 0, (4. 9)
In this integral each term that contains n, asa fac~

tor is integrated in A; from —x to +w and in the
other A's from 0 to +w,

Consistently with (4. 8),one can define the matrix
element of T with some of the A's negative in terms

of matrix elements with all the A's positive,by expres-
sions like

(— 32350424 lTlRlzl; Ayzg) = (IAg/m) f(%"s-né)‘l’f“\s
X (32550424 ITIN 215 052,0d32.  (4.10)

With such a definition one can easily see that the inte-
grations over all the A's in (4. 10) can be taken over
the interval (—w, +). Replacing (4. 1) and (3. 2) into
(4. 9) one obtains

"L G/2) ) 14G/2) (A g
[ MO B T (rpn) PO (g ) WTD O
i=34 . .
1-G/2) A +hg) LA 14N —1)\]-
X . 1 — oh . i
(ngny) 7 (nyp) 5
x (npp) 9 T (0 T 0T
X(M—i niy  Ag—iomy, Az+img,
A Py X, MNyhy Xz NzDa
Agtiom d3p
- —4b_) [Td\, d2z, 5= = 0. 4.11
Ay n4op4> P T ( )

Since the f(p)'s form a dense set it follows that
f M(Az, E) i=1;lz (ni.nj)'1+(i/2)()\i-)\j)(nl.nz)l+(i/2)()\31-)\4)
i1,

J=o,
x (113-714) 1-(/2) (A +hg)
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1-i X 1+i )
n, ’——2 j
3/2( pl) 73/2 ( )
y <A1 iRy, + Ag —t Mg, A3t n?p
Ay nythy Ay Mypy Az ngz Py
Ag ti

4
a Tn4-p4> l;ld)\KdzzK = fM(Ai’ £)

-1+ G/ 2) (N =X ) . 1+G/2) (At 0 ,)
2 g T () s
1

-G - G} 2
ip jp

i Lo/ n n
X np) N g (e TR
nypy MatPy
n3, ng, ) dn, d2z, :I_O
ngps  Mypy) < T2 (nop)? '

(Here we have temporarily treated all four compo-
nents of p; as arbitrary.)

(4.12)

Now it is easy to verify that
d?z d3N
2 = G(N'p - 1)’
(n-p) 4N,
where N is a null vector such that n*N=0and N, > 0.
We also have

( ey ap> B(N-p — 1) = 6'(N-p — 1).
Therefore (4. 10) can be written in the following way:

S mn,, g)

(4.13)

(4.14)

(Ni'Nj)—h G/2)(xp) (Nl'NZ) 14+(i/2) (\g+h g)

3
X (N N A R [Ny, + Ny, —Ng, =Ny,
dn, dN
e (N, -p — 1) =0, (4.15)

where £ is defmed in terms of the N's by homogene-
ous expressions like (4. 3).

Let us introduce the variables u; hy

u; = 5 In(N;NyNN) /Ny N, i =1,2,

1
u, = 3 In(N;N,N;N,})/N,-N, i=3,4

(3

(4. 16)

Then performing the A integrations in (4. 15) one
obtains

fcm(Ni)[NlquNz“

43N,
Ngy =N Mg &' Nep— D)

=0, (4.17)
where 2] 12
1 — 201 — ¢ 300 .
M(N,) = 1—¢ : J7 M, E) T et
N, *N,N3-N, oo «
d,
w P (a.18)
73/2
One obvious solution to (4. 17) is
TM(N,) = MG(N)O(N, + Ny — N3 — Ny). (4.19)
The condition
Ny +N,—N;—N, =0 (4.20)
implies
Ny:Ny, =Ng3N, Ni-Nz =NyNy, NN, =NyNy,
(4.21)
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and the coplanarity condition is equivalent to Imé = 0.
The solutions of (4. 20) with N,, > 0 restrict the
values of £ to the interval (— ©,0). The necessary
and sufficient condition for U(N,) as given by (4.18)
to be of the form (4. 19) is that

M(N;, £) T (0 /73/2) = M3, £)8(Ims),  (4.22)

where A =Xy + Xy — A3 — A4,

But if M(x,, £) has this form, the T matrix does not
satisfy the constraint condition (4. 10)! We have been
unable to find solutions to (4. 17) satisfying the con-
straint condition. However, the problem of determin-~
ing the general form of the T matrix in the (2, 2)
basis, under transformations of the Poincaré group,
can be dealt with directly by transforming the T
matrix in the Wigner basis to the (\, z) basis. This
is done in the next section.

5. TRANSFORMATION OF THE T MATRIX FROM
THE WIGNER BASIS TO THE (X, z) BASIS

The relation between the T matrix in the Wigner
basis and in the (A, z) basis for zero-spin particles
(and unit mass) is

CERPW ---[TI--- >_f< AT NN
-1 ~i d[)
i 3/2 £) " l'I 73/2 ( pf)l )\1[321,'(0

(5. 1)

We shall take this relation to apply to both positive as
well as negative values of A, so that the conditions
such as (4. 10) hold,

In the case of scattering of two initial into two final
particles we have

(P3pa|TIpipy) = F(s,6)84(py + by — p3 — Dy)s

where s and { are the usual Mandelstam variables.
After inserting (5. 2) into (5. 1) we have been unable
to express the left-hand side as a two-dimensional
transform of F(s,1t).

(5. 2)

In order to obtain the transformation to the basis in
terms of the vectors N; introduced in Sec. 4 we multi-

ply (5.1) by IT; anl P njl—“\f‘ and integrate in the A's
to obtain
(o Npoo|T| ey = T|--p;oev)

i, ~1+iA SPK
S/Z(Nm ,_1< p)n2 d,

m3/2 Do
v/2
= <F> f (. . 1)]

x 116 (N, -p, — 1)
K

T ceepiee)
dsp,
(]

where N, = n,/n, and v is the sum of the number of
particles in the initial and final states. Since

(5. 3)

3
Jovp — 060 — 1) G =2 2, 80— ), (5.4)
then we also have
(... T ..)
= (473)" w2f< < TleeN )
dJN
X [16'(N,p, — 1) (5.5)
«0
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Upon the substitution of (5. 2) into (4. 18) and using
the relation

/ ’ 4 d N !
JOWp = 1) 0 WNp' = DN, 55 = 7229000 — PPy
(5. 6)

it results that (4. 17) is identically satisfied.
APPENDIX A: EVALUATION OF CERTAIN
INTEGRALS
Consider the expression

S Grgmy) e ny (nyp) PP edzs,, (A1)

From its transformation properties under the group
SL(2,C) and taking into account that g = 0 and p2 = 1,
one can write

~1-i )
f(%nz’nl) !

2 n1p(n1'P)_2+“2d221 = a(hz)(nz’P)_lﬂixz P“
+ o) (nyp) T my,,  (A2)
where the coefficients a and b depend on A, only.
2 y

Taking the scalar product of both sides with n, and p,
respectively, we obtain
alnyp) ' = 2 [ (hngmy) 2 (nyop) > re a2z, (A3)

X (a + b)(nz_p)‘l—iXZ — f%(nz'nl)_l—i)\z (nl.p)‘lﬂ')\zdzzl.

(A4)
Letting n, =(1,0,0,— 1) and p = (1, 0,0, 0) one
obtains
_ @ 2\ 2+ A 2 _ 2n
a—277f0 (1 + p2y&itegpz = Ty (A5)
a+b=7 [T (1 +p2ytitegpz =_ T (A6)
0 A,
Then
b =1 {(1+ix,)/[ixg(— 1+ ixy)]}. (AT)

Taking (A5) and (A7) into (A2) one obtains the identity
(3.5). The derivation of (3. 10) can be done in a
similar manner.

APPENDIX B

We wish to calculate
TN 29, (B1)

where n2 =0, ny > 0, a> 0. Via (2. 14) (with m = 1)
and (2. 11) one obtains

E(a,n) = A5z, le

E(an) = [ 2 )\; 2 (nyop) gy T e (BY)

By using the 1ntegra1 representation

) = apngy-1-o
(pn)y = r( ) f dae opny (B3)
one gets
E(a,n) = s U ! /w da,a, ™M
78 T(1—ix)T(1+irg) 0+ °
xfo dazolz-xz‘/—g e—p-(an+a1n1+oc2n). (B4)

2p,

One can perform the last integral by noticing that
B=an + any + ayn, (B5)
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is a timelike vector with positive time component,
Transforming g to its “rest frame,” we have® (recall-
ing that p2 = 1)

4P o (€3]
f2poe 0 —211K1x,

where x = VB2 and K| is the modified Bessel function.
But8

Kq(x)
X

(B6)

=3 [T dte 02, (B7)

so that we have (recall that n,7,,n, are lightlike)

=i,

Al )\2 foo
n2 ra- Ml) T(1 + ixy)

E(a,n) = doy oy

(B8)
Let us write
nen,a, = per,  neng0, =pex, t=1/p, (B9)
Then
~14i ) -1-i ),
E(a,ny = 2 20 T dglwng) T
72 T(1—ix))  T(1+ixy)
O
% “i(MtAg)k ,-274 coOshk
_{) dar ]_: dk e e
o i(AgmA)
X fo dp p
1 ny-ny
o[-0 ezl e
We now do the p and « integrals to get®
A A ;
E( , ) 1 2 . (n‘nl)-lﬂ)\l
2 T(1—ixg) T(1 +34xy)
X (0ng) T D(L + i — 1) 1), (B1D)
where
f 4 (, N T)-[lﬂ()\z WK, ,(270)  (BI2)
and
y = {(nl-nz)/[(n-nl) (n-nz)]}. (B13)

If y #* 0, then the integral can be performed to
obtaini®

[(')/) — Y-l_i)\2+i>\l {

(zy)i()\z'Xl)/2/[4I-\(1 + sz __ Z)\l)]}
~i(A,+2,)/ .
x [(8y) * M2 (i, +2y)
X T(1 + id)D( — ixg)(2a) M) Fy(1 + iny;
1+, 1+ i +Ay); —a2/2y)
+ ()\1 <> — )\2) ()\2
+ 2727020

<> - )\1)]
— Q)T (ixy)(2a) P2 M)

X Fo(1 +i(Xy— Aq); 1—ixq, 1+ ixg, — a2/2y))},

(B14)

where ,F, is a generalized hypergeometric function.
We are really interested only in — (d/da)E(a,n)| ,_,
which is the matrix element of (P.n). If we retain
only those terms which contribute in the limit a - 0

after differentiating, we obtain the first three terms
of (B18)

There is still another term to consider, which arises
when y = 0. This term is singular, so to study it, we
consider
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€
Iy = [ 1)dy. (B15)
Substituting (B12) for I(y), doing the v integral first,
and then doing the 7 integral as we did before, we can
evaluate I ;. Taking — d/da of the resulting expres-
sion and keeping only the surviving terms in a, we
then let € tend to zero. We find a term which survi-
ves in the matrix element of P-n. It is

(a_l_i()‘2—)‘1)/4712)@()/)é(nl-nz)'z)'“‘f“‘2 L(1 +ixy —ixy),

(B16)
where 8, (y) is defined by
€
Jy 8.0)f()dy = £(0).
But
y =0y ng/mymngn =2lzy —z,12/nnynn,
so that
5,(y) = znnynnyd (lzy — 2,12)
= zmnnynnyd (27 — 2z,), (BI17)

where the last step is obtained by using polar co-
ordinates. Collecting all the terms we than obtain the
following expression for the matrix element of P-n:

i .. -ix .
Moz, | Pmirgzy) =-1;E lim [27MT(1 — iy + 1q))

X Az(n'nl)i()\2+)\1)(nl‘nz)_l-i)\za_hi()‘z+>‘1)

— 22 (1 + i(n, + A (neny) PO

X <nl'nz)’lﬂ)\la_l_zo\”)‘l) + (A —2p)
L(1+ixg) T(1—iry)
C(1—ixy) T(1+iry,)
i), 14 (g ~0)

X T(1 = i(Ay — 1,))

X (n-nl)i)‘z(n-nz)_i)‘l(nl-nz)'
— @2 HOTIT( + iy — Ay (meny) FTM

X 8(zq — zl)a_l_l()‘z’)‘l)] (B18)
To make sense of the limit a = 0 we should consider
the right-hand side of (B18) as a distribution in either
set of variables A, z; Or A,,2,. We have then to

find the set of test functions on which this distribu-
tion is defined. Let us consider as test functions the
set of functions f(x,z,) defined by (3. 2). Then on
performing the z, integration one finds that the inte-
grand becomes a symmetric function of A analytic in
the strip [Imx, < 1. It is then possible to extend the
integration in A, to the interval (— o« ®) and in each
of the four terms move the contour to the line Ima, =
+ 1. Then the contribution to the A, integral in the
limit ¢ = 0 comes in each term, only from the region
around the pole of the I' function whose argument
exactly coincides with the exponent of a™1. One then
obtains the result given by (3.17).

APPENDIX C: DETERMINATION OF c(x,m) IN
(2. 10).

We have to evaluate the integral in (2. 12):
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“1-iX, “1+i Ay d3
I = f(ly—’n- -n2> (%m) -27? (C1)

From transformation under SL(2, C) and dilation of
the null vectors #n,, it follows that I is of the form

I=cq(A)8(xy — A5)8(21 — 25) T ca(A0)0(A; + Xy)
X (nl'nz)—1+i)\1, (C2)

where the second term vanishes if the A's are posi-
tive definite. In order to calculate the coefficient
¢1(24) let us consider

J(p) = [ [(p/m)yny] T (Rawny) ea2z,,

where a is a null vector and a, > 0. Because of in-
variance under SL(2,C), J(p) is of the form

(C3)

J(p) = c3()(p/m)-a] e, (C4)
Take
a:(l’or()’_ 1)’ p:(pO;Oyoyp)’

then -
I= [ [(/m)(po—p) + (Um)(pg + p2] 7"
= J—z (1/m)(py + p)] 2. (C5)
Therefore ¢4(X;) = 7/ix, and
J(p) = (n/ix)[(po + p,)/m] 2.

Then from (1),(2), and (3) one can write
-1 -1+ N,

f p +i)‘1 - po +pz 2 d3p
m ™ g\ m zb,
=c1(A)0(A; — A3) T ca(X)0(0y + 2p)

X f(nl'nz)_l_i)\z (% a-nz)_h“‘?dzz. (C7)

(C6)

It is easy to see that the second term vanishes. In
order to determine c¢,(1,), let us take n, = (1, 0,0, 1);
then

iy m
d3
« XP
2py

_ “1-ix, + “1lvid,
c10)80 —25) = [ <p0m pz) X <,,0 p’)

(C8)

Write

po =mpesha,  p, = mpsha,

p, =mvp? — 1 siny,

3
b, = mVpZ—1 cosy, %1; = Ldp dp,db = sm2pdpdady;
then 9.2 e
01(7\1)50‘1 —A,) = "l_;ﬂ_ fl p-1+1,()\1+>\2)dp

2

© _ 32
% f+ eza()\z Xl)da _T 7;1 G(Xz _ )\1).
A

(C9)

Therefore, c(x,m) = ¢ (A, m)"V/2 = (1/53/2)(A/m).
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Algebraic Solution for a Dirac Electron in a Plane-Wave Electromagnetic Field*
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An algebraic classification is given for the solutions of the Dirac equation for an electron interacting with a
classical plane-wave electromagnetic field. The solutions appear as the carrier space of the direct sum of the

positive and negative energy, mass m, spin-%

representations of the restricted Poincaré group. An explicit

construction is given for the generators of the representation. The explicit position space form of the solu-
tions follows readily from the relatively simple form of these operators. Via these solutions, an expression

for the propagator of the interacting electron is given.

1. INTRODUCTION

We have recently shown?! that the solutions of cer-
tain quantum-mechanical problems involving electro-
magnetic fields can be deduced by an algebraic tech-
nique involving the generators of a realization of the
restricted Poincaré group. In this note we show that
the technique is not restricted to the Klein—Gordon
equation, but can equally well be used to obtain solu-
tions of the Dirac equation. The procedure is essen-
tially identical to that given in I, the only complication
being the introduction of spin, that is, the requisite
algebra becomes somewhat more cumbersome due

to the presence of the anticommuting gamma mat-
rices. To make the connection with I transparent,

we again confine our attention to classical plane-
wave electromagnetic radiation. This has the addi-
tional merit of providing a simple algebraic inter-
pretation of the solutions to this problem which were
first given a long time ago by Volkov.2

Since we have given a detailed discussion of the
necessary background in I, here we restrict our-
selves to a few brief remarks concerning the tech-
nique. Simply stated, the method consists of finding
a set of operators which commute with the “Hamil-
tonian” of the problem and which also obey the com-
mutation relations of the generators of the Poincaré
group. These operators are then used to classify
the solutions according to their transformation pro-
perties under this “new” Poincaré group. That is,
the solution space appears as a carrier space for a
representation of the restricted Poincaré group P,
the previously determined operators being the gene-
rators of this representation. Since the irreducible
representations of P! have been completely classi-
fied,34 and we have an explicit representation in
hand, we are able to classify which irreducible re-
presentations occur. The space of solutions can then
be constructed by using the “boost” technique.3 The
explicit position space form of the solutions is
easily determined due to the relatively simple form
of the operators which occur.

The solution presented in Sec. 2 for the interacting
electron is identical in form to the following “solu-
tion” of the free Dirac equation. The “Hamiltonian”
for the problem is given by H, = P.5 The eigenvalue
problem is to determine the solutions of the wave
equation Hy¥ = my. Each of the usual sSpace—~time
translatlon operators P! = {(3 /3x) commutes with

. The Lorentz generators for tille “orbital” motion
are given by I#¥ = j(x* P¥ — xvP#), while the Lorentz
generators for the “spin” are given by (i/2)o#? =
— 4[y*,y?]. Although neither of the two sets of quan-
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tities I#?, (i/2)oF” commute with Hy, the Lorentz
generators M#? for the “total” motion do, where

ME" =18 + (i/2)omv.

Each of the sets of operators I, (i/2)o#, and M}
obey the commutation relations satisfied by the gene-
rators of the restricted Lorentz group L!.6 Since
(i/2)o*¥ commutes with both I#¥ and P, it is easy to
verify that the set of operators P, Mj" obey the
commutation relations of the generators of P1. The
representation of P! which is generated by P*, M
can be classified by calculating the two Casimir
operators of the representation. The invariant mass
operator is given by P¥P, = P P = m2, indicating that
we must have a mass m representatmn. The other
independent Casimir operator is provided by the
square of the Pauli-Lubanski vector S,, where S, =
(1/2)€,,,, M¥* P°. Direct calculation shows that

S St =3m2. Since the eigenvalues of S2 have the
form J(J + 1}m2, where J(J + 1) is the eigenvalue of
the Casimir operator J2 of the little group SU(2), it
follows that the solutions are labeled by the spin 3
representation of SU(2) (that is,J = 3). The sign of
the energy provides an additional label for irreduc-
ible representations. Since we wish to admit both
positive and negative energy states in the Dirac
theory, it follows that the solution space of Hy¥ =
my is the carrier space for the direct sum of the
positive and negative energy, spin 3, mass m repre-
sentations of P.

In the spin basis, the abstract vectors of the repre-
sentation are labeled as |p,A,+), where b denotes
the eigenvalue of the operator PF A = £ 5 refers

to the component of the spin along the three-ams in
the rest frame, and + refers to the sign of the energy.
The explicit form of the solutions is immediately
evident due to the relative simplicity of the opera-
tors P»and MY’. Since the construction of these
states is, of course, well known, 3¢ we do not repeat
the procedure here. In Sec.3 we will mimic this
technique in order to construct explicit solutions for
the interacting Dirac electron problem.

The solution to the problem of a Dirac electron in-
teracting with a plane-wave electromagnetic field
will proceed in a fashion which is formally identical
to the above discussion. In Sec. 2 we find the exact
analog of each of the operators appearing in the free
electron case. These provide the generators of a re-
presentation of P!, which again turns out to be the
direct sum of the forward and backward timelike,
mass m, spin 3 representations. In Sec. 3, this exact
analogy is exploited in order to explicitly construct
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tions follows readily from the relatively simple form of these operators. Via these solutions, an expression

for the propagator of the interacting electron is given.

1. INTRODUCTION

We have recently shown?! that the solutions of cer-
tain quantum-mechanical problems involving electro-
magnetic fields can be deduced by an algebraic tech-
nique involving the generators of a realization of the
restricted Poincaré group. In this note we show that
the technique is not restricted to the Klein—Gordon
equation, but can equally well be used to obtain solu-
tions of the Dirac equation. The procedure is essen-
tially identical to that given in I, the only complication
being the introduction of spin, that is, the requisite
algebra becomes somewhat more cumbersome due

to the presence of the anticommuting gamma mat-
rices. To make the connection with I transparent,

we again confine our attention to classical plane-
wave electromagnetic radiation. This has the addi-
tional merit of providing a simple algebraic inter-
pretation of the solutions to this problem which were
first given a long time ago by Volkov.2

Since we have given a detailed discussion of the
necessary background in I, here we restrict our-
selves to a few brief remarks concerning the tech-
nique. Simply stated, the method consists of finding
a set of operators which commute with the “Hamil-
tonian” of the problem and which also obey the com-
mutation relations of the generators of the Poincaré
group. These operators are then used to classify
the solutions according to their transformation pro-
perties under this “new” Poincaré group. That is,
the solution space appears as a carrier space for a
representation of the restricted Poincaré group P,
the previously determined operators being the gene-
rators of this representation. Since the irreducible
representations of P! have been completely classi-
fied,34 and we have an explicit representation in
hand, we are able to classify which irreducible re-
presentations occur. The space of solutions can then
be constructed by using the “boost” technique.3 The
explicit position space form of the solutions is
easily determined due to the relatively simple form
of the operators which occur.

The solution presented in Sec. 2 for the interacting
electron is identical in form to the following “solu-
tion” of the free Dirac equation. The “Hamiltonian”
for the problem is given by H, = P.5 The eigenvalue
problem is to determine the solutions of the wave
equation Hy¥ = my. Each of the usual sSpace—~time
translatlon operators P! = {(3 /3x) commutes with

. The Lorentz generators for tille “orbital” motion
are given by I#¥ = j(x* P¥ — xvP#), while the Lorentz
generators for the “spin” are given by (i/2)o#? =
— 4[y*,y?]. Although neither of the two sets of quan-
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tities I#?, (i/2)oF” commute with Hy, the Lorentz
generators M#? for the “total” motion do, where

ME" =18 + (i/2)omv.

Each of the sets of operators I, (i/2)o#, and M}
obey the commutation relations satisfied by the gene-
rators of the restricted Lorentz group L!.6 Since
(i/2)o*¥ commutes with both I#¥ and P, it is easy to
verify that the set of operators P, Mj" obey the
commutation relations of the generators of P1. The
representation of P! which is generated by P*, M
can be classified by calculating the two Casimir
operators of the representation. The invariant mass
operator is given by P¥P, = P P = m2, indicating that
we must have a mass m representatmn. The other
independent Casimir operator is provided by the
square of the Pauli-Lubanski vector S,, where S, =
(1/2)€,,,, M¥* P°. Direct calculation shows that

S St =3m2. Since the eigenvalues of S2 have the
form J(J + 1}m2, where J(J + 1) is the eigenvalue of
the Casimir operator J2 of the little group SU(2), it
follows that the solutions are labeled by the spin 3
representation of SU(2) (that is,J = 3). The sign of
the energy provides an additional label for irreduc-
ible representations. Since we wish to admit both
positive and negative energy states in the Dirac
theory, it follows that the solution space of Hy¥ =
my is the carrier space for the direct sum of the
positive and negative energy, spin 3, mass m repre-
sentations of P.

In the spin basis, the abstract vectors of the repre-
sentation are labeled as |p,A,+), where b denotes
the eigenvalue of the operator PF A = £ 5 refers

to the component of the spin along the three-ams in
the rest frame, and + refers to the sign of the energy.
The explicit form of the solutions is immediately
evident due to the relative simplicity of the opera-
tors P»and MY’. Since the construction of these
states is, of course, well known, 3¢ we do not repeat
the procedure here. In Sec.3 we will mimic this
technique in order to construct explicit solutions for
the interacting Dirac electron problem.

The solution to the problem of a Dirac electron in-
teracting with a plane-wave electromagnetic field
will proceed in a fashion which is formally identical
to the above discussion. In Sec. 2 we find the exact
analog of each of the operators appearing in the free
electron case. These provide the generators of a re-
presentation of P!, which again turns out to be the
direct sum of the forward and backward timelike,
mass m, spin 3 representations. In Sec. 3, this exact
analogy is exploited in order to explicitly construct
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the solutions. This also permits an identification of
the Green's function for a Dirac electron interacting
with a plane-wave electromagnetic field.

2. ALGEBRAIC SOLUTION

According to the principle of minimal electromagne-
tic interaction, the Dirac equation for the interacting
electron is obtained by making the substitution

Pr - ps — gA# | so that the new “Hamiltonian” is
given by

H:?_QAy

where P# = i(a/axp). For simplicity”? we choose the
electromagnetic potential A* as

(2.1)

Al = at exp(ikx), (2.2)
where a* is a constant vector and
kk=khA=0,. (2.3)

The eigenvalue problem is to determine solutions of
the equation HY) = m.

Our first task is to find a new set of translation
operators 7# which commute with the “Hamiltonian”
(2.1). At this point we are guided by our previous
solution of the Klein—Gordon equation. We antici-
pate that the translation generators will be similar
in form to those for a spin-zero particle, with the
exception that there must also be a term present
which represents the interaction of the electron's
magnetic moment with the electromagnetic field.
Since the magnetic moment interaction is of the form
o,, F#,where Fiv is the antisymmetric field tensor,
we are led to define the operator

Q = (i/2)orvk, A, (2.4)
One can then easily verify that @ = $Af = — L4,
so that kQ =Qk = 0.

To obtain the generators 7#*, we consider the set of
commutation relations between H, P¥ AV AP A°A,
and £. In deriving this algebra it is important to
note that k-2 = %k-A = 0, A:P = P: A in the Lorentz
Gauge, Q = Q:}é = 0, and most important of all, that
k- P commutes with all members of this algebra.
We therefore replace &+ P by a constant £ = %- P,
The relevant relations are

[PH,H] = gks A, (2.5a)
[Av,H] = gAY, (2. 5b)
[A-P,H] = }(A-P), (2. 5¢)
[A-A,H] - 2k(A-A), (2. 5d)
[2,H] = :;1;( — FA-P) + q}(A-A), (2. 5e)
[Pr,AY] = — kHAY, (2.51)
[PH,(A-P)] =—Ek+(A-P), (2. 5g)
[PH,A-A] = — 2kH(A-A), (2. 5h)
[Pr,Q] =—kHQ, (2. 5i)
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with all remaining commutators vanishing. Inspec-
tion of Eqs. (2. 5a)—(2. 5e) shows that a new set of
translation operators, commuting with H, is provided
by the expressions

m = Pk — gt 1kE(A-P) + q2(20) ke (A-A) — g ¢ IREQ,

(2. 6)
while inspection of the remaining equations shows
that

[w#,m¥] = 0.

It may further be verified that 7#7, = H?, where

H2 = (P — qf)2 ={P2 — 29(A-P) + q2(A- A)} — Q.
(2.7

The portion inside the curly brackets is the Klein-
Gordon operator while the remaining term repre-
sents the magnetic moment interaction. Since H2y =
m 2y, we know we must have a mass m representa-
tion of P!.

We must now find a new set of “coordinates” @¥
which are canonical to the 74, that is, [m#, Q¥] = ighv.
These may readily be found by considering the com-
mutator of x¥ with 7# and by inspecting the commu-
tation relations (2.5). It is necessary to note that
k- P cannot be considered as a constant when commu-
ted with arbitrary functions of x. However, the neces-
sary commutator of x and (k- P)-1 can easily be de-
termined by elementary techniques. Without much
difficulty, the new “coordinates” are found to be

QY = x? — iqt-1Av + igt-2kv(A-P) — iq2(2t)-2k¥(A-A)
+igC2kvQ. (2.8)

One can easily verify that these “coordinates” have
the desired property that [@*, @] = 0.

In analogy to the case of the free Dirac electron, we
define the “orbital” Lorentz operators L*¥ according
to the rule

Luv — {(Qrmv — QVvmH), (2.9)
Since [Q¥, H2] = —2ir¥, it immediately follows that
L#v commutes with H2. The set of operators n#, Lv*
obey the commutation relations of the Poincaré
generators. Since they commute with H2, it follows
from the discussion given in I that the manifold of
solutions of H2y = m2y carries the spin zero, mass
m representation of P!, This does not, however,
solve the original Dirac equation. We could, of
course, use the expedient of Volkov and construct
the solutions of (H —m){¥ = 0 by noting that if Y’ is
a solution of (H2 — m2W’ = 0,theny = (H + mW’' is
a solution of Hy = m{. Rather than do this, we shall
continue the algebraic analysis.

As might be expected, L#¥ does not commute with H.
The explicit expressions for these commutators are
extremely cumbersome, and since it is never neces-
sary to use these expressions, we do not give them
here. In order to continue the analysis, we now need
a new set of “spin” operators. If the free-particle
analogy is to hold, these new “spin” operators must
be constructed from objects which commute with 7
and L*» Noting that the  matrices arise in the com-
mutator [x#,Hy] = — iy#, we define a new set of gamma
matrices I'* by the rule
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[Q*,H] =— iT®. (2.10)

Evaluation of the commutator yields

T# =y + qC (AR — ke4) — (q2/2)C 2k (A-A)f.
(2.11)

A direct computation reveals the rather amazing

fact that the I'* also anticommute:
{re, v}, = 2gmr, (2.12)

Use of the Jacobi identity on [7#,[@¥, H]] reveals that

far, T'¥] = 0, while direct computation shows that

[@#, T'Y] = 0. Recalling that [@*,H2] = — 2in* pro-

vides the important relation

{re,HY, = 270, (2.13)
Having verified that the new I matrices have all the
appropriate properties, we now construct the new
sigma matrices according to the rule

Ty = (i/2)[T#, T'7]. (2.14)
The use of Eqs. (2.12) and (2. 14) allows one to ascer-
tain that the quantities (i/2) Z#¥ obey the algebra of
the generators of the Lorentz group.

In terms of the new I' matrices, the “Hamiltonian”
(2.1) takes the form

H:F“ﬂ“, (2.15)
where we eschew the temptation to use the slash
notation in hopes of avoiding confusion. In terms of
the £ matrices, we define the “total” Lorentz genera-
tors M*#¥ by the rule

Muv = Lsv + (1/2)THv, (2.16)
With H in the form (2. 15), the use of Eqgs. (2. 9),
(2.10), and (2.12)-(2. 14) permits us to verify that
[Muy, H] = 0 without direct evaluation of the rather
cumbersome commutators which appear.

The set of objects 7#, M¥* commute with H and obey
the algebra of the generators of the Poincaré group.
In order to complete the algebraic description of the
solutions, we need only to classify the representation
which these operators generate. The mass-squared
operator mhm, = m?Z2 tells us that we again have a
mass m representation. The second Casimir opera-
tor is provided by S“SP,4 where

S, = %euw\éM“)‘ﬂé, (2.17)
and €ns is the completely antisymmetric Levi—
Civita symbol. Direct computation in the rest frame
shows that S“ St =3 m2. Referring to the discussion
given in the introduction, we again have a mass m,
spin 3 representation of 2.3

We of course wish to admit both forward and back-
ward timelike solutions, so that we again have the
direct sum of two irreducible representations. This
completes the algebraic classification of the solu-
tions of HY = my .

3. EXPLICIT EIGENFUNCTIONS

Just as for the free Dirac electron, the abstract vec-
tors in the representation for the interacting elec-
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tron appear as |p,2, 1), where p# is the eigenvalue
of 7™, XA =+ % is (in the spin basis) the projection of
the spin along the three-axis in the rest frame [the
eigenvalue of (i/2)12] and + refers to the sign of
9. By using the operators 7#, M* which were
found in Sec. 2, it is now a relatively straightforward
procedure to find the explicit eigenfunctions, since
the form of the operators is simple.

Momentum eigenstates can be found by determining
the eigenstate of 70 in the “rest frame”8 and then
“boosting” to an arbitrary frame. Because of the
simplicity of the operators and the known solutions
of the free Dirac equation, however, it is easier to
proceed directly. Inspection of the form of 7#, given
by Eq. (2. 6),allows one to ascertain that the simul-
taneous eigenstates of the 7# are given by

¥~ exp{— i[p-x — igl; 1 (A-p) + ig2(4L,) 1(A- A)

where u# is an arbitrary constant spinor, and Cp de-
notes the eigenvalue of %2°P when acting on the func-
tion (3. 1), that is, § =k-p (in order to avoid an
overly cumbersome notation, we henceforth drop the
subscript p from Cp). Since the first three quantities
in the argument of the exponential involve only the
identity matrix, it is convenient to introduce

(3.1)

¢, = expl—i[p-x — ig{1(A-p) + ig2(40)1(A-A) ]}
(3.2

(d)p is, in fact, the solution of the Klein—Gordon equa-
tion when the particle has no magnetic moment).
Since © is nilpotent (22 = 0), the eigenfunctions of
7# finally take the form

Y~ (1—qt1Q)g,u.

The functions ¥ given by (3. 3) are solutions of the
squared Dirac equation for arbitrary #. In order to
satisfy the Dirac equation, we find [by direct substi-
tution of expression (3. 3) into the Dirac equation]
that # must satisfy the equation

(3.3)

rep, (1 — g8 1Qu = m(1 — g€ 1Q)u. (3.4)
By using the fact that
(1 —gt1Q)yl =1 +q¢10), (3.5)

it is an easy matter to verify that (1 — ¢¢-1) is an
intertwining operator for the two sets of gamma
matrices, that is

TH(1—q81Q) = (1 — g¢-1Q)yk. (8.6)

From this, it is apparent that « must satisfy the free
Dirac equation
(p —m)u =0. (3.7)

Combining all of this information together yields the
final form of the solution?®:

d/p’)\ = (1 - qc—lﬂ)d)pup')\'

The subscripts p, A on ¢ retain the same meaning as
for the case of the free Dirac electron. This may be

(3.8)
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seen by constructing in the usual fashion the positive
and negative frequency projection operators, as well
as the spin projection operators—the only difference
being that the I' matrices are used instead of the y.
The use of Eq. (3. 6) then confirms this statement.

One can use solutions (3. 8) to immediately write
down the following expression for the exact Green's
function:

(THE)p, +m)
(p2 —m?2)
X[1— qg1Q K)o, (r)dy ()1 + g 12 (x')].

Glx,x') ~ [dp
(3.9)

A detailed discussion of the properties of G{(x,x’)
will be given elsewhere.

As a final point, we wish to mention what it means
for the free and interacting representations to be
“identical.” Mathematically, the representations are
said to be unitarily equivalent (we are realizing the
same representation with a different set of opera-
tors). This implies the existence of a unitary trans-
formation U which carries the free solutions ¥ and

FOR A DIRAC ELECTRON
operators O into the interacting solutions ¥’ and
operators O’ via the rule ¢’ = Uy, 0’ = UOU-1,

Inspection of the preceding discussion shows that
this transformation is accomplished by the opera-
tort0

U = exp[— i(k-P)1{— ig(A-P) + i(g2/4)(A-A)}]

X [1 — gq(k-P)18].

Equation (3. 6) provides a manifest example of this
transformation.

Note added in proof: After submitting this manuscript,

we noticed the recent article by Richard? in which
some aspects of the present paper are discussed.
Richard's article led us to the earlier work by
Chakrabartil? in which the “dynamical representa-

tion” derived here was first noted. Chakrabarti noted

the existence of this representation by constructing

the operator U given above from the Volkov solutions.

This should be contrasted to the first principles deri-
vation given here which requires no a priori know-
ledge of the solutions.

See B. L.Beers and H. H.Nickle, Bull. Amer. Phys. Soc. 17, 565
(1972).

H.H.Nickle and B. L. Beers, Southern Illinois University Tech-
nical Report No.NB-1-72 (unpublished). This manuscript is
henceforth referred to as I. See also B. L. Beers and H.H.
Nickle, Lett. Nuovo Cimento 4, 320 (1972).

D. M. Volkov, Z. Physik 94, 250 (1935); Zh. Eksp, Teor. Fiz. 1,
1286 (1937). In this regard, see also L. S. Brown and T.W. B.
Kibble, Phys. Rev. A133, 705 (1964); I. M. Ternov, A. M, Khapaev,
and Yu. I, Klimenko, Vestn, Mosk. Univ. Ser. Fiz., Moscow (1967),
22,No. 1, 35 (1967) [Moscow Univ. Phys. Bull. 22, No. 1, pp. 18-22].
E. P. Wigner, Ann, Math, 40, 149 (1939).

Yu. M. Shirokov, Zh. Eksp. Teor. Fiz. 33, 861, 1196, 1208 (1957);
[Sov. Phys. JETP 6, 664, 919, 929 (1958)].

For the Dirac equation and related quantities, we will follow the
notation and conventions found in J.D. Bjorken and S.D. Drell,
Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).
For an elementary discussion of the Lorentz and Poincaré
groups, see, e.g., S. S. Schweber, An Introduction to Relativistic
Quantum Field Theory (Harper and Row, New York, 1961), Chap.

2.

As shown in 1, it is a trivial extension to consider vector poten-
tials of the form a f(¢> ) + bug(qh), where ¢ = k-x, fand g are
arbitrary functlons and k-a=Fk'b=a-b=0.

We use words like “rest frame” in the mathematical sense. We
do not mean to imply that the interacting electron is at rest.
With this warning, we will continue to use all the nomenclature
for the free electron in the present case.

In comparing this result to other results given in the literature,
please note that for the simple potential (2. 2), the integrals (in
terms of which the exact answer is usually given) can easily be
integrated to yield the present form. For further clarification
of this point, see L.

The fact that U is not manifestly unitary should not alarm the
reader. The factors of i arise from our choice of the complex
potential (2. 2). This can easily be remedied and causes no
difficulty.

11 J, L. Richard, Nuovo Cimento 8A, 485 (1972).

12 A, Chakrabarti, Nuovo Cimento 56A, 604 (1968),

1

(=]

The Scattering of Three Impenetrable Particles in One Dimension
J.B.McGuire*

Florida Atlantic Univevsity, Boca Raton, Florida

and

University of Adelaide, Adelaide, South Australia

and

C.A.Hurst
University of Adelaide, Adelaide, South Australia
(Received 5 May 1972)

A special one-dimensional quantum mechanical three-body problem with an interaction among the particles is
solved exactly. The interaction is introduced in such a way that the particles retain their order along a line,
and hence the particles are impenetrable. The assumption of impenetrability is consistant with the existence of
bound states in all accessible channels, and the probabilities for direct and exchange scattering of one bound pair
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above the breakup threshold. Above the breakup threshold,

the probabilities for breakup and free particle scattering are also found. The absolute squares of all elements
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I. INTRODUCTION

In this paper we will discuss the problem of three
particles in one dimension which satisfy

2 2
<£1_ +p_2__ + £3_>w(x1,x2,x3) ___Ew

3

—_ 2L 22
2my 0x,2

The particles,however,are not to be free, for we
shall apply three constraints to the problem,

(1) x, <x4< X3,

1 92
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1
2my ax3

)w Ey.

J.Math. Phys., Vol. 13, No. 10, October 1972

1595



ALGEBRAIC SOLUTION

seen by constructing in the usual fashion the positive
and negative frequency projection operators, as well
as the spin projection operators—the only difference
being that the I' matrices are used instead of the y.
The use of Eq. (3. 6) then confirms this statement.

One can use solutions (3. 8) to immediately write
down the following expression for the exact Green's
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’ 1 3 1 9
(2) _g d/(x]_’-xl,xs)=ﬁ— —‘p_ l
my 9%y Mgy X, [|F7%2
1 3 1 9
(3) —h'Y(xy,%,,x,) = ﬁ<_ w_ 1w
Moy 0%y Mg 3Xg/|*27 %

These constraints have the effect of introducing an
“interaction” between the particles. This interaction

is such that the particles cannot penetrate each other.

To see this point look at the component of the proba-
bility flux vector perpendicular to the surface Xy =
X5. This component is proportional to

J1 v 1 oy 1 av™ 1 ay*
lim YH— ——— — - y— —-—— ||,
07 my 90X, My 0X, mq0x, mg 0xy
which vanishes because of (2)., Thus we see that parti-
cle 1isnot allowed to penetrate particle 2, Similarly,

of course, particle 2 is not allowed to penetrate parti-
cle 3.

We now re-express the partial differential equation in
the center of mass system. We do this in two steps.
First let

yy=Vmy 2/, yg =Vmyxy/H, ya=Vmzxs/N.
The Hamiltonian operator now has a simpler form,

2 2 2
HZ_%[aer az+ 2 2].
9y, 0y Yy

The surface x; = x, implies
yi/Nmy = yy/Vmy,

and, similarly,x, = x5 implies
Yo/ Vmy = y3/Vm;.

We now make a rotation in the y space. This, of
course, leaves the form of the Hamiltonian invariant.
We wish this rotation to separate the center of mass
and also to make one of the new coordinates be pro-
portional to x; — x,. Such rotations are discussed in
Ref.1. The appropriate rotation is

m, 1/2 mg 1/2
2y =(————— yy +|————
1 <m1+m2+m3 1 <m1+m2+m3

Xy, +\—F——F y
2 \my +mg+mgy 3
mqm 1/2
22:< 13 ) v
(my + mgy + mg)(my +my)

mym 4 1/2
+< ) Yo
(my, +my)m, +my +my)

1/2
) Y3

my )1/2 < my >1/2
2q =o{—7F7— v, — | —— Voo
3 \my tmy 1 \my +my 2

In this coordinate system

‘<__’£L”2__
my +m2 +m3

Xy — %y =H[(my +my/mmy)]/2 zg,
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Xy = X3 = H[(my + my/mymgy)|t/2(sinaz, — cosazy),
tana = 7i[(m, + my + myymy/mymy]1/2,

Finally, we express our Hamiltonian in eylindrical
coordinates. Let

Zz =7 sinf, 2z,=7%cosd, 2z, =2,.

In this coordinate system,

Xy — X =H(u,,)"1/27 sing,

Xg— Xg = ﬁ(u23)—1/?’l’ sin(6 — a),

2 2
z_l( 02 9% 19 .1 92
2\oz,2 w2 ¥ r 2 002)’
u;; = reduced mass of the 7j subsystem.
Condition (1) now implies that we are to solve the
partial differential equation HY = Ev{ within the

wedge 0 <7 < ®,0< § < @. Conditions (2) and (3)
read, respectively,

"W, a) (Hyg)71/2 s
v,a)=— h - ’
gy M1z ¥ 39 le=0
1 ay
! = -1/2 — _©
R, 0) = () V2 — |

In this restated form the three particle scattering
problem is formulated as the solution to the wave
equation in two dimensions confined to the wedge
0 < 6 < @, and subject to the boundary conditions

8y
gYr,0) = — o |e=0° (1a)
oY
- — 1
e (1)
where

h= h’(ﬂlz)l/zy 8= g'(ﬂzg)l/zy
#n = unit normal to the indicated surface.

In this form the problem has an electromagnetic ana-
log, viz.the diffraction of an E-polarized electromag-
netic wave by an imperfectly conducting wedge, where
our strength constants g and / are related to the con-
ductivity of the boundary material of the wedge. This
analog problem has commanded some interest, notably
that of Williams,2 whose method we shall adopt. Nus-
sensveig3 recognized that this analogy existed and
used the method of Williams' to describe a particular
breakup problem.

The authors' interest in this problem was stimulated
by its similarity to the problem of three penetrable
particles in one dimension interacting via delta func-
tion potentials. In fact under certain conditions of
high symmetry the two types of problems turn out to
be identical.

It has been found, however, that the more limited
class of impenetrable particle problems can stand in
their own right as true three particle problems and
as such provide an illustration of the type of mathe-
maties which allows the effects present in more com-
plicated problems.



SCATTERING OF THREE IMPENETRABLE PARTICLES

1I. THE METHOD OF SOLUTION

We adopt the method suggested by Williams, which is
essentially Sommerfield's method for solving the
perfectly conducting wedge. We assume that we may
represent the solution as an integral over plane waves
of a given energy E = 22/2,which we take for the mo-
ment to be a positive number.

Yir,0) = fABf(G,w)eik” cosw ey ,

We must ensure that { satisfies the differential equa-
tion, and to this end we assume that the limits A and
B are carried to infinity in some way so that we may
differentiate under the integral sign. The limits A

" and B may be safely carried to infinity anywhere in
the complex w plane where Im cosw> 0. This restric-
tion implies that the end points of the integration
must lie in a one of a series of strips in the w plane:

for Imw > 0,
for Imw < 0,

(2n — 1)7 < Rew < 2nm,
2nt < Rew < (2n + 1)7,

where n takes on all integer values from — © to ©,

We must evidently commence our integration in one
of these strips and end it in another.

We note that at » = 0 the function v must be finite
and independent of 0, for physically this is a single
point and the solution must be single-valued. We anti-
cipate that this independence must arise from our
ability to deform the contour in the w plane for fixed
6. Since we further anticipate that the function f will
have singularities in the w plane which give rise to
bound states, etc., we recognize that we must choose
our contour so that it surrounds none of these singu-
larities. It turns out that all of the singularities in-
troduced by the dynamics will lie within a finite dis-
tance of the real axis. We will therefore choose our
contour so that it always has Imw > 0 and is above
any of the singularities of f. This basic contour is
denoted C, in Fig. 1.

We now substitute the assumed form for ¢ into the
differential equation, integrate by parts, and obtain

2 2
(vz + k2)-¢, :_1_] (a_]f — j.i) eikrcosw gy — 0,
r27e\gpz w2

This is satisfied if

thus
V= fc[G(w + 0) + Hw — 8)]er <osw gy,

We take this form for y/ and calculate

1oy .
— —=[[G'w + 8) — H'(w — )] ei*rcosw gy,
y 08 ¢

which, by partial integration, is

1 oy

——— =ik | sinw[Gw + 9) — H(w — 0)] etk cosw gy,
95 = k), siw[Glw +6) — Ha — 6)]
We must, of course, ensure in what follows that our
functions G and H are sufficiently regular to justify
the partial integration.

The boundary condition (1b) along 6 = 0 will be satis-
fied if
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FIG.1. The basic contour (C,) and its deformation
(C, plus Cj) for the integral form of the solution.

glGw) + Hw)] = ik sinw|Gw) — Hw)];

likewise boundary condition (1la) along 8 = « requires
that

— HGw + a) + Hw — a)]
= ik sinw[Gw + a) — Hw — a)].

Rewriting these conditions, we find

Gw + o) = Yw)Hw — o),

sinw — ig/k sinw — th/k

Yiw) = sinw — ih/k "

Thus the boundary conditions on the sides of the wedge
require that G and H satisfy a pair of coupled differ-
ence equations. The difference coefficients X and ¥
are unimodular functions for real w and have period
2. We temporarily defer discussion of the difference
equations and show first that a set of appropriate
solutions to the difference equations completely deter-
mine the asymptotic properties of the wavefunction.

" sinw + ig/k ]

. THE ASYMPTOTIC SOLUTION

In order that we have a proper solution, the wavefunc-
tion must satisfy:

(1) the boundary conditions at 6 = 0 and 6 = «a, which
are expressed through the difference equations for
G and H;

(2) regularity at » = 0, which is satisfied if G and H
approach at most a constant as w —¢ ©;

(3) the condition that the wavefunction not increase
exponentially anywhere within the wedge, which
we shall see imposes conditions on the locations
of poles in G and H.

We now wish to deform the contour C,; so that it
passes through the steepest descent points at w = 0
and w = 7. This deformation will lead to sweeping
the contour across singularities of G and H intro-
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duced by the difference equations. The contribution
from these singularities must be taken into account
explicitly by use of the residue theorem. The contour
deformation is made as shown in Fig.1. The open
contour C, passes through the steepest descent points,
whereas the closed contour C, surrounds the singu-
larities of G and H. The asymptotic solution will be
the sum of a pair of steepest descent contributions
plus some “plane wave” contributions from the poles
of Gand H.

What sort of singularities may G and H have ? In the
main this is governed by boundary condition (3), with
the criterion being that no contributions are allowed
which lead to exponential increases in the wavefunc-
tion anywhere in the wedge. Suppose that Gw + 6) has
a pole at w + § = u + iv;this means that there will be
a “plane wave” contribution to the integral at w = u

+ fv — 0§, with the corresponding wavefunction

exp(ikr) cosw

ikr cosw = tkv cos(u + iv— 09),
= tkr cos(u — 0) coshv + kr sin(u — ) sinhv.

If we take v > 0, corresponding to the upper half-
plane, we see that ¥ — 6 must be negative. Since ¢
takes on values from 0 to a,we see that ¥ must be
less than 0 or greater than 7 + . At exactly the end
points a pole of G would contribute a surface wave
along the wall of the wedge. A pole at u = 0 would
contribute an outgoing wave along the wall at § = 0
whereas a singularity at 4 = 7 + o would contribute
an incoming surface wave along the wall at 6 = o.
We thus conclude that G may have no poles in the
upper half-plane for 0 < Rew < 7 + @. Poles may,
however, occur at the boundaries of this region. In a
similar manner we find that H must be free of poles
in the upper half-plane for — o < Rew < 7,with a
pole at u = 7 contributing an incoming wave along the
surface 0 = .

An analysis of the two-body problem shows that the
imaginary part of the location of a pole in G or H is
dictated by the constants g and k. That is that the
surface waves may only have an exponential decrease
into the wedge region which is specific to the strength
constant on that surface.

Thus we find, as indeed we would expect,that there
are four surface wave contributions to the asymptotic
form of the wavefunction. If we let

sinif = ig/k, siniy = ih/k,
then the appropriate amplitudes corresponding to
these surface wave contributions are:

(1) For the incoming surface wave along 0 = 0:
Hm + ig) = lim (w— 7 — iB)Hw);
woT+iB
(2) For the incoming surface wave along § = a:
G + a + iy);
(3) For the outgoing surface wave along 6 = 0:
G(2p);
(4) For the outgoing surface along 9 = a:
H( — o+ Z"y).
The remainder of the contribution to the asymptotic
wavefunction comes from the steepest descent points
atw =0andw = 7.
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These contributions are:

fromw = 0:  V2n/kr ein/d eikr[G(9) + H(— 0)];

fromw =n:  V2n/kr e"iv/Aeitr[G(n + 6) + H(m — 8)].
Thus, again as we would expect, we have both an in-
coming and an outgoing contribution for cylindrical
“free waves” which correspond to all three of the
particles being free.

Finally, we emphasize that we have now obtained an
explicit representation of the asymptotic solution in
terms of the solutions to the difference equations. If
we know G and H, we can evaluate all of the above am-
plitudes. We thus proceed to a solution of the differ-
ence equations.

IV. SOLUTION OF THE DIFFERENCE EQUATIONS

The difference equations are

Gw + a) = Yw)H@w — o), Hw)=Xw)Gw).

A further factorization of these equations is possible.
Let

Gw) = Bw)A(w + a),

Substitution into the difference equations yields

Hw) = Blw + 2a)A(w + «).

Bw + 20) = X(w)Bw), Aw + 20) = Yw)Aw),

and thus the equations are separated.

We remark briefly on the theory of such equations.
Birkhoff4 discussed the equation

Gw + 2a) = Mw)G(w),

and demonstrated that the most general solution is the
product of a particular solution times a function with
period 2a. Thus

Glw) = G,w)dw),

where G (w) is a particular solution and ¢w) = dp(w +
2¢). A particular solution was found to be

Gp(w) =MYwM Y w + 2a) *++ M Y (w + no),

provided, of course, that the infinite product conver-
ges.

In our case,where X is a unimodular periodic func-
tion for real w, we do not obtain convergence in this
infinite product form. Jost3 has made a study of such
difference equations with periodic coefficients in con-
nection with the penetrable delta function problem,
which he approached by a different method. We shall
find, however, that we will be able to modify Birk-
hoff's technique to our problem at hand.

At this stage we can make three simple observations
about the properties of this equation and its solution:

(1) If M(w) can be written as a product of two func-
tions, say

Mw) = Xl(w)Xz(w)y

then the solution is a product of solutions of simpler
equations;i.e.,let
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Giw + 20) = X, (w)G, (w)
and
Gy(w + 2a) = X ,(w)G,(w);

then

Giw + 20)Go)(w + 20) = X ()X ,w)G,w)G,yw),
so that G(w) = Gl(w)Gz(w) is a solution. This evident-
ly holds for any number of terms in the product.
(2) If M(w + 27) = M(w),then G(w + 2r) is a solution
if G(w) is a solution. Hence we can write

Gw + 27) = Gw) p(w),
where

olw + 20) = p(w).
(3) X M(w) is unimodular for real w, so that

M*(w) = M-l(w)’

and this relation is extended to complex w,then
G*(w)G(w) is periodic with period 2a. For,from
G*w + 20) = M* w)Gw) = MY (w)G*(w),
we have
G*w + 20)Gw + 2a) = M*(w)M(w)G*(w)Gw)
= G*w)Gw).

We concentrate on the separated difference equations
one at a time. First we attempt to solve

Bw + 2a) = X(w)B(w).

We note that X is an entire analytic function of w and
as such has an infinite product representation in w
plane. We shall couple this infinite product represen-
tation with the observation (1) above and attempt to
write the solution for B as an infinite product.

To construct the infinite product representation of
X,we write X in the form
X(w) = sini(w — i) cost(w + iB)/cosi(w — ip)

x sing(w + 16),

where, again,
sinip = ig/k.

Thus X is itself the product of two functions.

Using the infinite product forms of the sin and cosine,
we write one of the factors of X as an infinite pro-
duct.

sin}(w — i) 3 (w — iB) = 1— [(w — ig/2nm)]2
sind(w + 8)  (w + if)n=1 1 — [(w + if/2nm)]2

© w— i+ 2nn
= 11 w+ 1B+ 2nm

n=-"o0

The infinite product form of the other factor of X is

cosi(w + i6) w W+ B+ 7+ 2nm

cosy(w — iB) mww — B+ + 2w’
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For each of the factors which appear in this infinite
product, we can construct a solution. Consider the
difference equation

Glw + 20) = [(w — wy — iB)/ (w — wq + iB)] Gw).
This equation is satisfied by
G(w) = T((1/2a)w — wo — iB))/T(1/ 20)w — wy + B)),

because the gamma function satisfies the difference
equation

T(z + 1) = z2T'(2).
The difference equation is equally well satisfied by

Gw) = T((1/20)(2a —w + wy— 8))/ T ((1/2a)
2a—w +wy + ip)).

These two solutions differ by a multiple of period 2«
as can be demonstrated using the property of the
gamma function

I'(z)T(1 — 2) = 7/sinnz

Thus we may express the solution to the difference
equation as an infinite product of gamma functions.
Before completing this exercise, however, we should
look ahead to the necessity of applying the pole con-
dition which guarantees that there will be no exponen-
tially increasing waves in the wedge.

Notice that the two solutions above represent two
different extremes of the possible types of solutions
to the difference equation. The first has a string of
poles recurring every 2a in the upper half-plane
beginning at w, + i8 and running to — « parallel to
the real axis,and a string of zeros recurring every
2 in the lower half-plane beginning at w, — 8 and
running to — « parallel to the real axis. The second
solution puts zeros running to the right in the upper
half-plane and poles running to the right in the lower
half-plane, both commencing where w = w, + 2a.

The solution to the whole difference equation will
have an infinite number of these gamma function
factors.

There is an entire strip of the complex w plane which
must be free of poles. To satisfy this condition, we
must choose solutions such that the elementary fac-
tors to the right of this strip lead to solutions with
poles running to the right and the elementary factors
to the left lead to poles running to the left; otherwise
poles will fall in the forbidden strip.

We therefore split the elementary factors into two
groups, those which occur to the left of the strip and
those which occur to the right. Accordingly we write

sint(w — iB) o W — if + 20T o w — B — 2mm

sind(w + iB) a0 w + iB + 2w »Lw + if— 2nn’

where the first factor on the left contains all of the
factors to the left of Rew = 0 and the term on the
right contains all of the factors to the right of Rew
=0.

Thus a solution to

J. Math. Phys., Vol. 13, No. 10, October 1972
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B,(w + 2a) = [sing(w — i)/ sing(w + iB)B,(w),

which is free of poles in the strip 0 < Rew < 7 + «
in the upper half-plane,is

w T((1/2a)w — i + 2nz2))
Bylw) = 0y T((1/2a)(w — i8 + 2nz))

o I'((1/2a)(20 — w— iB + 2nm))
,}—:11 r((1/2a)(2a — w + i + 2nn))’

In fact this solution is free of poles in the upper half-
plane from Rew = 0 to Rew = 27 + 2a. This turns
out to be necessary in the formation of the total so-
lution since the total solution involves shifted pro-
ducts of functions such as the one above.

If we let

fw, ) = orio r((1/2a)w — Z:B + 2nm)) ’
=0 I'((1/2a)w — i8 + 2n7))

then
B,(w) = flw,B)f (21 + 2a—w, B),

where this solution is free of poles in the upper half-
plane for 0 < Rew < 27 + 20.

In a similar way we construct a solution to the re-
maining factors of B(w). If

By(w + 2a) = [cosi(w + iB)/cosi(w — if)] By(w),
we know that the solution is
Byw) = flw + 7,— B)f(m + 20 —w,— B). ~

We may now construct a solution to the whole differ-
ence equation which satisfies the pole criteria. Com-
bining the terms to form B(w), we find
B(w) = B, (w)Byw),
=flw,B)f(2r + 20 —w,B)f (w + 7,— f)
X f(m + 20 —w,— B).

Similarly, for A(w),

A(w) :f(wyy)f(zﬂ + 20 _w)Y)f(w + 77"}’)
x flr + 20 — w,— y).

In turn we now combine A and B to get G and H.

Gw) = Bw)Aw + a)
= fw, B)f 21 + 20 — w,B)f (w + 7,— B)
Xf(m+ 20 —w,— B)f(w+ a,y)f (21 + a —w,y)
xfw+7+oa,—y)fn +a—w,—v),

Hw) = B(w + 2a)A(w + o)
=flw + 2a,8)f(2r —w,B)fw + 7 + 2a,— B)
Xfm—w,—B)fw + a,y)f(2r + a —w,y)
Xflw+7a+a,—yfln +a—w,—y).
We have now constructed a particular solution to the
difference equations. All other solutions are obtained

by multiplying G and H by a function with period 2c¢.
This particular solution is still not in the most con-
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venient form for the manipulations which follow. We
shall modify this solution in a way which will be
motivated in the next section.

We seek to modify this particular solution so that it
has the following properties:

(1) no incoming bound wave at 8 = 0, which implies
that there is no pole of H at w = 7 + i3,

(2) no incoming bound wave at § = o, which implies
that there isno poleof Gatw =7 + a + iy,

(3) no incoming cylindrical wave, which implies no
contribution from the steepest descent point at
w=mn,0r G(m + w) =— H(mr — w).

This solution will not lead to a bounded wavefunction
at r = 0, because there must be a source at that point
since we have outgoing waves which do not arise from
incoming waves.

We first seek a modification of our particular solu-
tion which satisfies condition (3). That is, we seek a
function ¢{w) which satisfies
o) =¢w + 2a),
Aw + o)Bw)d (w)

=—A21 —w + a)B(27 + 20 — w)p (21 — w).

Now we substitute for A and B in terms of the func-
tion f and find the equation for ¢:

$(2—w)
¢ (w)
flw + 7,— B)f(m + 20 —w,— B)
fl—n+w,— BY31 + 20 —w,— B)
flw + o+ 1,— )flr + o —w,—y)
fBT—w+a,—)f(—7+a+w,—y)

Look at the first factor on the right:
fw + 7,— B) _n T{(1/20)w + 7 + 8 + 2um))
fw —m,— )  »OT(1/2a)w — 7 + iB + 2nn))
r((1/2a)w — 7 — i3 + 2nm))
X r((1/2a)w + 7 — iB + 2n‘n));

almost all of the terms cancel and we are left with
faw +71,— B)  T((1/20)@ — — ip)
fw—u,—p) T(1/20)w — +ip))

A similar cancellation takes place in all of the other
factors as well, leaving us with

(21 — w)
o)
T((1/20)w — 7 — iB)T((1/20)(r + 20— w + iB))
T T((1/2a)w — 7 + ) T((1/20)(7 + 2a— w — i)
r{(1/2a)m + a —w + %))
(/20w + a -7+ )
T{(1/2a)w + o — 7 — iy))
T((1/2a)(m + o —w— &)
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Using the periodicity property of the gamma function,

T{(1/20)(m + 20 — w + BNT((1/2a)(w — 7 — iB))

= 1 sin(n/2a)w — 7 — iB)] 1,
we find
é(2r — w)

Pw)

sin(7/2a)(w — 7 + if) sin(n/2a)(w + 7 — o + iy

B sin(n/2a)(w — 7 — iB) sin(r/2a)w — 7 — a— @) '
A solution to this equation is

dw) = sin(n/2a)w — 7 — iB) sin(7/20)(w — 71— @ — ).
Thus we have

Gow) = Bw)A(w + a) sin(n/2a)(w — 7 — ip)

sin(n/20)w — 1 — a— iy),

Hyw) = Bw + 2a0)A(w + o) sin(r/2a)w — 7 — iB)

x sin (/20w — 71— a— &),

where the functions G, and H, satisfy conditions (1),
(2),and (3), since the function ¢(w) is zero at both
w=7m+i3 andw =7+ a + if.

V. CALCULATION OF SCATTERING AMPLITUDES

In this section we will calculate the amplitudes for
various events characteristic of this three-particle
system. At this point we have succeeded in providing
a solution to the difference equations which has the
property that it corresponds to a point source at the
origin. There are no incoming bound or free waves,
yet outgoing waves exist in all channels.

This particular solution is useful because it is easily
modified to fit any type of incoming conditions. The
solution to the difference equations which gives rise
to a particular physical situation in the incoming
state (for example, an incoming state with particles

2 and 3 bound and particle 1 free) must arise from
multiplying our basic solution by some function with
period 2¢. That is,

Cw) = Gow)¥ w),
W) = Y(w + 2a).

H(w) = Hy(w)yw),

If we wish to discuss all possible incoming states, we
must have a complete set of functions . By a com-
plete set we mean a set of ¥'s which span all the
possible incoming physical states.

All of the possible incoming states must be labeled in
some way. Implicitly we have already chosen this
way to be all possible incoming states of a given
three-particle energy. Even within this choice, how-
ever, there are infinitely many ways to choose the
incoming states.

A similar situation arises in the two particle centro-
symmetric scattering problem. We may characterize
completely all of the scattering for a given incident
energy in an infinity of ways. The two most popular
are an angular momentum decomposition, where one
specifies the scattering by giving an energy dependent
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phase-shift for each angular momentum channel, or

a plane wave type of decomposition where one specif-
ies a scattering amplitude f(6, ), which gives the
amplitude to scatter from a plane wave incoming at
angle y to one outgoing at an angle . These two
points of view are connected by a similarity trans-
formation.

The case of two-particle centro-symmetric scatter-
ing has a simplification that has no obvious analog
in our case. Since angular momentum is conserved,
the scattering is diagonal in the angular momentum
representation. We have no idea what peculiar set of
states will give us a diagonal representation for the
scattering, and so we choose a set of states (much
like the plane wave basis) which is physically appeal-
ing.
We shall describe our scattering in a basis where the
events are labeled by the momentum vector in the
two-dimensional space of the problem. That is a
basis where the quantum number tells how the energy
is apportioned among the three particles. The magni-
tude of this momentum vector is fixed by the three-
particle energy, and so we need only use the angle as
a label. We shall denote the possible incoming states
as:
[0): an incoming state with particles 2 and 3 bound,
particle 1 free (corresponding to 8 = 0),

|@): an incoming state with particles 1 and 2 bound,
particle 3 free (corresponding to 6 = o),

|y): an incoming state with all particles free, where
the parameter y tells how the three-particle
energy is divided among the particles.

Similarly, the outgoing states are labeled:

(0]: an outgoing state where particles 2 and 3 are
bound, particle 1 free,

(a]: an outgoing state where particles 1 and 2 are
bound, particle 3 free,

(8]: an outgoing state where all particles are free
and the parameter ¢ tells how the three-particle
energy is divided among the particles.

We need to make our difference equation formalism
tell us the array of numbers

A(0]0) A(a]0) A(8]0)
A(0la) A(a|0) A@|a)
A(0|y) Alaly)  A(6ly)

where A(9|0) is, for example, the coefficient of the
asymptotic cylindrical wave at angle 9 given unit am-
plitude for an incoming bound state of particles 2 and
3.

We now set up a method to calculate this array of
numbers. The first row of this array is all condition-
al on unit amplitude for an incoming wave at ¢ = 0,
and no other incoming wave is present. We must en-
sure that the asymptotic form of the incoming solution
provides an incoming wave along 8§ = 0. It is there-
fore necessary to multiply our basic solution by a
function y; (w) which has a pole at the point w = 7 +
i3, for H must have a pole at this point to provide the
proper incoming wave. The residue of this pole in
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the function H will be the coefficient of the asymptotic

wave incoming along 6 = 0.

The function y; must also be chosen so that there is

no incoming cylindrical wave;thus we must preserve
the property that the steepest descent point at w = «
does not contribute to the asymptotic form, and thus

we must have

Go(" + w)ll/l(ﬂ + w) = }10(7r - w)%(ﬂ - w)-

Since G, and H, have been constructed with this pro-
perty, we see that

W+ w) = (r — w),

and hence ¥ is an even function about 7.

Since there are no sources other than the bound wave
at infinity the moduli of the functions G and H must
be bounded as w — i ., The functions G and H get
exponentially large as w — ¢ w like exp(r/2)Imw;thus
the function y; must decrease at least as fast as
exp(— 7/2) Imw in the same limit. Apart from a con-
stant factor a function which satisfies these condi-
tions is

V,w) = [cos(n/a)(w — 7) — cos(nif/a)] L.

In fact (apart from a constant factor) this function

is unique. Due to the boundedness condition on G and
H,we may only consider the possibility of introducing
higher Fourier coefficients in the denominator, but
these will inevitably introduce unwanted poles in G
and H.

Now we see that the entire first row of our array of
amplitudes is
A(0]0) = Gy (i)W, (iB)/H o(m + )P (T + ip),
Al@|0) = Hy(— a + iy, (— o + iy)/Hy(m + ip)
X 11;1(77 + 28),

A(610) = Go(9)1l/1(9)¢1(9) + Ho( - 9)\!/1( - 9)/H0(7T

+ 1By (7 + ip),
where we have chosen the arbitrary constant in ¥,

to be such that the residue of the pole of H(w) at
w =7 + if is unity.

The same line of reasoning allows us to construct

the function ¥ ,(w) which conditions the amplitudes on
an incident bound state of particles 1 and 2, We insist
that ¥, have the following properties:

(1) Yow) = Yyw + 2a),
{(2) Yy(w) has a pole wherew =7 + a + iy,
(3) lpz(ﬂ +w) = Yolm — w),

(4) Yy(w) has no poles other than those required by
(1),(2), and (3),

(5) yY,(w) decreases at least as fast as exp( — 7/a)
Imw asw — i,

These conditions imply that apart from an arbitrary
constant

Yow) = [cos(n/a)(w — ) — cos(m/a)(a + iy)]2L.

J. Math, Phys., Vol. 13, No. 10, October 1972

J. B. McGUIRE AND C. A, HURST

The arbitrary constant is fixed by insisting that the
residue of G(w) at 7 + o + 7y is unity. This gives the
second row of amplitudes in our array to be:

A(0]a) = Go(iBWy(iB) /Gyl + @+ iyWly(m + a + i),
Alala) =Hy( —a+ Wy —a + i) /Gyln + a + iy)
X Yol + a + dy),
A(0] @) = [Go(O)4(08) + Hy( — O o( — 6)])/
Golm + a+ d)P,(m + a+ iy).

Finally we must produce a function which gives an
incoming plane wave at 6 = ¢. This contribution must
arise from a pole on the real w axis. Referring to
the original contour integral, we see that the pole
must fall in the region 0 < w < 7 to give a contribu-
tion. By the same sort of reasoning carried out in
Sec.III, we conclude that the pole must fall in H(w) at
w = 7 — Y, so that by the usual considerations

Y3w) = [cos(n/a)w — 1) — cos(ny /)] 1,
and

A0 ) = Go(iBW4(iB) /2nH o(m — YW 5(m — ¥,
Alaly) = Byl — a+ ip)Ws(— a + iy)/2nHy(1 — ¢)
{03(” - lP),

A(019) = [Go(804(6) + Hol — Oa(— 6))/20Holn — )
X l;53('” — ).

The factor 27 in the denominators is required to pre-
serve unitarity. There is a caveat in the interpreta-
tion of this last row of amplitudes. The point is best
explained by examining a particular case.

VI. ANALYSIS OF A PARTICULAR CASE

Consider the case where WZ/ let both g and % tend to
— o, This says that the wavefunction must vanish
along the walls of the wedge, and thus we should ob-
tain Sommerfield's solution for the perfectly conduct-
ing wedge. In our interpretation the solution will re-
present the scattering of three one-dimensional
particles whose wavefunction must vanish when two
particles are on top of one another,

The difference equations are

Gw + o =— Hw — «), Hw)=— Gw).

A particular solution is

The considerations of the previous section lead us to
multiply the particular solutions by a function which
is period 2¢, even about 7, and has a pole of unit resi-
due at w = 7 — Y. Such a function is

Yg(w) = — % sin %/— (sinz%(w — 71— )

X sin-;—a(w -7+ \U))‘l.
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The resulting scattering amplitude is

f(8,¢) = G(6) + H(— 6)
(1/4a) sin(n2/a) sin(my/a) sin(n6/a)
sin(r/2a){6 — 7 — ¢} sin(n/20)(8 — 7 — ¢)
X [sin(w/2a)(6 + 7 — ) sin(r/2a)(6 +n + )] 1

which is Sommerfield's result.

Notice, however, that this amplitude has two singulari-
ties in the physical region of ¢ for fixed y. In the
theory of electromagnetic diffraction these directions
in 6 are called the boundaries of geometric optics,
They are the directions in ¢ which can arise from a
set of specular reflections of the plane wave incident
from the direction . In the particle language they
are the singularities of Rubin, Tiktopolis, and Sugar®
which arise in the three-particle problem when an
incoming and outgoing state are connected by a sequ-
ence of two-particle interactions each of which indivi-
dually conserves energy and momentum and which is
kinematically allowed by the order of the sequence.

When a probability or a flux of particles is computed
it will depend quadratically upon the scattering ampli-
tude. Unitarity will depend somehow upon the integral
of the square of the amplitude, but in its present form
the square of the amplitude is not an integrable func~
tion. We must see how to go around the poles to pre-
serve unitarity.

In our formalism it is easy to see how to do this. Re-
ferring again to Fig.1 the contour integral around the
closed path (C,) will yield plane waves which extend
to infinity. We want to eliminate these plane waves
from unitarity considerations. Since the closed con-
tour covers the real axis from 0 <w < 7 we can do
this by displacing all of the poles into the lower half-
plane, which makes them exponentially decay at in-
finity. These plane waves will then not contribute to
either the flux or the probability.

Thus

V) = — sin(m)y/a

4o
1

Xsin(1r/20:)(w — 7 — Y + i€) sin{n/2a)w — 7 + Y + i) )

This displacementof the poles,however, has destroyed
the symmetry which made the incoming cylindriecal
wave zero. We compute this incoming cylindrical
wave in a consistent approximation for small ¢ and
find

‘Ps(”+w)—wg(ﬂ~w)=~€”iiﬁf.’i‘f.;,@

x/ sin(mw /a)

k[cos(ww/a) — cos(my/a)]2 + (ne/a)2 sinz(ﬁw/a))’
which approaches 6(w — ) (apart from an inessential
phase factor) as € — 0.

This procedure works also in general. When we in-
vent a function like ¢4 of Sec.V, we also displace the
poles slightly into the exponential decay region. The
result is to give us an incoming cylindrical wave
whose 6 dependence approaches a delta function as
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€ — 0. The outgoing amplitude squared is then inter-
preted as the outgoing particle flux given unit inci-
dent flux.

VII. FORMATION OF THE SCATTERING MATRIX

Unfortunately our array of amplitudes is not the end
of the story. There remains a problem which is com-
mon to all three-particle or multichannel problems.
This array is almost the scattering matrix, but in its
present form it is not unitary. This absence of uni-
tary is due to the ability of the system to change
channels during the course of an interaction.

We will not reproduce here the arguments which tell
one how to calculate properly the scattering matrix,
but we will simply indicate how the arguments are
made.

The problem is to connect the time independent re-
sults, which are the amplitudes in the array A, with

a wavepacket outlook. One way to do this is to calcu-
late the scattering, rearrangement, and breakup of
wavepackets originating in the various channels,using
wavepackets which are very sharp in momentum
space and are very wide in configuration space. The
time dependent theory of such wavepackets involves
only time-independent amplitudes plus certain kine-
matical factors. One insists that probability be con-
served in these wavepackets and that scattering be
linear in the sense that amplitudes for distinct pro-
cesses add.

A typical relation obtained by this prescription would
be

kz+h2\‘1/z( g2
1:{A(010)i2+< n2 ) k2 + g2

1/2
) |A(a[0)]2

2 1/2 o
+(k2ig2> %fo |A(0]0) | 2d8.

This relation would arise when one guarantees uni-
tarity of an amplitude which contains only incoming
bound waves along 8 = 0. Guaranteeing that unitarity
is maintained between a sum of wavepacket solutions
which involve both an incoming wave along 6 = 0 and
one along 6 = o produces a similar relation for the
corresponding amplitudes conditional on 6§ = ¢. In
addition a second type of result is obtained:

k2 + g2\1/2
0=A(010)A*(010l)<-—-5-——~) + A(a|0)A*(a] @)
g

k2 4+ K2\ 172 1 .
s +;j0 A(9]0)A%(9 | a)dd.

If we systematically cover all of the possibilities, we

find that the array A is unitarized by similarity trans-
forming with a diagonal matrix of the form

D(010) = [g2(k2 + g2)]1/4,
D(ala) = [h2(k2 + R2)]1/4,
Do) = V7.

The scattering matrix is
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p—

2 4 p2 22

k2 + g2

g

—

This matrix is not quite what one would ordinarily
call the § matrix. One can see this by interpreting
the diagonal elements of this matrix. A diagonal ele-
ment of this matrix tells the amplitude for an incom-
ing wave to go out along the same direction, that is,
the amplitude that all three-particle momenta and
the order of the particles along the line remain the
same, One would ordinarily want the diagonal ele-
ments of the S matrix to give the amplitude that a
particle which came in at 9 went out at 7 + 6, or the
amplitude that all particle momenta remain the same,
but that the order along the line is reversed. For
impenetrable particles this type of S matrix would
have zero diagonal elements; thus we find it more
convenient to use the first type.

One knows from the usual general considerations of
hermiticity of the Hamiltonian operator that unitarity
is guaranteed, but it is not obvious that the amplitudes
constructed from the difference equations have this
property. We have put the proof of the difference
equation unitarity in the Appendix.

The authors wish to emphasize that this unitary form
for the scattering matrix may be manipulated in the
usual way. Unitary changes of basis are quite accept-
able and are equivalent re-expressions of this matrix
even though such changes of basis mean a coherent
mixing of channel states. Many of the standard refer-
ences give the impression that this “major channel”
basis is preferred,and that one must be particularly
careful about transforming to some other basis which
coherently mixes channel states. All of the care
which need be taken has been taken by writing the
matrix in unitary form.

VII. PROBABILITIES AND PARTICLE FLUXES

We have given a complete prescription for the cal~
culation of the elements of the scattering matrix.
The absolute squares of these matrix elements are
to be interpreted as a probability flux, that is, the
number of events per second, given one event per
second in the initial state.

In this section we will compute the absolute squares
of the matrix elements of the previous section. We
do this because the squares of the matrix elements
are very much simpler functions than are the matrix
elements themselves.

Let us calculate the probabilities associated with the
first row of our scattering matrix. In this case there
is no distinction between a probability of an event
and the flux associated with that event since the in-
coming wave is bound in the channel. In terms of the
solution to the difference equations the probabilities
are

P(0]0) = |A(0]0)|2
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A(a|0) —(

1/4 k2 + h2\ 1/4
T) A@ly) ﬁ(*hT—-) Aloly)  A(Bly)
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2 o (b2 + p2\ 1/4
Aoy ——) VAT

n2 B2 4+ o2
S = DAD! = (k )m( £ )1/4A(0|a) Alala) L

2 1/4
7 g > A(p]0)

k2 + g2

h 1/4
e A0

—d

i
= | GoliBW,(B) 12/ | Hy(n + i) y(m + ip) ] 2,
P(a]0) = |A(a |0)]2 tan(ig) /tan(iy)
= [tan(#8)/tan(éy)] | fio( —a+ iy
X Yy (—~a+idy) |2/ Hy(m + iBY,(n + iB)|2,

P(910) = [tan(ip)/ni]] A(8]0)2
= [tan(@8/mi ] |Gy (8) + H o — 6)
x Yq(— 0) 12/ Ho(m + ip)fy(m + ip) | 2
= [tan(iB)/71} [ G (6) |2 |y, (6) — Q(0)
XY (— 6|2/ |Hyr + B, (r + iB) |2,
where
Ho (= 6) =~ Go(2n + ) =~ Q(9)G(6).
@(6) is a function with period 2¢, by the results of
Sec. 111,

We appeal to our explicit representations for G, and
H, to find the functions G,*G,, H,*H,,and Q. Note that

f*(wyﬁ)f(wrﬁ) =f(w’— B)f(wyﬁ) = 1,
and from this it follows that
Go*w)Gyw) = Hy*(w)H y(w)
= sin(r/2a)(w — 7 — i) sin{r/2a)(w — 7 + iB)
xsin(m/2a)(w — 7 — a— i)
x sin(n/20)(w — 1 — a + iy).
Calculation of the function @ is straightforward and
yields
3 sin(r/2a)(w — iB) sin(n/2a)w + 7 + if)
B sin(r /20w + i8) sin(n/2a)w + o + iy)

y sin(r/2a)w + a— #y)sin(@m/20)(w + 7 + o + iy)
sin(n/20)(w — 7 — if)sin(n/20)w — 1 + a + iy)

We may also calculate | G4(¢8)|2 in terms of these
functions:

|G o) 12 = [lim, (w — i) Go()][ Jim (s + iB)Gg™(s™)].
Let s* = — w, and then
|§0(ZB)|2 == 1]1,1—{1;'1;3(?'0_ iB)ZGo(w)GQ*( —w).

Using the difference equations and the symmetry
relation between G, and H, we obtain

[Go(iB)12 = lim (w — 8)2X ") Go) Gy ™(2r + w).

Evaluating the results of the function X * explicitly,
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we have
|Go(iB)12 = 2 tanip lim (w — i) @ *(w)Go(w)Go ().
Similarly

|Hy( — a + #y)|2 = 2 tandy w_l)i_rgﬁl*iy w + a— iy)Q*w)
J
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X Hg(w)H()*(w).

Thus all of the squares of the elements of this row of
our scattering matrix may be found in terms of the
known functions ¥/,, G,*Gy, and @. The correspond-
ing statement is true as well for the other rows.
After some tedious calculation we find

sin?(nig/a) cos(n/20)[n + i (B — y)] cos(n/2a)(w— B — v)]

b4

P(010) = cos2(ni/a)(f — ) sin(r/20)(2i8 — 7) sin(z/20)(248 + )

Plal0) = — sin(n2/20) sin(riy/a) sin{nif/a)
cos2(mi/2a)(y — B) cos(n/2a)[7 + (B + )] cos(n/2a)[7 — (B + 1]

PO10) = — I sin2(r2/20) sin2(ng/a) cos(ni/2a)(B + y)) cos(n/2a)(x — B — ) sin(wip/a)
4o cos(ni/2a)(8 — ) D(8, i8)B(6)

P(0la) = P(a]0),

Plelo) =

sinZ(niy/a) cos(n/2a)[n + iy — B)] cos(n/2a)[n — i(y — B)]

cos2(ni/2a){(B — y) sin{n/2a)(7 + 24y} sin (n/2a(2éy—7)

P(9| o)

i sin2(72/20) sin2(ng/a) cos(ni/2a)(B + y) cos(n/2a)[n + i(y — B)] cos(n/2a)[m — i(y — B)] sin(niy/a)

4o cos(ni/2a)(y — B)D{a— 8, iy}B(F)

P(0{y) = P(y|0),
Plaly) = Py a),

P(oly) =

2 ]

(160)2

20

N I 12 Y . m T sV
sin2 — sin2—| sin— €08 — ¢os—— + sin — | cos — + cos—
o o o o o o a

72

2 m 7w
% <cos—ﬂ—~(7r + 2éy) + cos~77—(1r + 21’,8))-%% sinL(I — cos— — 2 cos— (1 + 2iy) cos— (7 + 22‘{3))}
2« 20 o a 2 20

x [D2(8, ¥)B(6) BW)] 1,

where

o

D8,y = sin(n/2a)(0 + 7 + ) sin{r/2a)(8 + 7 — ) sin(z/2a}8 — 7 + ¥) sin(z/2a)(6 — 7 — ¢,

B(6) = sin(n/2a)(6 + iB) sin(n/2a)(8 —iB) cos(n/2a)(8 + iy) cos(m/2a)(8 — #).

Many interesting properties of the solutions in this
three-particle problem can be obtained by locking at
the structure of these probabilities as analytic func-
tions.

First we see that there is a particular value of three-
particle energy for which the probability P(ca|0) be-
comes infinite. That value of three-particle energy
occurs when the factor cos{n/2a)[r — (8 + y)] vani-
shes in the denominator. This signals the presence of
a three-particle bound state when

Z(B + 'y) =7
and hence

sinif cosiy + cosif siniy = + gsing

or

ég(l + g2 )1/2 ih (1 + hz)l/z .
— e = sina.
k k2 B\ k2

The solutions to this equation give the binding energy
which can only be satisfied when % is pure imaginary.

f

A second class of interesting results may be seen by
looking at probabilities such as P(8]0). Here the
function D(8, i8), which accounts for the three-particle
kinematic singularities (i.e.,those of Rubin, Sugar,
and Tiktopolis) appears as afactor in the denominator.
As the energy gets large, 8 and y become small, push-
ing these poles near to the real axis. This causes
very large probabilities for certain preferred parti-
cle momenta in the outgoing state., These preferred
momenta are just the ones which would be obtained

if one calculated the result of a sequence of kinemati~
cally possible collisions between three particles
where two of the three particles (i.e.,the two in the
initial bound state) are nearly at rest with respect to
one another.

Of course, the function P(y/|9) has the same sort of
kinematic singularity behaviour as the particular

case of Sec.VI, and the problems are kinematically
identical. The function B(9) has singularities for com-
plex values of 8 also, but at high energy those singu-
larities will not be felt because they approach the

real ones at a point where the scattering probability
is zero (i.e.,the directions ¢ = 0,y = a).
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IX. CALCULATION OF REARRANGEMENT PRO-
BABILITIES BELOW THE THREE-PARTICLE
BREAKUP THRESHOLD

If the energy is less than zero,no three-particle
breakup can occur,that is,there must be at least one
bound pair of particles in both the initial and final
states. Below this threshold we must recalculate the
rearrangement probabilities. One might think that
these probabilities are analytic continuations of the
corresponding probabilities above threshold, but we
shall see that this is not the case,

When we calculated probabilities in the previous see~
tion we made use of the theorem

G*w)Cw) = G*w + 2a0)Gw + 2a),

which assumed that the parameters g and y were real.
For k2 less than zerc we define X to be a positive real
number such that

k=X,
Since
sinip = ig/k = g/X,
we see that 8 must be complex, which invalidates the

theorem, since under these conditions G and G*
satisfy the same difference equation, We shall choose

i = %TT + iv,
which implies

coshy = g/,
and
v =In[g/x + (g2/A2 — 1)1/2]

Thus v tends to zero at the two-particle g channel
bound state threshold and tends to infinity at the
three-particle breakup threshold.

Similarly, we let
iy = in +it, cosht = b/,
£ =In[R/x + R2/A2 — 1)172],

In this energy domain we must have no contribution
from the steepest descent point at w = 7 because such
a contribution would lead to an exponentially increas-
ing wavefunction at infinity. Thus we must maintain
the relation between G and H:

Glr +w) = Hir — w).

There will be two solutions in this domain and we
ghall label these solutions in the same way as in Sec.
V1. Of course, we need not worry about amplitudes
like A(#|0) because these are amplitudes for expon-
entially decaying waves at infinity and hence do not
contribute to the asymptotic probabilities.

Substituting the above expressions for g and y into the
appropriate amplitude expressions gives
A(0]0) = Golam + iv)y,(3 + z’v)/HOC%n + z’v)y@l(%fr + #v),
Ala|0) = Bo(— a + i1 + W, (— o + i1 + it)/Hy (3n
+ z'v)zf/l(%n + iv),
A(0la) = Goldm + ioyy(3m + W)/ Goy3m + a+ Wy
x (37 + a+ i),
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Alala) =B31 — a + Wit — a + i)/ Gyl + @
+ it)f[)z(%n + o + i),

As before, the probabilities are the absolute squares
of these amplitudes multiplied by a kinematical fac-
tor. We also substitute the expressions for 3 and y
into these kinematical factors and obtain

P(0]0) = |A(0]0)]2,

P(a]0) = (cotiv/cotit) | A{a| 0}]2,

Plala) = |Ala] @) (2,

P(0]a) = (cotit/cotiv) |A(0] @)|2.

From the difference equations we now note that, under
conditions of negative energy,

Glw)G*w + w) = Glw + 20)G*(w + 20 + 7).

We shall express all of our probabilities for negative
energy in terms of this periodic function. For exam-~
ple,

it} N2 = i -1 ; s
1GGEm + in)|2 = w_,}rx/rgm(w in + w)Gw) w**'];r}g}iv

(w*—ir + w)G*w™),

and making an appropriate change of variable in each
limit we obtain

|GG + iv)|2 =— lim (w — )26k + w)G* (31 — w).
Using the connection between G and H, we have
|GGn + iv)|2 = lim (w — 2GHET + w)H 1 + w).
Now we use the difference equations to eliminate H:
[GA7 + i)|2 = lim (w — 0)2X*($r + w)GEm + w)

o X G2 + w),
Extracting the pole in X, we finally obtain
|GEn + iv)|2 = 2 cotiv lim (w — W)G(37T + w)

o X G¥3m +w),

which achieves the desired objective. By a similar

process we can express all of the other probabilities
in terms of this function.

In a straightforward but tedious way one calculates
from the gamma function representation of Gy(w)
Gow)Gy*(m + w) =

sin(r/2a)w + L7 — iv) cos(n/2a)w + 3w — it)

X sin(n/2a)(w — 37 — ) cos(n/2a)w — 37 — it)

X sin(n/2a)w — &7 + i) cos(n/20)(w — 37 + &)

X sin(n/2a)(w — L7 — iv) cos(n/ 2a)w — 3w — )1,
The final results for the probabilities are

P(0]0) = P(ala)
B cos(n/2a)[7 + (v — §)] cos(a/2a)[m — {v— §)]
" cos(n/2a)[n + i(v + 1)] cos(n/2a)[m — (v + )]
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cos2(ni /20)(¢ + v)
cos?(ni/20) (v + ¢t) ’

P(Ol a) = P(a | 0)
sin2(n2/2a) sin(nit/2a) sin(riy/2a)
cos2(ni/2a)(t — v) cos(n/2a)[n + i(v + t)]
x {cos(m/2a)[7 — i(v + )]}

These probability functions have the following proper-
ties:

(1) their sum is unity;

(2) if either v or ¢ is zero,then P(0|a) = 0 and
P(0|0) = 1;

(3) these functions approach the same value at zero
energy as do the corresponding functions above
the three-particle breakup threshold.

Property (1) simply expresses the fact that only re-
arrangement or recoil is possible below the three-
particle breakup threshold. Property (2) says that
rearrangement from a channel of greater to a channel
of lesser binding energy is impossible at the thres-
hold of the lesser binding. Property (3) is a consequ-
ence of the analyticity of the amplitudes.
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APPENDIX: DEMONSTRATION OF UNITARITY
FROM THE DIFFERENCE EQUATIONS

The evolution of a time-dependent wavepacket, as
outlined in Sec. VII, asserts that the following rela-
tion among difference equation solutions must obtain
in order that probability be conserved:

- k2 4 g2
B+ Z'B)|2< g
g2

1/2 -
> + |Gla+ 7+ &2

k2+h 1/2 1 a 2
X<_h2—z> +;T_f0 |G(1T+9)+H(7T—9)ld6

- B2 + o2
= 1G(p) 12 <—f—>1”2+%f§lc<e) +H(~ 0)|2ae,

where the term on the left represents the total incom-
ing probability and the term on the right represents
total outgoing probabilities for general G and H.

We demonstrate in this appendix that this relation is
a consequence of the difference equation and the con-
dition on the allowed poles of G and H.
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First we rewrite the terms involving G and # so that
the kinematical factor does not appear. This is done
in the same way as in Sec. VIII. This yields
— 2iG(n + iBH*(m — iB) — 2iG(n + a + iy)H* (1 — @
~iy) + o [#1Gl + 6) + Hr — 0|28
= — 2iG(iR)H*( — iB) — 2iG(— @ + iy)H*
, 1
X (—a+ i)+ f716(6) + H(— 6)|2de.
A series of manipulations of the dummy variable
allows us to rewrite the integrals on the right as
Jo 6o + H(— )12
:j:[c(e)c*(a) + H(0 — a)H*(6 — o)]db
+fo°‘[c(e)H*( — 6) + H(6 — a)G*(a — 6)]ds.
The difference equations tell us that both of the func-
tions appearing under the integral sign are period «.
We may therefore rewrite the second of these inte-
grals as
JOIGOH (= 6) + H(6 — 0)G*(a— 6)]d6 =[[coH*
X (—8) + H(6 — a)G*(a— 6)]do.
If 6 = x + iy, the contour c runs:
Path 1: x = 0: vy runs from infinity to 0.
Path 2: y = 0: ¥ runs from 0 to a.
Path 3: x = @¢: y runs from 0 to infinity.

Path 4: y = «: x runs from a to 0.

Path 4 does not contribute because of the bounded-
ness condition on G and H. Path 1 exactly cancels
Path 3 due to periodicity.

The pole condition on G and H states in Sec.III states
that the only poles in this region are at the point 3
in the function G(9)H*( — ) and at the point éy in the
function H(f — a)G*(a — 9). These two pole terms
exactly cancel the residue terms on the right-hand
side. A similar cancelation occurs on the left-hand
side. Unitarity is established provided that

JO (6@ + 0)G* @ + 6) + Hm + 6 — a)H*(n + 0 — a)]
x df = J *[G(O)G*(8 + a)H*(6 — a)]de,

which is manifestly true since the functions in the in-
tegral are period «.
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It is shown that in the finite-dimensional case the extreme points of the convex set of all N -representable 2-
matrices D2 are exposed points and that for the case N = 3 and N = 4 the preimage of an exposed point under
the contraction map is unique. In addition, the convex structure of both D2 and its associated polar is given in
the case where the 1-rank is equal to N + 2. A long list of exposed points of D2 is given which includes all
previously published examples as well as some new ones. However, this list is shown not to be exhaustive.

1. INTRODUCTION

The idea of replacing the wavefunction by the second-
order reduced density matrix in many-particle
physics, and thereby greatly reducing the dimension-
ality of the problem has intrigued many-particle
theorists for some time. The problem of giving a
useful characterization of the set of all ensemble re-
presentable second-order reduced density matrices,
which we denote by D2(H¥) using a notation we intro-
duce in the second section, has been called the N-
representability problem by Coleman.l D2(H¥) forms
a subset of the get of all positive operators with
trace equal to one on H2, the Hilbert space of all two-
fermion wave functions. It is a convex set and, in ad-
dition, compact in the trace topology. Basically there
have been two approaches to the N-representability
problem. Firstly,there has been much work on try-
ing to obtain necessary and sufficient conditions for
deciding whether a given two-particle operator is a
member of D2(H~N). Such a problem has been solved,
yielding a very elegant solution,-2 in the case of
D1(HY¥) the set of all ensemble representable first
order density matrices. For the second-order density
matrix many necessary conditions are known, but not
much is known about sufficient conditions except that
they will be difficult to obtain. However, further study
of the N-representability conditions will undoubtedly
lead to useful lower bound methods in many-particle
physics.

This paper deals chiefly with a second approach, that
of listing the extreme points of D2(HN). As D2(HWV) is
a compact convex set, by the Krein—Milman theorem3
it is the convex closure of its extreme points., Thus
an enumeration of the extreme points of D2(HWN)
would serve to characterize it. In Theorem 7.3 we
give a list of some extreme points of D2(H¥) which
includes all previously known examples plus some
new ones.

Interest in the extreme points of D2(HY) is justified
since they can always be used to described the ground
state of a two-particle operator. In fact, we will see
in Sec. 3 that the extreme points of D2(H¥) are also
exposed points. If the ground state wavefunction of a
two-particle operator is nondegenerate, then the cor-
responding density matrix is an exposed point. More-
over, if d € D2(H¥) is an exposed point, then it will be
the unique ground state density matvix for some two-
particle operator. The theory is a bit awkward as it
now stands since we have not excluded (except in the
case where N = 3 or 4) the possibility that an ex-
posed point of D2(H?¥) corresponds to two or more
orthogonal ground state wavefunctions. If such were
the case, this degeneracy, occurring with the wave-
function, could not be removed by any two-particle
operator. There is no such problem with D1 (H¥V).
There, all of the exposed points are covered by unique
ground state wavefunctions (up to an arbitrary phase
factor). Moreover, we know that if the ground state of
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any one-particle operator is nondegenerate then it
must correspond to a Slater determinant. Requiring
that an element d € D1 (H¥) be an exposed point
places severe restrictions on it. The exposed points
of DY(H¥) are merely the one-densities correspond-
ing to arbitrary Slater determinants. Presumably a
similar situation holds in the case of D2(H¥), and the
exposed points there form a very restricted subset
of D2(H¥), More details about the connection between
the ground states of two-particle operators and the
exposed points of D2(H¥) are contained in the next
section.

Many of our results are stated for D?(H¥), the set of
all N-representable pth-order reduced density mat-
rices, where p is arbitrary. In most situations we
deal with the finite-dimensional case, that is, when
dimA?! (the dimension of the space of all one-
particle functions),dimH2, ..., dimH¥ are all finite.
For that reason topological considerations will not
play an important role. When a result holds in the
infinite-dimensional case we will draw that to the
reader's attention. For a discussion of the N-repre-
sentability problem and its associated polar problem
in the infinite-dimensional case, the reader is refer-
red to Kummer's paper4 in which particular care is
given to some of the topological problems that arise.
There it is shown that the infinite-dimensional case
can be approximated by the finite-dimensional one.

In Sec. 3 we establish the result that in the finite-
dimensional case all of the extreme points of D?(H¥)
are exposed.

In Sec. 4 we consider a particle-hole duality which
will prove to be a useful tool in some of the later sec-
tions. A similar construction was given by Ruskai.5
However, our treatment is simpler. In addition, our
treatment can easily be applied to obtain information
about the polar.

In Sec. 5 we give a complete description of the convex
structure of both D?(H~) and its polar D?(HY), for
the case where the dimension of the one-particle
basis is equal to N + p. Previously, Ruskai has con-
sidered this problem.> Some of our results appear in
her paper. Yoseloff and Kuhn®é have considered a
special case of this problem.

In Sec. 6 we obtain the result that in the case where
the particle number N is 3 or 4, there is a unique
wavefunction ¥ (up to an arbitrary phase factor)
which covers an exposed point of D2(HY).

In Sec. 7 we give in Theorem 7.3 an extensive list of
exposed points of DZ2(H¥), many of which are new. All
previously published examples of exposed points are
contained in the statement of the theorem.

In Sec. 8 we give two examples of exposed points
which are not of the type considered in Sec. 7, thus
establishing that Theorem 7. 3 does not exhaust the
exposed points of D2(HY),
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2. SOME PRELIMINARY DEFINITIONS

If ¥ is a normalized antisymmetric N-particle wave-
function, then its p-densify D#(¥) is a member of

L (H?), the bounded linear operators on H.. Here H? de-
notes the physically relevant antisymmetric subspace
of the p-fold tensor product of some Hilbert space H1
with itself p times. The superscripts denote the par-
ticle number. D?(¥) may be represented as an inte-
gral operator, whose kernel is given by

De(E)(12---p {172 -+ p")
= j‘;”l,“N_‘I—’(lz'"N)‘I’(l"'-p'p + 1-++N)

- E;\f Hf(lZ' . -p)af(l e phy,
where the Af are the eigenvalues and the af the
eigenfunctions of D#(¥). The corresponding N-
density D¥(¥) € L(HY) is merely the projector onto
¥,

With a few exceptions all of the results of this paper
deal with the case where H1 is finite-dimensional
(much of Sec. 6 and 7 apply to the infinite-dimensional
case; Proposition 7. 2 deals exclusively with the in-
finite-dimensional case). We, therefore, make the as-
sumption, that unless stated otherwise, H1 is finite-
dimensional. As was mentioned in the introduction,
Kummer4 has shown that the infinite-dimensional
case can be approximated by the finite-dimensional
one,

We denote by D?(HY) the set of ensemble N-repre-
sentable p densities. D#(H¥) is given by CONV
{D»(¥)|¥ € H¥} where CONV denotes the convex
closure. The closure may be taken in the topology
determined by the trace. If V is a subspace of HV,
then D#(V) denotes the convex set CONV{D?(¥) |¥ €V}
The elements of D?(H¥) are positive operators with
trace equal to one. However, all positive operators of
trace one are not members of D?(HY), Given the
trace topology, D?(HY) is a compact convex set. The
N-representability problem amounts to giving a use-
ful characterization of this convex set. The compact
convex set DN(HN) consists of all positive operators
in L (H¥) with trace equal to 1.

The pth-ordev transition density corresponding to the
states ¥, ¥, € HY is denoted by D?(¥,, ¥,). It also
may be represented as an integral operator, the ker-
nel of which is

DP(‘I’I,‘I’Z)(12‘ -'p|1’2’-“p')

= gy 1120 N) T (V2 opp + 10 o).

The linear map L% : L(HY) - L(H?) defined by

LE: D" (¥) - D?(¥) and linear extension to all of
L(HY) is Kummer's contraction map.4 In both L(HYN)
and L (H?) one can introduce a scalar product by
means of the trace, i.e., for b,d € LHY), (b,d) ~
Tr(b*d). Thus we can define the adjoint of the con-
traction map I'§ a map from L(#H#)into L (HY), by the
formula

Tr(T} (0)'d) = Tr(p'Ly (@), beL@), de L@E").
We will refer to I'}Y as the expansion map. Kummer4
has given the following formula for T'}:

T(b) = Ay(b ® INP)Ay, be LEP),
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where A, is the antisymmetrizer. Possibly a more
familiar formula for the expansion operator is given

by

Nt «-qt a.
I"p(al1 al a

civa, ) = N_la‘_r...aT at--q
ip J1 Jp ? i) tp Jy ip’
(2.1)

where we have given the action of I'})V on a single
basis element of L(H?) and used second quantization
notation. In order to keep the notation uncluttered we
have used a, - -~ af a; ***a, to denote both an ele-
ment of L(HP) (left-hand side of the above equality)
and L (HY) (right-hand side). A similar formula can
be given for the contraction operator for certain
special elements of L(HYN):

p
Liyla;, a;, aj a;;)
r—p\ [r—p\1
:( N >( N > ail..'aipa,;l".a;p’ (2.2)

where » denotes the dimension of H1, This formula
can be derived by using (2. 1) and the fact that L,ﬁ’ and
l‘;" are adjoint to one another. For the casep = 2
we can establish this result by showing that if one
chooses K equal to (";2)(";2)1 then

Try (T §(0)Ta;a;af a}) = K Tr,(b"a;a;a}a}) holds for
allb € L(H?). Tr, denotes the trace in #2 and Tr,
the trace in H¥. But this formula will hold for all b
if it holds for the basis elements aga; aga, of L(H?).
We must show that

N\ -1
T at T gt
(2 TrN(amaBa7 abaiajakal)

= T at t 1
= K Try(al a}a asa,a;a;aj)

Y
for all o, B,y, 6. We note that both sides are nonzero
only if o # B and k # [. Also both sides will be non-
zero only if the index set {y, 6, i, j} is equal to

{a, B, &, I}. Thus the formula will hold if

N\-1
t o’ Ta at
<2) Try(ala,alagaala,al)

= ta at ta.al
= K Try(al aa} a, a,afa,al)

o # B, k= l. But both sides will be nonzero only if
«,B = k, 1. Thus for the nonzero case all indices
must be different. But then

r—4
Try (aya,apaa,a}aa}) = (N— 2)

\

and Tr,(al a a}ayaala,el) = 1. Thus K =

&) 1% 3) = (72)(75?) and formula (2b) holds.

We define a p-particle operator on H¥ to be any ele-
ment of L(HY) which can be expressed as a linear
combination of operators of the form af -+ a;.‘pa A
a, where we have p annihilators followed by ¢ crea-
tors. Thus our p-particle operators contain all
operators which are normally referred to as con-
stants, one, two, . .., p-particle operators. For ex-
ample, the constants can be written as p-particle
operators since (§) = Ei1<-'<ipa;'r; ce a}‘paip tra .
Formula (2b) tells us how Lf, acts on p-particle
operators in L(HY). From formula (2.1)it is clear

that TN is an injection of L(H?) onto the set of all p-
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particle operators in LHY). We will show later
(Proposition 4.1) that the kernel of the contraction
operator Lf:, consists of all elements of L(H¥) which
are orthogonal to the set of all p-particle operators
in L(HN), where by “orthogonal” we mean, orthogonal
with respect to the trace scalar product. Thus formu-
la (2b) tells us how the contraction map behaves on
the orthogonal complement of its kernel.

A useful notion in the theory of convex sets is that of
the polar. Our definition of the polar of D?(HY) is

De@EN) = {b| Tr(d*d) = 0, Yd € DP(HN),
Tr(THO)THON1/2 = 1}.

Note the normalization condition which is included in
this definition. In some circumstances we will find it
more convenient to talk about the polar cone, which
we denote by CONEDP(H N), 1t is the cone generated
by DP(HN) Both D?(HN) and CONEDP(HN) are convex
sets; DP(H¥) is compact. A useful characterization of
DP(H N) is that it consists of all elements b € L (H?)
such that () T¥() = 0 and (1) Tr(r N(b)*r Np)L/2 =
1 or, equivalently, D?(HY) = {b |T Y(b) € DN(HN)}. In-
terest in the polar arises from the fact that if we
take the polar of D?(HN) we get back D?(HN):

DPENY = DPEN) = {d| Tr(d'b) = 0, Vb € Dr@HN),
Tr(d*d)1/2 = 1},

This is an application of the bipolar theorem.3 The
extreme points of D?(H¥) form a complete set of N-
representability conditions as has been noted by
several authors.4.7

Some special subsets of both D?(H¥) and DP(HN) will
play an important role. An extreme point d of D(H¥)
is one which is not interior to a line segment con-
tained in DP(HY),i.e.,if d = ta + (1 — )b, a,b €
DPHN), 0 <t <1,then necessarily a = b = d. An ex-
treme subset D of DP(HN) is one such that if d € D,
d=ta+ (1—tb, a,b € DP(HN), 0 <t <1, then it
follows that q,b < D Extreme subsets are convex
sets. Each element be DP(H ¥) determines a hyper-
plane {d|d € L(H?), Tr(b*d) = 0}. If the intersection
of this hyperplane with D#(HV) is nonempty then it is
an exposed subset of DP(HN). If the intersection con-~
sists of a single point it is called an exposed point.
The element b is called an exposing operator. Ex-
posed subsets are convex.

It is the exposed subsets of DP(H¥) which are readily
given a physical interpretation. Suppose that b(G) €
D?(H¥) and that the kernel of I')V(b(G)) is the sub-
space G C HN, Then D?(G) is an exposed subset of
DPHN) gince Tr(b(G)TD?(¥)) = Tr(T N(b(G))*DN(\II)) =
0 if and only if ¥ € G. Moreover, all exposed subsets
of DP(HY) are related to subspaces that belong to the
lowest eigenvalue of some p-particle operator in this
way. The notions exireme and exposed are general
and apply to any convex set. Exposed subsets are
necessarily extreme subsets, and exposed points are
necessarily extreme points. However it is not true,
in general, that extreme subsets are exposed or, in
particular, that extreme points are exposed points.
We will denote the extreme points of D?(HN) by EXT
D?(HX) and the exposed points by EXP DPHN).

If {a;} is the set of annihilators for some arbitrary
choice of the one-particle basis set we can form the
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pair annihilation operators {o,} where 0, = a,; 1a,,.
We denote by o¥ on the linear subspace of HV all of
whose elements are of the form &% | 0), where ¢ is a
homogeneous polynomial of order N/2 in the 0,. We
call oV a paived subspace of HN. There are, of
course, many paired subspaces of H¥; one for each
choice of pairing. All AGP (antisymmetrized geminal
power) or projected BCS wavefunctions are elements
of some paired subspace. Moreover, D2(oV) =

CONV{ D2(¢)| ¢ € o¥}is an exposed subset of
D2(HX). One can easily verify this by observing that
the operator 1 — (2/N)2 o], is (i) positive semi-
definite on H¥ and (i) has a kernel equal to o¥. The
characterization of the exposed subset D2(c¥) of
D2(HY) is an interesting subproblem of the N-repre-
sentability problem which should be easier. There is
some similarity with the problem of the characteriza-
tion of D1(H¥). The occupation number of the pair o,
may not exceed 1. However the o, commute with one
another rather than anticommute.

We illustrate some of the ideas of this section with
the simple example of DN (HN). As was remarked
above, DN (HN) is the set of all positive operators
with trace equal to 1. One may easily check that the
polar DN (H¥) is equal to DV (HN). The extreme
points of DN (H¥) are merely all projectors onto one-
dimensional subspaces of HN. But these projectors
are also exposed points of D¥N(HN). If P « DN (HV) is
a projector onto a one-dimensional subspace, then an
exposing operator b € DN (HN) for P is given by b =
[() — 112 — P), where! is the identity operator
and 7 is the dimension of H!. The factor () —1]?
is included so that Tr(5'5)1/2 = 1. So in th1s special
case EXTDYN (HY) = EXPDY¥(HN) and DN (HY) =

DN (HY), In the next section we will show that
EXTD?HY) = EXPD#(H¥) in the finite-dimensional
case.

3. INFINITE DIMENSIONS EXPD?(HY) = EXTD?(HY)

In general, the extreme points of a compact convex
set are not exposed points. However, in this section
we show that if the dimension of H?! is finite, then the
extreme points of D?(HN) are exposed points. This is
important since, as we have seen above, it is the ex-
posed subsets of D?(H¥) and, in particular, the ex-
posed points of D?(H~) which are physically inter-
pretable., The exposed points of D?(H¥)are all of the
form D#(G) where D?(G) consists of a single point
and G is the linear space corresponding to the lowest
eigenvalue of some p-particle operator. We are thus
led to a new characterization of the extreme points of
D?(HN), The extreme points of D?(HN) are precisely
those points which are covered by the state ¢, or in
the case of degeneracy, the linear space G, corres-
ponding to the lowest eigenvalue of some p-particle
operator. In the degenerate case, all elements ¢ of G
must yield the same p-density. The question of
whether G is always one-dimensional is taken up in
Sec. 6. In the infinite-dimensional case we have no
such result. It is not known, in general, whether a
similar result holds for DP(H N} in either the finite-
or infinite-dimensional case. However, in Theorem
5.1 we establish that the extreme pomts of DP(HN)
are exposed points for the special case where the
dimension of H! is equal to N + p.

Let A C B © C be compact, convex sets. From the
definition of an extreme subset we can easily show
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that if A is extreme in B and B is extreme in C, then
A is extreme in C. If instead of extreme we say that
A is an exposed subset of B and B is an exposed sub-
set of C, then, in general, it does nof follow that A is
exposed in C. However, with D?(H~) in the finite-
dimensional case such a result holds.

Let D#(G) C D?(HV) be an exposed subset and 5(G) €
CONED?(HY) be an operator which exposes D?(G).
We have labeled both the exposed subset and the ex-
posing operator by G C HV  the kernel of the expand-
ed operator 1"15" (b(G)). The relationship between G,
D?(G), and b(G) is given by the following set of equali-
ties:

D#(G) ={d,|d, € D*(HY), Tr(b(G)"d,) = 0}
{L4@]d e DN@EY), Tx(T }(b(G))*d) = 0}

= CONV{D?(¥) | ¥ € G = kernel of I'¥(b(G))}.

il

Lemma 3.1: Let H! be finite dimensional. Then
if D?(G) is an exposed subset of D?(HY) and D?(G,)
is an exposed subset of D?(G ), then D?(G,) is an ex-
posed subset of D?(HN).

Proof: Letb(G,;) € CONE DPHY) be an exposing
operator for D?(G, ), and b(G,) € CONEDP(G ) be an
exposing operator for DP(Gl) Note that G, C Go cC
HY and that TJ'(5(G,))| G, = 0 but that rN(b(G ))
need not be pos1t1ve and thus 4(G,) may not be con-
tained in CONE D?(HY). We now show that one can
choose a ¢ = 0 such that b = tb(G,)) + b(G,) €
CONED#HY), i.e. ,T®)=0 and Tr(b*d) = 0,d ¢
D?HNY implies that d € D?#(G,), thus estabhshmg that
D?(G,) is an exposed subset of DP(H~). This is
equivalent to showmg that a ¢ can be chosen such that
the kernel of Fp (b) is precisely G, and T'J'(b) re-
stricted to G{ is strictly positive. Clearly G, lies in
the kernel of I'J(b), and we need only look at ry®)
on Gy.

Gi can be written as Gi = G ® (Gy N G{). Let A=
{gl¢ € GL, I ¢l = 1}and B ={616€ G, N GE,l6]l =
1}. Then define

A= :g(MF;"(b(GO)M),

A, = inf (8]T ¥(5(G,))6),
e€sB

a= mf(¢ll"}:’(b(Gl))¢>,

B= sup. <¢IP”(b(Gl))9>
PEA, O

It follows from finite dimensionality that X and A; are
strictly greater than zero. Any ¥ € G{ can be writ-
tenas ¥ = v + wh, 9o € A, 8 B. Then
(I Y (D)) = (¥ rN(tb(G ) +b5(GNE) =
IvI2(¢|l“”(tb(Go) + b(Gl))fb) + lw|26IT Y (5(G))0) +
w(¢p [T Mb(G1))8) + wu(8|TF(b(Gy))¢) =

lvl2(e + ) + |wl2x; — 2| vllw|B. This last quantity
will be strictly greater than zero if (a + ), — 82>

0. But clearly ¢ can be chosen to satisfy this in-
equality since A, 1, > 0.

We remark that finite dimensionality was used only

to establish that zero is an isolated point in the spec-
trum of both T Y (5(Gy)) and T} (5(G,))|G,,, thus allow-
ing usto concludethat A anda, are strictly positive. We
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may substitute this weaker hypothesis in the state-
ment of Lemma 3.1.

Theorem 3.1: Let H! be finite dimensional. The
extreme points of D?(HN) are exposed.

In order to prove this result we make use of the fact
that all boundary points of D?(H¥) lir in some ex-
posed subset of D#(H~). This follows directly from
the basic properties of compact, convex sets.8

Proof: Suppose that d is extreme in D?(H¥). Then
by the above result on boundary points d is contained
in some exposed subset D?(G,) of DP(HV). Alsod is
extreme in D#(G ;). By again applymg the result on
boundary points, d belongs to an exposed subset of
D#(G ;) which we denote by D?(G,). But by Lemma 3.1,
D»(G,) is exposed in DP(HY), The dimension of D#(G, )
is strlctly less than that of D?(G 0) which is strictly
less than that of D?(H¥), We can continue this argu-

ment, constructing a sequence of exposed subsets
DP(Gi),i =0,1,...,m,of decreasing dimensionality
such that D?(HN) O D#(G ) O D#(G,) D -+ D D?(G,),
all of which contain d. But by hypothesis H! and, there-
fore, D?(H¥) is finite dimensional, and thus the con-
struction must stop with an exposed subset D#G,,),
containing d, which consists of a single point, i.e., the
point 4.

Theorem 3.2: In the finite-dimensional case all
of the extreme points of D#(HY) are of the form
D?(G) where D?(G) consists of a single point, and G is
the linear space corresponding to the lowest eigen-
value of some p-particle operator.

In passing we remark that in all known cases G con-
sists of a single element (up to an arbitrary phase
factor) of H¥, Thus these extreme points are cover-
ed by the unique ground state of a p-particle opera-
tor. It is a conjecture of Sec.6 that this holds in
general. If this were true then the extreme points of
D?HN) would all be covered by elements ¥ € H¥
which are nondegenerate ground states of some p-
particle operator.

4. PARTICLE-HOLE DUALITY

In the case where 7, the one-rank, is finite, one can
convert the problem of the characterization of
DPHN) and D?(H¥ ) into the equivalent problem of the
characterization of D?(H7"¥) and DP(H rN), For ex-
ample, the problem of the enumeration of the extreme
points of D?(H¥) and D?(HN) is equivalent to the enu-
meration of the extreme points of D#(H*¥) and
D#H7N). Physically, we can think of this equivalent
problem as a description of the original system in
terms of holes rather than particles. As we shall see
in the next section this can lead to considerable sim-
plifications inthe case where » = N + p. The equiva-
lence is established by constructing two invertible
linear maps A and II from L(H?) onto L(H?) such that
A(D?HN)) = DPEN) and I(DP@E7N)) = DP(HY),
But, as we are dealing with finite-dimensional spaces,
both I and A are homeomorphisms. Therefore, A
and Il preserve both the topological and the linear
properties of subsets of L(H?). Thus A maps the ex-
treme (exposed) points of D?(H”"N) onto the extreme
(exposed) points of D?(H¥). A similar statement
holds for 1. Using the result of the preceding sec-
tion that the extreme points of D?(HY) are also ex-
posed points, we have
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EXTD#(HN) = EXPD?(HN) = A(EXTD?(H7N))
= A(EXPD?(H7N))

and

EXTD?HN) = 1 (EXTDL(H7N)),
EXPD?(HN) = II(EXPDP(H7N)).

Without supplying all the arguments derived from the
linearity of A and II required to establish this im-
portant set of equalities, we will show how the lineari-
ty of A forces the fact that EXTD?(HN) =
A(EXTD?(HN)) given A(D#(H7-N)) = DP(HN) and the
invertibility of A.

Let d,; be an extreme point of D?H V), We will
show that d; = A(d,) is an extreme point of D?H¥),
Letd, = ta+ (1 —1)b,a,bc D?@EV), and 0 <t < 1;
then d, = A7l(d,) = tA(a) + (1 —£)A71(D) and

A™l(a) = A™1(b) = d, since d, is extreme. Thus a =

b = d,. By precisely the same argument it can be
established that extreme points of D?(H¥) are map-
ped by A™? into extreme points of DP(H7N),

Before constructing the maps A and I1 we need to
establish some properties of the contraction and ex-
pansion maps L{ and T;'. Recall from Sec. 2 that T'}
is one-to-one onto the set of all p-particle operators
in LHN).

Proposition 4.1: Let K be the kernel of LY.
(a) K* is the set of all p-particle operators.
() I‘g’ is one-to~one from L{H?)onto K+.

(¢) L% |K* is one-to-one onto L(H?).

Proof: (a) Let K, be the set of all p-particle
operators. If d € K, then 0 = Tr(bTL{(d) =
Tr(T J(b)*d) for all b and, therefore, d € Kg. But if
d € K then for all b € L(H?),0 = Tr(I)(b)%d) =
Tr(bTLy(d) and d € K. Thus K = K} and K* = K,,.

(b) T} is one-to-one onto the set of all p-particle
operators K, by formula (2. 1) of Sec. 2. But by (a)
K. =K+

0 .

(c) Lﬁ, is one-to-one from the orthogonal comple-
ment of its kernel X+ onto its range. Suppose its
range K, is not all of L(H?). But then there would be
an element b € L(H?) such that b 1 K. The 0 =

Tr(b LY () = Tr(I,(b)*d) for all d. But T, is one-
to-one, and thus F;j"(b) # 0, and Tr(T J'(b)*d) cannot
equal zero for all d.

We now construct a one~to-one linear map 4, from
L{H7"N) onto L{H¥) which converts particles into
holes and holes into particles. Let R be the sequence
1,2,...,7). Let I denote some ordered (» — N)-
tuple of indices taken from R, and let | ) denote the
corresponding Slater determinant. In second quanti-
zation notation, we have |I) = a}|0), where a} =
I,., a} and |0) is the vacuum state. The order of -
the a, in this product is important, and we assume
that the indices increase from left to right. Denote
by |1¢) the N-particle state a,|R) where a, = II,;
a; and | R) = (I;cza}) | 0). The same convention on
ordering in these products is followed as before. The
map A , defined on the » — N particle states | I) by
AylT) = [I°) can be extended linearly to all of H”™V.
The action of A, on an arbitrary element of H” ™V is
given by ) ‘ e
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A(Za 1) = ZalIe)

A, is a bijection of H*~¥ onto H¥. It also preserves
the scalar product. The linear map Ay LHTNY -
L(HY) defined by b — A b Al is a bijection of L{H”N)
onto L(HN). More explicitly, if 7 and J are (» — N)-
tuples of indices,

A (atay) = a,al. 4.1)

The action of Ay on an arbitrary element of LH"V)
can be computed using (4. 1) and linearity. A; merely
turns annihilators into creators and creators into an-
nihilators.

Let K, be the kernel of L2_, and K, the kernel of L.
Then by Proposition 4.1 K5 and K3 are the set of all
p-particle operators in LH* V) and L(HY), respec-
tively.

Proposition 4.2: The linear map Ay : L(H"¥) —
LHN)

{a) is a bijection of L(H* V) onto L{HN),

(b) preserves multiplication, i.e., 4;(ab) = A, (a)
Al (b)’

(c) preserves taking adjoints, i.e., A,(a?) = (A,(a)",

(d) maps the positive cone of L{H*V) onto the posi-
tive cone of L(HY),

(e) preserves the trace,

(f) maps D" V({H*N) onto D¥ (H¥), and

{g) maps K, onto K, and Ky, onto Ky

Proogf: (a) This follows from the discussion pre-
ceding the proposition.
(b) A (ad) = Ag(ab)agl = AjaAGlA DAY
= A (a)a, (b).

(¢) Letac LH”N), $,8 € H¥. Then(¢|A,(a)8) =
(plagasilo) = (A ¢ lanle)y = (atagle|agle) =
(Aga’agtel0) = (8,(a")ol6).

{d) Any positive operator a in L{H7™V) can be factor-
ed as a = b*b. But by (b) and (c) A,(b7b) = A,(b7)

A () = (A, (B)TAL(B).

(e) Tr(b) = Z,{I1b1) = B{A Il ApARAGLAT) =
Z{I¢|a,(b)I°) = Tr(A,(b)), since 4, preserves the
scalar product. '

(f} This follows from {d) and {e).

() The fact that A, (K3) = K{ follows directly from
formula (4.1). But since A, preserves the trace,it
preserves the trace scalar product and, therefore,
maps K, onto K.

We are now in a position to define the maps A and II.
As before we let K, be the kernel of L}, and K, be
the kernel of L# , . The maps

A= (Lh KA Ly KD
and
= (T4, ,
are both well defined since by Proposition 4.1 L?_, |
K3 is a bijection of Ki onto L(H?) and T';™V is a bi-
jection from L(H’) onto K ; similarly for L% K, and
T'J. Also A; maps Ki onto K§ by Proposition 4.2.
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Theorem 4.1: (properties of A and H). (a) A and
Il are bijections of L(H?) onto L(HF).
(b) 1f b,d € L(H?) then Tr(b*d) = Tr(Il(b)* A(d)).

(¢) A(DPHTN)) = DPHN), T(DPHTN)) = DEY).

(d) EXTD?HY) = EXPD?(HN) = A(EXPD?(H"N)) =
A(EXTD#(H7N)), EXTDP(HN) = I(EXTD?HTN)),
EXPDPHN) = I(EXPD?H"N)).

Proof: (a) This follows from the discussion im-
mediately preceding the theorem.

(b) This follows from the trace preserving proper-
ties of A, and the properties of the contraction and
expansion maps.

() We first show that (D?(H”¥)) = D#(HY). But
I“"N(DP(H"N)) is the set of all positive p-particle
operators on H7™¥ of trace one, and both A, and A7!
preserve positivity and trace and map p-particle
operators into p-particle operators (Proposition 4, 2).
Thus A, I7" N(D?P(H7N)) is the set of all positive p-
partlcle operators of trace one on H¥. Thus
(DPHTN)) = DP(HN) Let d, = A(d, ),d e DPH7TN),
and let b, = I[I(b,) € DP(H"N) be arb1trary Then by
(b) and the fact that b, € DP(H”"N) we have

Tr(bjd,) = Tr(ll(d )*A( o)) = Tr(bld,) = 0. By the
b1p01ar theorem 9 and since the contractlon map as
well as A; preserve the trace we have A(D?(H V) =
DPHN),

(d) These equalities follow from the discussion at
the beginning of this paragraph.

The fotal preimage of a point d, € DP(HN) under the
contraction mapping is given by {a e D"@") L@ =

d } We denote this set by (LN) “1(d,). The following

result regarding preimages of elements of D?(HN)
and particle-hole duality will be required in Sec. 6.

Theovem 4.2: Letd, € D PE"™), Then (Lf,)‘1
(Aldo)) = Ay((L2-y)1(d 0))

Proof: Clearly A((L2 )1 d o) CDN(HN) We
show that (L N)“l(A(dO)) DAL _N) (dy)) by showing
that A(d,) = LEA((L2_)1(d,)). As before we let K,
be the kernel of L?_, and K, be the kernel of L. it
P(K3) and P(K3) are projectors onto Kj and Ky, res-
pectively, then (i) L% = L P(kY), (il) P(K})A; =
A, P(K}) by Proposition 4. 2 (g), and (iii) the set P(K)
(L£.y)1(d,) consists of the single point
(L2 o | KD (dy). But then LEa (L2 ) " d,) =

LEPEDAL(L7-y) " (do) = LY APEG(L7-) " (o) =
(LY 1 ED)AL LYy | Kg) (do) =

b 1,1
Loy (L] | Kg) " (dg) =
Ad, ) by the definition of the A map. The reverse in-
clusmn can be obtained by a similar argument.

Explicit formulas for A and II in the case where p =
2 are given by

Theorem 4. 3:
N\Y/r—2
A(aiaja;a”=<2> [( >(6]k611 0. 051)
¥ —N
+< 3 >(1’—3)(6ikala;+6]-laka‘i‘—5jkala{—oi,aka]T)

+ <y _2 N)alaka}a{' .
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— N\
(a}afa,a,) = < 9 N) [ijéil

>(6 kala] + 95, ,ata,

N
—0,,4fa;) + <2 )a"ak a; a{l

Proof: The formulas can be obtained by applica~
tion of formula (4. 1) of this section andformulas (2. 1)
and (2. 2) for I"If’ and L} given in Sec. 2.

— 040,

— éjka}‘ai

Elements d € D?(HN) are positive semidefinite. But
as A"l(d) € D#H"N), A™1(d) must also be positive
semi-definite. This yields a strong necessary (but
not sufficient) condition that d € D#(HN). In fact, in
the next section we will show that these conditions
are complete in the case » = N + p. This condition
may be formulated in a slightly different way by not-
ing that the condition A™1(d) = 0 is equivalent to re-
quiring that Tr(P*A™1(d)) = 0 for all one-dimensional
projectors P € D?(H”"¥) or, equivalently, (by Theo-
rem 4.1 b) by requiring that Tr(lI(P)*d) = 0 for all
P, There is yet a third way to express this condition
as we shall see in the following theorem. In the
literature these N-representability conditions are
frequently referred to as @-matrix conditions.

Theorem 4.4: (@-matrix conditions). The follow-
ing are equivalent necessary conditions that d <
DrHEN):

(a) A™l(d) = 0,

(b) Tr(Il(P)*d) = 0 for all one-dimensional projec-
tors P € DYH"N),

() 1—pN Tr(D (¢)D" (@) +
() (3) Tr(D3($)D3(@) +
Dr(d)) = 0 for all ¢ € H?.

) () TrD2(¢)D2(@)) —
“+ (- DPG) () Tr(DA(¢)

Proof: Parts (a) and (b) follow from the discus-
sion preceding the statement of the theorem. Part (c)
can be proved directly by noting that if ¢ € H? and

= DP(¥), ¥ € HY then | AN,,qu\IJIIZ = 0. But by
Sasakl's formulal
“ AN+p¢‘I’“2 = <¢\I’ lAN+p¢‘I’>
= 1—pN Tr(D*(¢)D* (¥))

' (’2’)(’;’) Tr(D*($)DA(¥)

— (g)(g“)Tr(Dsw)Ds(wn +
- 1>P(§>@’)Trwf’<¢>m(w».

If welet ¢ = & 7|0),where ® = Za, a;,I =

(i1,35" " *i,), then P(¢), the projector onto the one-
d1mens1ona1 subspace generated by ¢, can be written
as ®7®. That (c) is equivalent to (a) can be seen as
follows:

i Amp‘l"l’“z = 0 <=> Tr(®®'DV¥(¥)) = 0
<=> Tr(®'&D7N(A(¥))) = 0
<=> Tr(®'eDr(AZ(¥)) = 0

<=> Tr(P(¢)Ta1({d) = 0
and

Tr(P(¢)*a71(d) =0, V¢ <=>a1(d) = 0.
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5. THE STRUCTURE OF D?(HN) AND D?(HY)
WHERE » = N +

Only when the rank » of the one-density is equal to
N + 2 is the convex structure of both D2(H~) and
D2(HYN) completely understood. Actually the argu-
ments used for the case » = N + 2 can be used with~
out modification to determine the convex structure
of D?(H¥) and D?{H¥) for » = N + p. We, therefore,
consider that case in this section. This problem is
solved by a simple application of the particle~hole
duality established in the last section.

Theovem 5.1: In the case » = N + p, all of the ex-
treme points of D?(HN) (D?(HY)) can be written in the
form A(P) (II(P)), where P € L(H?) is a projector onto
a one—dimensional subspace of H?. The extreme
points of both D?(H¥) and D?(HN) are exposed. The
maps A and I are those introduced in the preceding
section.

Pyoof: This follows directly from Theorem 4.1
and the fact that the extreme points of D?(H#)=
D?(H?) are simply the projections onto one-dimen-
sional subspaces of H? as was mentioned in Sec. 2.
All the extreme points of D?(H?) and thus of D?(HY)
are exposed (Sec. 2).

This theorem gives an alternative route to the result
of Sec. 3 that EXTD?{H¥) = EXPD#(H¥) in the case

r = N + p. In addition it establishes the new result
that EXTD#(HY) = EXPD?(HY¥) under the stated condi-
tion on the rank.

Corollary 5.1: When v = N + p, the @-matrix con-
ditions, given by Theorem 4. 4, are complete.

Let ¢ = &*|0), where & = Zaoya; and Z|o; |2 = 1,be an
element of H?. The range of summation is over all
distinct ordered p-tuples (iy, iy, ...,%) and a; = a; a;,
<o a;, as in Sec. 4. Then ¢'® € L(H?)is a projector
onto &. But then the extreme points of D?(H~N) are
given by A®'®) = LY A, (@'®) = L5 (@8%) = () '@t
as ¢ ranges over H?. The last equality resullt’s from
anapplication of formula (2. 1) of Sec. 2 for the con-
traction operator.

Corollary 5.2: When v = N + p, the extreme points
of D?(HN) are given by (})1®¢" as ¢ ranges over H?.

Theorem 5.2: When r =N +p, the contractionN »
map is a bijection and EXT D#(H") = L% (EXT D(H™)).

Proof: The map A, of Proposition 4.2 maps K,
the kernel of L2, onto K, the kernel of 4. But as L}
is the identity map, K, and hence Iz{»ll contain only 0.
That EXT D#(H¥) = LE[EXT DV (H¥)] follows from the
fact that L is a bijection.

When » = N + 2 and N is even, one can show that all
wavefunctions are of “paired type.” That is, there
exists a set of pair annihilation operators {oi}, where
0, =a,;,85;,1 =i= 3N + 2), such that each element
6 € HN can be written as A*|0) where A is a homo-
geneous polynomial of order (N/2) in the o;. Thus

6 € oN and D2(0) is contained in DZ(o¥). It is alsotrue
that when these conditions hold for » and N, elements

6 € HN can be approximated arbitrarily closely by an
AGP function (antisymmetrized geminal power) or
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projected BCS function. Theorem 5. 3, which estab-
lishes these results, is due to Coleman. This theorem
is based on a lemma due independently to Zuminol0
and Bloch.11

Lemma 5.1: Let ¢ € H2, then there exists a one-
particle basis such that if { 4, } are the corresponding
annihilation operators then ¢ can be expressed using
the pair annihilation operators {0, }, where o, =
@y;485;,1 < i=<7/2, in the following way:

¢ = Z§i0ﬂ0>,

D1(¢) is diagonal in the basis {a]|0)}.

By the particle—~hole duality established in the last
section (see the construction of AO) and using the nota-
tion introduced there, all elements of ¥ can be ex-
pressed in the form
¥ =Za4lR), Zlyl2=1, I=(,,i,),
where | R) = (Ila})|0). But by the preceding lemma
one can choose the one-particle basis so that
¥ =2to|R), =lgl2=1.
Thus every Slater determinant in the expansion of ¥
is characterized by the absence of one of the pairs
0, If ¢ = 2,101 0) = @7 0), ¥ is expressible in the
the form ¢~ = (®%)¥/2|0) if and only if the equations

§ = H,»TI,«/TI,-

have a solution for the 7#'s given the £'s. But they
clearly have a solution if all the £;'s = 0. If ¢, = 0
but all the other ¢, # 0, then it is easy to see that ¥
is of the form o} (&")(V-2/2|0), where &' = 2, _,1;07;
similarly for other cases where more than one of the
£; = 0. But these special cases where some of the ;
equal zero are of low dimensionality, and therefore
all wavefunctions can be approximated by functions
of the AGP type.

Theorem 5.3: (r = N + 2,N even). All elements
¥ € H¥ are of the form

¥= (iQI 0{) @melo),

where &1 =Z}j€Jnjo;,InJ =0,JUJ =

{1,2,..., 3V + 2)} and thus exhibit pairing. Here
s= (N/2) — | I| and | I| is the number of elements

in I. Elements of H¥ can be approximated arbitrarily
closely by AGP functions, i.e., wavefunctions of the
form

(q,t)N/z[()),

For odd N the wavefunction cannot exhibit complete

pairing—there must be an odd man out. An extension
of the above argument to cover this case allows one

to give a canonical form for wavefunctions describ-

ing an odd number of fermions.

Covollary 5.3: (* =N + 2,N odd) Al ¥ € H¥ are
of the form

—qnt + +
¥ = ay([Bo" )@ 10),
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where &' = E].GJnjo;.’,Iﬂ J=0,IUJd =
{1,2,...,3(N + )} and s = (N — 1)/2 — | I. Here,
ag is the annihilator for an orbital strongly orthogo-
nal to all the pairs.

6. UNIQUE PREIMAGES

For the case » > N + p the contraction map L is
not one-to-one and the preimage of an element d;, ¢
p*@E"), given by (LY) " (d,) = {d e DY @) L2(a) =
d,} is, in general, a set consisting of more than a
single point. However, the total preimage of an ex-
posed point of D1 (H¥) under the contraction mapping
is unique. It consists of the N-density corresponding
to a Slater determinant. In all known cases, the ex-
posed points of D2(H~) have unique preimages. The
author believes this situation to hold in general as
stated in the following:

Conjeclur%: The total preimage of an exposed
point of p? (H") under the contraction mapping Lf,
consists of a single point in DN (H¥).

In this section we prove the validity of this conjecture
in certain special cases. In particular, we show that
the preimage of an exposed point of D2(H¥) is unique
when N = 3 or 4. The results of this and the next sec-
tion depend on the following:

Lemma 6.1: M ¥, ¥, € H¥ ¥, 1 ¥, and DV (¥,)
and D¥(¥,) are preimages under the contraction
mapping of the same exposed point of DP(HY ), then
the transition density D?(¥, ¥,) = 0 or, equivalently,
RANGED4(¥,) C [RANGEDY(¥,)]*;N =p + 4.

Proof: Because D?(¥,) = D#(¥,) is exposed, there
is an operator b € D?(HY) whose assoclated hyper-
plane intersects D?(H¥) at the single point D#(¥,).
Each N-particle state lying in the linear space cor-
responding to the zero eigenvalue of I' )Y (b) has a pth-
order density matrix identical to D?(¥,). Therefore
D?(a¥y + p¥,) = DP(¥,) = DP(¥,), (|a|2 +1gl2=1).
But De{a¥, +8¥,)=|a|2D?(¥,) +|pI2DP(¥,) +apD?
(¥, ¥,) + EaDP(\Il ¥,) = D?(¥,) + [apDP(¥,,¥,)] +
[aBDP(\Ill, ¥ )]T Since this equation is valid for all
a, B with arbltrary relative phase, D?(¥,,¥,) = 0,
and this proves the first part of the theorem.

By a result of Erhardt Schmidt!2 which was redis-
covered by Carlson and Keller,13 and arbitrary
wavefunction ¥ may be expanded in terms of the
eigenfunctions ¥ ¢ of D?(¥) and ¥/¢ of DY(¥) in the
following way:

Y(s,t) = ZENP(sW (D),

where |£;[2 is 51mu1taneously the eigenvalue of D?(¥)
correspondmg to 1//, and the eigenvalue of D?(¥) cor-
responding to 7. Making use of this expression and
the fact that D?(¥,,¥,) = 0 we have

0 = DP(¥,,¥,)(s|s) = [dt¥, (s, )¥,(s", 1)
= Zaeﬁfxsmgxs')f atge; v, ).

Since the y/4,(sW l( s’) are linearly independent, the

coefficients (y§;|¥%;) must all vanish. Therefore
RANGE D‘l(‘Ill) C [RANGE D‘I(\Ilz)]-L
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Corollary 6.1: Under the assumptions of the lem-
ma, D{(¥,,¥,) = 0 for I < p.

Theorem 6.1: The preimage of an exposed point
of D?(HN) under the contraction mapping is unique if
(i) p = N/2,N even;

(ii) p = (N + 1)/2,N odd.

Proof: Assume the contrary. Let b € D2(H¥) be
an exposing operator for d € EXPD?(H¥). Then, by
assumption, there are two states ¥, and ¥, belonging
to the kernel of the expanded operator FN (b) such
that D¥ (¥,) and D¥(¥,) are distinct and are both
mapped by L% onto d. As the kernel of 'Y (b) is a
linear space we may assume that ¥, 1 ¥,, By Corol-
lary 6.1, DY(¥,,¥,) = O for I =p. In particular
D4(¥,,¥,) = 0for ¢ = N —p. It follows that
[D2(¥)D?(¥,5)](s"|s)

= [ds[df¥, (s, 1)U (s, 1) [at' T (s, 1) (s, 1)

= fat at¥ (s, 0¥ ,(s", 1) fds¥ (s, )T (s, t')
Jat atw (s', )0, (s”, t)DIE,, W)t | 1)
=90,

which contradicts the fact that D#(¥,) = D?(¥,) =

In the finite rank case this result may be extended to
cases not covered by the theorem (p < N/2, even N
and p < (N + 1)/2, odd N) when the rank » is small
enough by using the particle~hole duality elaborated
in Sec. 4. Assume that d € D?(H¥) is exposed and
that the rank » is finite, Then if A is the map defined
in Sec. 4, A™1(d) is exposed in D?@#EH V). Then by
Theorem 6.1 A™1(d) has a unique preimage if p =
(r —N)/2 (r —N even)orifp = (r —N + 1)/2
(r — N odd). But by Theorem 4.2 the preimage of d
is related to that of A™1(d) by the formula (L£)1(d) =
Ay (L2_;)1(A™1(d)). Thus d has a unique preimage
when these conditions on the rank are satisfied.

Corollary 6.2: The preimage of an exposed point
of DP(HN) is unique if

(i) p= (@ —N)/2,(r —N) even,
(ii) p = (r —N + 1)/2, (r — N) odd.

For the case where p = 2 the above results may be
summarized:

Theorem 6.2: The preimage of an exposed point
of D2(HNY is unique if either N < 4 or (» —N) = 4.

7. SOME EXPOSED POINTS OF D2(H¥) WHERE
ry>N+2

In this section we produce a list of new exposed
points and thereby add to our catalog of information
on the convex structure of D2(H~). The basic new re-
sult is contained in Theorem 7.1 which gives a pre-
scription for manufacturing exposed points of D2(HN)
knowing some exposed points of D2(H?) where p < N.
In the simplest case the theorem states that if D2(6),
6 € H? and D2(¢), ¢ € H? are both exposed, then

D2(6 A ¢) is exposed in DZHN), N =p + q if 6 and ¢
are strongly orthogonal. Even though this is a result
that everyone would “ suspect” to be true, it réquires
a lengthy argument to prove. Moreover, since 6 and
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¢ are strongly orthogonal the wavefunction 6 A ¢
seems to describe a system of two noninteracting
parts. On physical grounds then it is clear that our
theorem will not be powerful enough to allow us to
construct all of the elements of EXPD2(H¥) given say
our complete understanding of the » = N + 2 case

(c f.,Sec. 5) or known examples of elements of
EXPD2(HN).

Using Theorem 7.1 and Coleman's new result,14 that
arbitrary geminal power wavefunctions cover ex-
posed points of D2(H¥), we give a long list of exposed
points of D2(H¥) in Theorem 7.3 which includes all
previously published exposed points and, in addition,
some new ones. All of these exposed points are cover-
ed either by geminal power wavefunctions or wave-
functions that are manufactured by taking the Grass-
man product of several geminal power wavefunctions
where the geminals are strongly orthogonal. In the
next section we show that the list of Theorem 7.3
does not exhaust EXPDZ(HV) thus substantiating our
above intuition.

Three technical results are needed in order to estab-
lish the major results of this section. Let H! = F1 @
G1l,where F! and G! are two mutually orthogonal sub-
spaces of H1. Denote by F* A G? the subspace of HY
(N = p + q) generated by the functions 6 A ¢ = 4,09,
where 6 € F? and ¢ € G? and A,, is the antisym-
metrizer. Interpret FO A GV as equal to G¥. Then
HYN = N, FiA GN~i, The product (6, ¢) > 6 A ¢ is
usually called either the Grassman or wedge product.

Proposition 7.1: Suppose F1! is perpendicular to
Gl and H! = F1& G1, Then D2(F? A G4 ® Fr+t1a Ga-1)
is an exposed subset of DZ(HN)for N — 1= p = 0;

p tqg=N.

Proof: Let N € L(HY) be the one-particle opera-
tor which counts the number of particles in F states.
That is, for ¥ € F# A G4 we have N, ¥ = p¥. [1f {f,}
is a set of annihilation operators corresponding to a
complete set of orthonormal basis functions for F1,
then N, = Zf}f..] Let b(p,p + 1) be the unique ele-
ment of L(H2) whose image under the expansion
operator I'Y is given by

TY(b(p,p + 1) = z(Np —P)YNp —P — 1)
for N—1=z=p=0.

Then T'§(b(p,p + 1)) has the following properties: (i)
It is constant on each of the subspaces F¢ A GN~¢
i=0,...,N; (il) its kernel is F? A G4 ® F?*1 A Ga71,
and (iii) its lowest eigenvalue on the orthogonal com-
plement of F* A G2 ® Fr*1 A G471 is 1. The first two
statements are easy to verify. To prove the third,
note that the minimum eigenvalue on (F* A G72 ®

FP*1 p Ga71)L occurs for ¥ € Fr 1t A Gatl
(l=p=<N-—1) and/or ¥ c FP*2 A G212
(0=p=N—2)and for sucha ¥, T ¥(b(p,p + 1)) ¥ =
¥, It follows, therefore, that b(p,p + 1) €
CONED2(H¥) and for ¥ € HY, Tr(b(p,p + 1)TD2(¥)) =
Oifand only if ¥ € F* A G2 @ F#*Y A G471, There-
fore, D2(F? A G2 @ F¢*1 A G271) is an exposed sub-
set of D2(HN),

Corollary 7.1: D2(F? A GY) is an exposed subset
of D2(HN) for 0 =p = N.

Proof: Letb(p) € L({H?2) be such that
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L3 @(p)
TH(b(p—1,p) +b(p,p+1) forl=p=N-—1
= «Ng forp=20
(NG forp=N

(Ng is defined similarly to N.) Then TH(b(p) (1) is
constant on each of the subspaces Fi A GN-ij =
0,...,N, (ii) has kernel F» A G4, and (iii) its lowest
eigenvalue on (F# A G9)* is equal to 1. These prop-
erties follow directly from the properties of
T'¥(b(p,p + 1)) listed in the proof of proposition 7.1
and the definition of N; and N;. Therefore,b(p) €
CONEDZ2(HN) and D2(F? A G%) is an exposed subset.

The techniques employed in the proof of Proposition
7.1 and Corollary 7.1 can be employed to obtain

Covollary 7.2: Let Hl = @, F, and the F; be
mutually orthogonal. Then D%(F? A Fg AN Fg)
is an exposed subset of D2(HN) where N =p +q +
ot sand HY = ©; 50y Fi A FL A --- N FE.

Covollary 7.3: Extreme points of D2(F? A G9)
are extreme in D2(H¥);N = p + q.

Proof: By Corollary 7.1,D2(F? A G4) is an ex-
posed subset of D2(HN) and, therefore, an extreme
subset. But by a general theorem in the theory of con-
vex sets, the extreme points of an extreme subset of
a convex set C are extreme in C. Therefore EXTD?2
(Ft A G9) C EXTD2@HY),

Covollary 7.4: Let F1 be a subspace of some Hil-
bert space Hl. Then the extreme points of the convex
set D2(FN) are extreme in D2(HV).

Proof: Let Gl = (F1)*. Then FN = FN A GO,
Apply Corollary 7. 3.

By Corollary 7.3 we know that the extreme points of
D2(F? A G9) are extreme in D2(HV). We have seen in
Sec. 3 that these extreme points are also exposed
points of D2(H¥) if we assume that H1 has finite di-
mension. The following proposition does not assume
that dimH?! < » and asserts that the exposed points
of D2(F? A G49) are contained in EXPD2(H¥). The
proof of this result makes use of some special proper-
ties of density matrices. We recall again that if E is
an exposed subset of a convex set C it is not, in gen~
eral, true that exposed subsets of E are exposed in C.
In particular, elements of EXPE are not necessarily
elements of EXPC.

Proposition 7.2: The exposed points of D2(F2 A G9)
are exposed in D2(H¥) where HN = @, FiA GVE,
dim H! = dim(F! @ G1) may be infinite.

Proof: Let D2(¥) be an exposed point of D2(F? A
G4) which is exposed by b(¥)c CONED2(F? A G9).
Note that 5(¥) need not be a member of CONED2(HV)
which is a proper subset of CONED2(F¢ A G9) since
D2(F» A G9) C D2(H¥). We may assume that T§(6(¥))
leaves the subspaces Fi A GN-i i=0,...,N,invari-
ant or, equivalently,that 6(¥) contains no terms which
do not conserve both F and G particles, that is,terms
of the form f1f}g.fs,81 /58180, etc., where 1, fo, f5
and g, g, are annihilators for F and G states, respec-
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tively, for if 5(¥) does not conserve F particles, it
can be written as b(¥) = by + b,, where b, leaves the
subspaces Fi A G¥-! jnvariant and b, maps elements
of Fi A GN-iinto (Fi A G¥-%)1, In second quantization
notation, 5, contains only terms of the form
fifsefs, /1542185, - . But then,for £ € FP A GY,
Tr(b1D2(¢)) = Tr(T'H(b, )"DN £) = (E IT(6,)TE) = 0.
Therefore if 5(¥) exposes D2(¥) then so does by its
F and G particle conserving part.

Let
A= inf

t€(FPAGT)
and choose 1> ¢ > 0 such that tx + (1 — ) > 0. Then
if b(p) is the operator defined in Corollary 7.1,6 =
tb(¥) + (1 — 1)b(p) exposes D2(¥) in D2(HN), We note
that T'4() leaves the subspaces FiA G¥i, i=0,...,
N,invariant. Since T'}(6(p)) = 0on F* A G?and = 1
on (F? A G9)*,we have for £ € FP A G9,

. Tr(b(¥)*D2(£)

Tr(b™D2(£)) = t Tr(b(¥)TD2(£)) + (1— 1) Tr(b(p)*D2(£))
> 0if D2(£) = D2(¥) since t > 0
= 0 if D2(¢) = D2(¥)

for £ € (Ff A G9)1,

Tr(b*D2(£)) = t Tr(b(¥)*D2(£)) + (1 —¢) Tr(d(p)*
xD2(EN =M+ (1—-4>0

by the choice of ¢. Therefore, b € CONED2(H¥) and
Tr(btD2(¥)) = 0 if and only if D2(£) = D2(¥),

Proposition 7.3: Suppose F1 1L G1,

84,05 € Fe(p
= 2),31’1(1 ¢1; ¢72 Gi(q = 2),then

N(N — 1)D2(91 A @p,0g A Go)lxy lx'y")
=p(p— 1) (D11 02 D2(6,8,)xy lx'y")

+q(g— 19011 0)D2( ¢y, ) (xy | xy")

+ pg[D1(0, 0,)(x [x)DL(y, Do) (¥ [y")

~ D1(6,, 0,)x | y') DYy, )3 | %)

— DY(84,0)(y [ x)D1(¢y, Po)x 3"

+ D81, 0,)(y] y)D1(¢y, do)x | 2.

Proof: Recall that all of the density matrices in

the above expression are normalized to 1. The re-
sult follows directly from the definition of the transi-

tion density and the fact that the 0's are strongly
orthogonal to the ¢'s.

The following theorem allows one to construct a large
number of exposed points of D2(HV) given some ex~
posed points of D2(H?) where p is smaller than N.

Theorem 7.1: Let ¢,,i =1,...,m be mutally

strongly orthogonal N, - partlcle funections such that
D2(¢,) is an exposed pomt of DZ(HNI) Then

DGy A pa A v A By,)
is exposed in D2(H¥) where N =27, N,

Proof: We give a proof for the case when m = 2
and Ny = 2, N, = 2;the techniques used in the general
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case being a simple extension of those used here.
Suppose that ¢ and ¢ are functions of p (= 2) and

q (= 2), particles respectively. We show that if (i) 6
and ¢ are strongly orthogonal and (ii) D2(6) ¢
EXPD2(H?) and D2(¢) € EXPD2(H9), then D2(6 A o)
is exposed in D2(HY) where N = p + q.

Since 9 and ¢ are strongly orthogonal one may pick
mutually orthogonal subspaces F1 and G1 of H1 such
that (i) H = F1 @ G and (ii) 6 € F? and ¢ € G4. But
then 8 A ¢ € F? A G9, By Proposition 7.2 one need
only show that D2(8 A ¢) is exposed in DZ(F? A G4) in
order to establish that D2(9 A ¢) is exposed in D2(HY),

Let 5(0) € CONED2(F?) C L(F2) be an exposing opera-
tor for D2(9) € EXPD2(F?). Let b(6) be its extension
to H? defined by

b(8)| F2 = b(9)
b(@)| FLAGl® G2 =0,

By letting {f i} denote a set of annihilation operators
corresponding to a complete orthonormal basis for
F1,b(9) can be written in the form b(8) =
226(0);;.f 1 F1fof;- By formula (2.1) for the expansion

operator, T¥(b(6)) = (§)"12756(0), iiuef §f1fpf). We sup-
pose that {g }is a set of annihilation operators cor-
responding to a basis for G1. Assume that § € F»
and w € G?,then 8 A w can be written A'Q*|0), where
A isa homogeneous polynomial of order p in the
creation operators f1 and ©F is a homogeneous poly-

nomial of order ¢ in the creation operators g}. Thus
TH(6(6))6 A w = [TF(B(ENATIR T 0)
= ({UHITEEEON8] A w. (1.1)

Similarly if 5(¢) is an element of CONED2(G4) which
exposes D2(¢) and b(¢) is its extension to H2, we have

TH(b($))6 A w = @’) '1<g'> 5 A

Let {¢,} be an orthonormal basis spanning the kernel
of rg(b (6)) and {¢,} be an orthonormal basis spanning
the kernel of T/ 2(b(¢)). From formulas (7.1)and (7. 2)
we conclude that (1) 6 A ¢ lies in the kernel of T'§(b(6)
+ b(¢)) and (ii) the kernel of T¥(b(9) + b(¢)) is span-
ned by the orthonormal bas1s{9 A ¢} We now show
that if ¥ lies in the kernel of {T'} (b (9) + b(¢)), then
necessarily D2(¥) = D2(6 A ¢) thus showing that

D2(6 A ¢) is an exposed point of D2(F? A G9) with the
exposing operator h(9) + b(¢) and thereby establish-
ing the theorem.,

Tip@Nw). (1.2)

As b(0) € D2(F?) is an exposing operator for D2(6)
we conclude that D2(9,) = D?(6). By Lemma 6.1 we
can conclude that D2(9 8.) = 0. Similarly we have
D2(¢,) = D2(¢) and D2(¢,, ¢;) = 0. Let ¥ € KERT¥ (b
(8 ¥ b(¢)). Then

V=2 0,0 A, 2l
Then, applying Proposition 7. 3, we have
D2(¥) = ”Ekl @;; 0, D20, N d;,0,A &)
— D Yp(p — 1X¢;l ;) D2(s;,6,)

= 2 a i Q[ N(
ij ki
J. Math. Phys., Vol. 13, No. 10, October 1972
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X (xy lx'y") + qlg — 16, 16,) D2(¢;,¢0) (xy | x'y")
+ pg{DL(6;,0,)(x |x" )DL, ¢)(3]y")
— D6, 8,)(x|y") D1 (¢;, ¢)(¥ |x)
— D(g,, 8,)(y | x)DL(¢;, ¢, )(x|y")
+ D6, 6)( | y") DYy, 0 (x| 2]}
=2 Lol 2IN(N— DI Yp(p — 1DD2(9) +¢lg — 1)
X D2(¢) + pq[DL(6)(x | x")DL(¢)(y | ¥")
— DY) (x |y DUP(¥ | x") — DL(G)(y]x")
x DY¢)(x|y") + DLO)(y|y") D ) (x lx")]}.

Colemanl4 has proved the following theorem regard-
ing AGP (antisymmetrized general power) wavefunc-
tions:

Theorem 7.2: If ¢ is an arbitrary geminal with
rank » = N,then the AGP function ¢p¥(= ¢ A pA A ¢,
1 N factors) covers an exposed point D2(¢¥) of D2(H¥),
and the preimage of D2(¢") under the contraction
mapping is unique.

This result along with Theorem 7.1 allows one to
construct a very large number of exposed points of
D2(H¥), We recall that the linear space oV is spanned
by elements of the form &'|0), where #* is a homo-
geneous polynomial of order $ N in the pair creation
operators {01}, o, = a,, ,a,, and that D2(o¥) is an
exposed subset of D2(HY) (see Sec. 2).

Theovem 7.3: I 6,, i=1,...,s are one-particle
functions and ¢;, j=1,...,t are geminals of rank
greater than N;, and if the 6, and the ¢; are mutually
strongly orthogonal, then

(1) \I’:QI/\BZ/\.../\QS/\q;Ifl/\d)g’z/\.../\¢,1;’t

covers an exposed point of D2(H¥),where N = s +
=1 Vo

(ii) the preimage of D2(¥) under the contraction

mapping L% is unique and equal to D¥(¥), and

(iii) when N is even, D2(¥) is a member of the expos-
ed subset D2(o¥) for some choice of pairing.

Proof: The proof of the fact that D2(¢) is exposed
is a direct application of Theorem 7.1. The unique-
ness of the preimage of D2(¥) is an easy result which
follows from the uniqueness of the preimages of the

D2(¢jNJ’) under the contraction mappings L%,j . When

N is even, it follows from Lemma 5.1 and strong
orthogonality that we can construct a set of pair anni-

hilation operators {o,}, 0, = a,,_,a,,, such that (i)

1A By A A B =20 oy 0310, (1) ¢ = 2}10) &f =
Zje"i ¢,;0%,and (iil) J; AJ; = 0, ¢ = j. Thus ¥ can
be written

¥ = (0 op@epMey’e--@ntlo)
j€d

and is, therefore,a member of the paired subspace
oN,

8. THERE ARE MORE EXTREME POINTS

The preceding leaves open the question whether the
list of Theorem 7.3 exhausts all the extreme points
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of D2(H¥). Corollaries 8.1 and 8.2 show that such is
not the case, For even N, each exposed point listed

in Theorem 7.3 is an element of D2(o¥) for some
choice of pairing,i.e.,is covered by an element of oV,
one of the paired subspaces of H¥(seeSec.2). In Corol-
lary 8.1 we give an example of an exposed point of
D2(HN) which is not contained in the list of Theorem
7.3 and which for even N is not contained in any of
the exposed subsets D2(o¥), But the question remains
as to whether, for even N, Theorem 7.3 supplies a
comprehensive enough list to contain all the exposed
points of D2(¢¥). Again the answer is no as is shown
by Corollary 8. 2.

In Theorem 8.1, we give an example of an extreme
point where N =3 and » =7, which for certain choices
of the defining parameters, is not of the type given by
Theorem 7.3. For this case, Theorem 7.3 only yields
extreme points which are either covered by a Slater
determinant or are of the form D2(4 A ¢), where 9 is
an orbital strongly orthogonal to the geminal ¢. In
both cases the two-density contracts to a one-density
that has at least one eigenvalue equal to 5. When the
two-density is covered by a wavefunction of the form
8 A ¢, the eigenvalues which are less than § are all
doubly degenerate. In Theorem 8.1 we establish the
existence of an extreme point of D2(H3) which con-
tracts to a one-density, all of whose eigenvalues are
nondegenerate and less than 3.

Theorem 8.1: D2(¥,) is exposed if
¥, = a[123] + p[145] + +[167] + 5[246] + €[357],

and [123] is the Slater determinant made from orbital
one, two, and three. If P(1) is the projector onto orbi-
tal number one, the corresponding one-density is
given by

DY(¥,) = 3[(a2 + 2 + y2)P(1) + (a2 + 62)P(2)
+ (a2 + €2)P(3) + (B2 + 62)P(4) + (B2 + €2)P(5)
+ (y2 + 62)P(6) + (y2 + €2)P(T)].

If we choose a2 =13, g2 =4, y2=4%, 62 =,and

€2 = %, then all of the eigenvalues of D1(¥,) are less

than 1 and are nondegenerate. In this case D2(¥,) is
not contained in Theorem 7.3.

Proof: The wavefunction ¥, is annihilated by the
positive operators:

b, = P(§[23] — a[45]), bg = P(e[16]— 4[35)),

b, = P(»{45] — B[67]),  bg = P(25),
by = P(5[13] + a[46]), by, = P(27)
b, = P(e[12] — a[57]), b, = P(34),
by = P(,{15] — B[26]), b, = P(36),
bg = P(e[14] + B[3T]), b, = P(45),
b, = P(O[17] + 5[24]), b4 = P(56),

where, for example, P(B[23] — a[45]) is given by ATA,
A = Baya; — aazag and g is the annihilator for orbi-
tal i. Moreover, ¥, is the unique ground state of the
operator b = 2,14 b,. This may be checked by finding
the eigenfunctions and eigenvalues of the operators
b, and noticing that ¥ is the only vector which is
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simultaneously a ground state for all of them. Thus
D2(¥,) is an exposed point of D2(H3). The remarks
regarding the properties of D1(¥,) are easy to verify.

By using the ¥, of Theorem 8.1 and Theorem 7.1 we
can construct exposed points of D2(H¥) for N > 3
which are not of the type given in Theorem 7.3. If
6;, ¢=1,...,s are mutually orthogonal one-particle
functions strongly orthogonal to ¥, then

U=0,N0,A - NGO AT
covers an exposed point of D2(HV¥); N=s + 3. If we
choose the defining parameters of ¥, as in the second
half of Theorem 8.1, the eigenvalues of D1(¥) which
are less than N-1 are not doubly degenerate. But all
of the exposed points of Theorem 7.3 contract to one-
densities whose eigenvalues are either equal to N-1
or are doubly degenerate. Thus D2(¥) is not of the
type given by Theorem 7.3. For any fixed pairing the
elements of D2(¢¥) contract to one-densities whose
eigenvalues are all doubly degenerate. Thus, for even
N, D2(¥) is not a member of any of the exposed sub-
sets D2(o¥),

Covollary 8.1: For certain values of the defining
parameters the wavefunction
V=0, AByA AN ANYgeHN, N=s+3
given above, covers an exposed point of D2(H¥) which
is not contained in the list of Theorem 7,3, For even
N, D2(¥) is not a member of any of the exposed sub-
sets D2(oV),

For N = 4, Theorem 7.3 establishes the existence of
two types of exposed points of D2(H¥). They are of
the form D2(¢ A ¢) and D2(8, ¢), where ¢ and ¢ are
strongly orthogonal two-particle functions. Both are
elements of the exposed subset D2(c¥) for some fixed
pairing. In Theorem 8.3 we establish the existence of
an exposed point of the form D2(¥), where ¥ =
ap AN +B9A¢anda,B = 0. Here ¢ is again strong-
ly orthogonal to 6. A similar argument to that in the
proof of Theorem 7.3 shows that this exposed point
is also a member of one of the exposed subsets
D2(0o¥). Recalling that the exposed points of D2(H?2)
have unique preimages under the contraction map L2
(Theorem 6. 2), we can demonstrate that D2(a¢ A ¢ +
B8 A ¢) is a new type of exposed point if a¢p A ¢ +
B9 A ¢ is not proportional to either a function of the
form £ A £ or a function of the form £ A w where £ is
strongly orthogonal to w. Arguing as in the proof of
Theorem 7.3 there exists a set of pair annihilation
operators {0;},0, = a,, ;a,, such that
T=apAd+BOA G = (a(dh)2 + 46107 0),
where &t =23, _, ¢,01, @' =23, ; 6,0}, INndJ =0.
If ¥ were proportional to £¢ A w then we could write it,
using the pair annlhllatlon operators, as Q7| 0),
where EY =25 , .4 £,01 =2er @ 05,and KN L
= 0. Each term in the expansmn of QT has one pair
from K and one pair from L. But ¥ is clearly not of
this form, and ¥ is not proportional to £ A w. If we
require that the rank of D1(8) be greater than 4 we
can show that ¥ is not proportional to a function of
the form & A £, For proportionality to hold, EAE

must be of the form (E%)2| 0) where Z* =2, .,
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¢.07. But if there are nonzero terms involvin o* and
P

02 m the expansion of (£*)2, there is also a nonzero
term of the form yo?,0f. If D1(6) has rank greater
than 4,there are at least two terms in the expansion
of # which are nonzero. We can say that 6, and §, = 0.
Thus there are nonzero terms in the expansion of ¥
involving both o?, and o} . However, it is clear that
there are no terms in the expansion of ¥ of the form
yot ot | 0).

We establish the existence of an exposed point of the
form D2(¥), where ¥ = adp A ¢ + B8 A ¢, by first show~
ing that a particular linear space V,containing ¥,
covers an exposed subset of D2(HV) and then showing
that D2(\) is an exposed point of D2(V). But by
Lemma 3.1 D2(¥) is then exposed in D2(HY), The
first step is to demonstrate that certain linear sub-
spaces of H¥ cover exposed subsets of D2(HV)., We
assume some fixed pairing and as before denote the
pair annihilation operators by {o,}, i € R. Let I be
a subset of R, and let G denote the linear subspace of
H?2 spanned by {otl0>|i ¢ I}. 1f J is the complement
of I'inR,i.e.,J =R — I,then let F be the linear sub-
space spanned by {0710 > j € J}. The linear sub-
space ¢¥ can be wr1tten as the direct sum of the lin-
ear subspaces F2i A GN2i {=0,,..,3N where
F2P A GN-2¢ ig the linear space generated by all basis
vectors of the form o} ---07 o} ---0f |0), jy,...,

1 r h q

i, €Jdy byeryi, € l,andp +q = 3+ N. The element of
F2 are strongly orthogonal of those of G2.

Proposition 8. 1:
DZ(HWY),

D2(gM) is an exposed subset of

Proof: In Sec.2 we demonstrated that the operator
1— (2/N) Z}l cr 0T0, was an exposing operator for
D2(o¥).

Pyroposition 8.2: D2(GN¥N@® F2 A G¥-2) is an expos-
ed subset of D2(H¥),

Proof' Recall that 0; = ay;_ja,;. The operator

Ne=2;cq a3;aq; ,when restricted to o¥, counts
the number of Fl pa1rs The operator N F(N —1)
when restricted to oV is (i) positive semi-definite

and (ii) has kernel GN & F2 A GN-2, Thus D2(GN @ F2
A G¥-2) is an exposed subset of D2(c¥) and, therefore,
by Lemma 3.1 an exposed subset of D2(HV),

Let § =©%|0) € F2, ¢ =&'|0) € G2,and
= E'|0) € G2,where O7 —EjeJ ejo}‘., ot
¢i°§’5 =2ier &0},and 1 —EjeJ | B‘I?‘

; 1012 =27 ¢, 1£, 2. Let b be the restriction
of <I>*€) g e%d to G2 & F2 A G2. The eigenfunctions of
the restricted operator either (i) lie in its kernel or
(ii) are of the form a¢p A £ + B9 A . We denote'the
cardinalities of I,J,R by |Il,|J],and |R|. Let M =
dim(Gi @ F2 A Gz)

=Z>i€[

Theorem 8.2: Let b be the restriction of $1©
+ O'® to G4 ® F2 A G2, Then

(i) there are 2]|7| eigenvalues and corresponding
eigenfunctions of b occurring in pairs and given by

+ VX,
—Vx,

GAE+VXN OAE,
¢/\€-v’x@/\€,
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where X is an eigenvalue and {£,}, 7 € I,the corres-
ponding eigenvector of the mateix

{(1 - 2|¢,I 2)6,']' + ¢i¢;]'}’

(ii) There are M — 2|I| additional eigenfunctions
lying in the kernel of b.

i,jel.

(iii) The degeneracy of the top eigenvalue is equal to
the degeneracy of the bottom eigenvalue. In the case
of nondegeneracy both of these eigenfunctions cover
exposed points of D2(HV) which are elements of
D2(oN), When the rank of D1(6) is greater than 4 or,
equivalently, when |J| = 2,these exposed points are
not contained in Theorem 7. 3.

Proof: (i) As was pointed out above, an eigenfunc-
tion of & belonging to a nonzero eigenvalue must be of
the form ¥ = a¢p A £ + 6 A £. The action of 6 on
0 N yields ¢ A £;the action of b on ¢ A £ yields
OtZ1]0) + (¢l HOTeT| 0) — 121 ¢,12¢,6%0110). In
order for ¥ to be an eigenfunction, this latter vector
must be proportional to 8 A £. Thus we are led to the
eigenvalue problem
(1—2|¢i|2)§i+2j€1 ¢i¢j£,-=>t§i, iel. (81)
For each solution of this eigenvalue problem one
obtains two eigenfunctions of 4. They are given in the
statement of the theorem and obtained by an easy cal-
culation. Since the eigenvalues of b are all real, those
of (8a) must all be positive.

(ii) Since M = dim(G4 @ F2 A G2) there are M — 21|
eigenfunctions unaccounted for. These lie in the ker-
nel of b.

(iii) If the bottom eigenvalue of b is nondegenerate
then the corresponding eigenfunction ¥ covers an
exposed point D2(G4 & F2 A G2), But by Proposition
8.2 and Lemma 3.1 D2(¥) is exposed in D2(HV), If
the top eigenvalue of b is nondegenerate, then the
same holds for the bottom eigenvalue of —b. The cor-
responding eigenfunction covers an exposed point of
D2(H¥), Clearly these exposed points will be mem-
bers of D2(04). A modification of the argument im-
mediately following corollary 8.1 will establish that
these exposed points are not contained in Theorem
7.3 when the RANKD(9)= 4 or equivalently |J| = 2.

In the special case where ¢ = '] 0), &' = (|])"1/2
;e 91, (8a) can be easily solved and explicit formu-
las for the nonzero eigenvalues and corresponding
eigenfunctions of b obtained.

Theorem 8.3: With ¢ as above and 0 arbitrary, let
b be the restriction of €% + 10 to G4 ® F2 A G2,
Then

(i) the top and bottom eigenvalues of b and the cor-
responding eigenvectors are given by. i :

+(2—2/ |11z,
- (2_ 2/ | I l)l/zy

A+ (2—2/1IDN20 10,
dAd—(2—2/T)1/20 A ¢.
Both eigenvalues are nondegenerate. The two eigen-
functions cover exposed points of D2(H¥) which are
contained in D2(o¥). When the rank of D1(6) is

greater than 4 these exposed points are not contained
in Theorem 7. 3.
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(ii) There are 2|/| — 2 eigenvalues and correspond-
ing eigenfunctions given by

(1—2/1IDN12, o AE+ (1—2/|11)1/29n ¢,
degeneracy | I| —1— (1—2/[1])1/2,

dNE~(1—2/[I)1/20 A g,  degeneracy |1 — 1,

where £ € G2 and is perpendicular to ¢.

(iii) There are M — 2|1 additional eigenfunctions
lying in the kernel of b.

Pyoof: In order to prove the validity of these
statements one needs merely to solve the eigenvalue
problem (8a) and then apply Theorem 8.2,

Let K, I, and J be nonempty, nonintersecting subsets
of R such that /U J U K =R, Define: w = Il, o, 0}/0)
cHm, m = 2|K|;0 =97 0), &t = (|I])-1/2

EieI 0738 = e10),61 =2, ied 0]-0}. Then by Theo-
rem 7.1 ¥ =wA ¥, eHm+47.where Ya=dAdt (1
—2/111)1/29 A ¢ covers an exposed point of D2(HN);
N =m + 4. Also D2(¥) € D2(o¥), but is not contained
in the list of Theorem 7.3 when D1() = 4 by an argu-
ment similar to the one preceding Theorem 8.2

Covollary 8.2: D2(¥) € D2(HN), where ¥ =
wA ¥y, wand ¥, are as above and N =m + 4 is an
exposed point. D2(¥) € D2(oN), but is not contained
in 7.10 when RANK D1(6) = 4 or equivalently |J| = 2.

9. DISCUSSION

The list of extreme points of D2(HV) given in
Theorem 7.3 is of high dimension, but, as is shown in
Sec. 8, it is not exhaustive. As there has been no
systematic treatment of any other class of elements
of EXTD2(HN) we have no feeling for the number of
extreme points which we have missed. It would be
desirable to obtain an estimate of the portion of total
volume of D2(H¥) which is occupied by the convex
span of the elements of Theorem 7.3,

The characterization of D2(g¥),the exposed subset

of D2(H¥) covered by oV, a paired subspace of H¥,
seems to be a much more tractable problem than the
general N-representability problem. Moreover, this
exposed subset is of considerable physical interest as
it contains the AGP or projected BCS functions which
have had considerable success in superconductivity
and nuclear theory. Although the extreme points of
Theorem 7.3 are all contained in D2(¢¥) for some
choice of pairing, we have shown in Corollary 8.2
that there are elements of EXTD2(¢o¥) which are not
of this type. It is conceivable to the author that the
techniques used to establish this counterexample and
the extreme points of Theorems 8.2 and 8.3 might be
exploited to obtain a much more general class of
extreme points, containing those listed in Theorem
7.3 and .exhausting D2(0 ¥). The extreme points listed
in Corollary 8.2 are of the form D2(ap,. + B8 A ¢,),
where ¢, € oV, ¢, € 0¥°2 both cover extreme points,
and § is a geminal strongly orthegonal to both ¢, and
¢o. Thus an extreme point is constructed using both
an extreme point D2(¢,).€ D2(0o¥) of lower rank and
one of lower rank and lower particle number D2(¢,).
It is, therefore, tempting to look for some inductive
process for constructing extreme points of higher
rank starting from known extreme points of lower
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rank. The functional form a¢, + 88 A ¢, seems flex-
ible enough so that such a procedure might yield all
of EXTD2(o¥).

An important unsolved problem is to establish
whether the elements of EXTD2(H¥) have unique pre-
images under the contraction mapping. As has been
mentioned in the introduction, if such a property were
to hold, one would be supplied with a satisfying char-
acterization of the elements of EXT D2(H¥). They
would be precisely the elements of D2(H¥) which are
covered by unique ground state wavefunctions of some
two-particle operator. Unfortunately the techniques
employed in Sec. 6 establishing this result for the
case where N equals 3 or 4 cannot be extended to the
case N> 4.

In the present paper we have given little attention to
the convex structure of D2(H¥), However, this pro-
blem is of importance and hopefully will lead to effi-
cient lower bound procedures in many-particle
theory. We are planning to discuss a simpler sub-
problem of this problem,the Slater-hull or diagonal
problem in a later paper. This essentially amounts
to giving a characterization of D2(SV), the polar of
D2(SV), the convex span of the two-matrices corres-
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ponding to Slater determinants in some fixed one-
particle basis set.

Considerations based on the particle~hole duality
established in Sec.4 and the solution of the N-repre-
sentability problem for the case » = N + 2 by reduc-
tion to the N = 2 case given in Sec.5 has led us to
consider the problem of obtaining the best N + 2 orbi-
tals with which to describe the ground state of an N-
electron system. This number. of orbitals is precise-
ly the number required for a valence bond description
of a molecule with a single chemical bond. We are
led to a simple iterative procedure similar to the
closed shell SCTF method. In fact, at each stage of the
process, N + 2 orbitals are selected by a closed
shell SCF calculation, and thus the convergence pro-
perties of our method are similar to those of the
latter named method. A detailed study of this proce-
dure is now being carried out by Brian Weiner of
Queen's University.

ACKNOWLEDGMENTS

I am grateful to Professor A.J.Coleman for many
helpful discussions bearing on the contents of this
paper and to the National Research Council of Canada
for financial support.

1 A.J.Coleman,Rev.Mod. Phys. 35,668 (1963).

2 H,W.Kuhn, Proc.Sym. Appl.Math. 10, 141 (1960).

G.Choquet, Lectures on Analysis (Benjamin, New York, 1969),
Vol.II, Proposition 25, 12,

H.Kummer, J.Math, Phys. 8, 2063 (1967).

M, B.Ruskai, J. Math, Phys. 11, 3218 (1969).

M. L.Yoseloff and H, W.Kuhn, J. Math. Phys. 10, 703 (1969).
C.Garrod and J.K. Percus, J. Math, Phys. 5, 1756 (1964).

w

I

8 Reference 3, Proposition 21.17.

9 Reference 3, Theorem 22.7.

10 B, Zumino, J.Math. Phys. 3, 1055 (1962).

11 F, Bloch and H. E. Rorschach, Phys. Rev,128, 1697 (1962).
12 Erhardt Schmidt, Math. Ann.63,433 (1907).

13 B.C.Carlson and J.M.Keller, Phys.Rev.121,659 (1961).
14 A J.Coleman, J. Math. Phys. 13, 214 (1972).

Asymptotic Expansions of Fourier Integrals with Light Cone Singularities

Fritz Schwarz
Universitit Kaisevslautevn, Fachbereich Physik, 675 Kaiserslautern, Postfach 1049, Germany
(Received 5 June 1972)

Let the integral transforms @(y) and &(y,,y,) be defined through §(y) = [ d4xeims(x)$(x) and $y1,¥5) =

fd‘*xle"‘l"JL f

d4x,e**2725(xy, x5)¢(x 1, x,), respectively. Here all variables x and y are 4-vectors in Minkowski

space. The functions ¢ are elements of 8, and the factors s contain certain types of light cone singularities.
The integral transforms ¢ are investigated with respect to their characteristic properties implied by these
light cone singularities using the method of van der Corput's neutralizers, It turns out that the behavior of ¢

is determined by the light cone singularities if one goes to infinity in the space of the y variables along an arbi-
trary straight line. All characteristically different cases are classified and for each case a complete asympto-

tic expansion is derived.

1. INTRODUCTION

There has been a considerable interest in the last
couple of years in what is called “physics of the light
cone.” The starting point for the activity in this
direction were two papers by Gribov ef al.l and
Ioffe.2 More recent review type articles in this field
are Refs. 3 and 4. See also the important work by
Jackiw ef al.5:6 and by Gell-Mann and Fritzsch.?

What is meant by “physics of the light cone” can
roughly be explained as follows: The S-matrix ele-
ments of certain processes in high energy physics
can be written as the Fourier transform of the mat-
rix elements of products (or commutators) of local
operators in coordinate space. The matrix elements
of these operator products in coordinate space con-
tain singularities. More precisely, it is known from
perturbation theory that the only singularities they

contain are concentrated on the light cone. So it
arises the question as to what the implications of
this structure of the coordinate space matrix ele-
ments are—if any—for the Fourier transform in mo-
mentum space. There is one process which has
attracted special attention in this connection, the in-
elastic scattering of electrons on protons. We refer
the reader to the extensive literature on this subject,
see, for example, Refs. 8-12, besides the papers quo-
ted above. The way one usually argues to prove
“light cone dominance” for certain limits is as fol-
lows: One takes a certain limit in momentum space,
for inelastic e p-scattering; this is the so-called
Bjorken or scaling limit, in which due to rapid oscil-
lations of the exponential in the Fourier integral the
contributions of most parts of the integration region
are assumed to be canceled. It is suggested that the
only region in coordinate space which gives a con-
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tion to the N = 2 case given in Sec.5 has led us to
consider the problem of obtaining the best N + 2 orbi-
tals with which to describe the ground state of an N-
electron system. This number. of orbitals is precise-
ly the number required for a valence bond description
of a molecule with a single chemical bond. We are
led to a simple iterative procedure similar to the
closed shell SCTF method. In fact, at each stage of the
process, N + 2 orbitals are selected by a closed
shell SCF calculation, and thus the convergence pro-
perties of our method are similar to those of the
latter named method. A detailed study of this proce-
dure is now being carried out by Brian Weiner of
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space. The functions ¢ are elements of 8, and the factors s contain certain types of light cone singularities.
The integral transforms ¢ are investigated with respect to their characteristic properties implied by these
light cone singularities using the method of van der Corput's neutralizers, It turns out that the behavior of ¢

is determined by the light cone singularities if one goes to infinity in the space of the y variables along an arbi-
trary straight line. All characteristically different cases are classified and for each case a complete asympto-

tic expansion is derived.

1. INTRODUCTION

There has been a considerable interest in the last
couple of years in what is called “physics of the light
cone.” The starting point for the activity in this
direction were two papers by Gribov ef al.l and
Ioffe.2 More recent review type articles in this field
are Refs. 3 and 4. See also the important work by
Jackiw ef al.5:6 and by Gell-Mann and Fritzsch.?

What is meant by “physics of the light cone” can
roughly be explained as follows: The S-matrix ele-
ments of certain processes in high energy physics
can be written as the Fourier transform of the mat-
rix elements of products (or commutators) of local
operators in coordinate space. The matrix elements
of these operator products in coordinate space con-
tain singularities. More precisely, it is known from
perturbation theory that the only singularities they

contain are concentrated on the light cone. So it
arises the question as to what the implications of
this structure of the coordinate space matrix ele-
ments are—if any—for the Fourier transform in mo-
mentum space. There is one process which has
attracted special attention in this connection, the in-
elastic scattering of electrons on protons. We refer
the reader to the extensive literature on this subject,
see, for example, Refs. 8-12, besides the papers quo-
ted above. The way one usually argues to prove
“light cone dominance” for certain limits is as fol-
lows: One takes a certain limit in momentum space,
for inelastic e p-scattering; this is the so-called
Bjorken or scaling limit, in which due to rapid oscil-
lations of the exponential in the Fourier integral the
contributions of most parts of the integration region
are assumed to be canceled. It is suggested that the
only region in coordinate space which gives a con-
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tribution is the vicinity of the light cone. However,
these discussions are not satisfactory for several
reasons. For example, it is not clear from this type
of arguments whether or not there are some other
limits in momentum space which are “dominated” by
the light cone, too, Further, it does not seem to be
appropriate to introduce invariant variables as it is
usually done in discussing inelastic e~ p scattering,
because this changes the Fourier integrals one ori-
ginally starts with into more complicated integral
transforms. Finally, it seems not to be possible to
generalize these arguments to more general Fourier
transforms which contain matrix elements of pro-
ducts of more than two operators.

To clarify these questions we proceed as follows: Let
¢(x) be a function of the 4-vector x which is an ele-
ment of the space 8, 1i.e., it is differentiable an arbit-
rary number of times and falls off at infinity together
with all its derivatives faster than any power. Then
consider the integral transform

$(y) = [dsxeims(x)p(x). (1.1)
The factor s(x) is supposed to be singular on the light
cone, We will discuss the types of singularities which
are suggested by operator products of free fields, i.e.,
s(x) contains the factor 6(x¥2) or 6(x2). In addition
there may occur 8(x,) or €(x,), which are defined
through 8(xy) = + 1 for 0 < x, and 6(xy) = 0 for x, <
0,and e(x,) = + 1 for 0 < x, and €(x,) = — 1 for x4 <
0, respectively. Then we pose the following question:
Are there any regions in y space where the behavior
of $(y) is determined essentially by the singularity
s(x), and what can be said about the behavior in these
regions ?

The proper mathematical framework for the discus-
sion of questions of this kind has been developed by
several authors.13—23 Using these results we solve
the above stated problem completely,i.e., we deter-
mine all regions where the light cone singularity s(x)
determines the Fourier transform (1. 1) and what the
behavior of ¢(y) in these regions is. In other words,
we get all possible information on &(v) if one does
not know more about ¢(x) than the quite general rest-
riction that it belongs to the function space 8. It
turns out that, if one goes to infinity in y space along
an arbitrary straight line, the behavior of $(v) is
essentially determined by the singularity s(x),and a
complete asymptotic expansion of ¢(y) can be derived
for these limits. A similar analysis is done for the
more complicated case which may occur if the mat-
rix element of the product of three operators is
Fourier transformed:

‘1-’(3’1:3’2) = fd4x1 ginn fd4x2 eixzyzs(xl,xz)

X ¢(xy,%5).  (1.2)
Here again the function ¢(x,,x,) belongs to the space
§,and s(x4,%,) is the singular part which has in this
case the structure

s(xl,xz) = 0(xlo)G(xzo)b(x%)é(x%)G[(xl - xz)Z]-

We show in Sec. 5 that (1. 1) and (1. 2) can be reduced
to certain two- or three-dimensional Fourier integ-
rals. These are treated separately in Sec. 3 and Sec.
4, respectively. We will need repeatedly the asympto-

(1.3)
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tic expansions of certain types of one-dimensional
Fourier transforms. Although they are known, we
derive them in Sec. 2 because it gives a good illustra-
tion of the methods to be used later on. All our
results are collected in some tables at the end of this
paper.

2. ASYMPTOTIC EXPANSIONS OF ONE-DIMEN-
SIONAL FOURIER TRANSFORMS

In this Section we will derive asymptotic expansions
of certain types of one-dimensional Fourier trans-
forms, if the argument of the transformed function
gets large. The reason why we consider these
Fourier integrals is that the many-dimensional
Fourier transforms which we want to consider in
Secs. 3 and 4, are always reduced to these one-dimen-
sional cases. The results of this section are not new.
They can be found in various places, see, for example,
Refs. 24-27. However, we will use the same method
of van der Corput's neutralizers as it will be used in
the following Sections, and so we think it is instruc-
tive to explain this method on the comparatively
simple one-dimensional case,

The integrals to be considered in this section are of
the following types:

F) = [dx eims(x)flx).

The function f(x) is assumed to belong to the space §
which has already been defined in Sec. 1. The factor
s{x) is the singular part which may be 6(x), €(x), or
logx. A function N(x) is called a van der Corput
neutralizer for the point x ;, or simply a neutralizer,
if it has the following properties:

(2.1)

1 for
0 for
0= Nx)=1 for

lx, —x|=< €

Nx) = 6= lx,— x| (2.2)

€< |x;,—x(=< 6

The constants € and § are fixed real numbers which
obey the condition € < 8. Further, N/(x) is assumed
to be differentiable an arbitrary number of times.
Then we also have

dnN,(x) _
Caxn
for |x; — x| = € and 6 = |x; — x|. The existence of
such a neutralizer can be proven by explicit construc-
tion (see, for example, Ref. 24,p. 50). We say a point
% ; does not contribute asymptotically to the integral

(2. 1), if there exists a neutrlizer N(x) such that the
integral

0 (2.3)

400
I, = f_w dx ei* Nj(x)s(x)f(x) (2. 4)
falls off faster than any power of 1 if [y| — o, We
will employ frequently the so-called Landau symbols
O(x) and o(x), which are defined as follows: The equa-
tion f(x) = O(g(x)) for x = x, means that there exists
a constant C so that }{1_{1} f(xg = Cg(x). We write f(x) =
o

o(g{x)) for x = x4 if lin; f(x) = eg{x) for any positive
%

number €. More simply, if g(x) ¥ 0, f = O(g) means
that f/g is bounded, f = o(g) that f/g tends to zero

as x = x,. If in a statement containing these Landau
symbols the limit, for which it is valid, is not speci-
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TABLE I. Asymptotic expansions of some one-dimensional Fourier transforms for large values of the

variable in the transformed function.

Integral Transform

Asymptotic Expansion

I :° dx e 9(x)f (x)

I°7 dx eiveof (x)

N-1 i v+l W _
20(37) FOA0) + oy~

N-l/\ve+
(@) rom+otsm

fﬂo dx cosxyf(x) ;H (= 1)vf @-1X0) + o(y-28+1)
0 v=1 y2v

N-1 vF @y
fo”o dx sinxyf(x) > (_M + o{y-2N)

o y2u+l

f_:o dx ei%76(x) log xf (x)

j_l (i)“l (w(v +1)—logy + %")f‘"’(o) +0(y-M)

+00
fo dx cosxy logxf(x) - y2vel

+ 00
fo dx sinxy logx f(x) So yzveal

+00 N1/ \ve v
[ aEy e s 2 (2) )

yoo\Y v +1

1 (— 1)vf @ex0) . NZ->1 (— 1)y+1f(2|l+1)(0)[w(2y +2) —logy] + O(y-2¥)

v=0 y2u+2

NZ_I g:w[‘p(zy + 1) —logy] + % %_;,1 L—_l)"jfﬁl)(_O) + O(y-2%)

v=0 y2u+2

+ O(y-¥)

fied explicitly, it is always understood to be infinity.
The same true if we use the expression “asympto-
tic” without further specification. Using the Landau
symbols we can say that a point x; does not contri-
bute asymptotically to the integral (2. 1) if I, = o(y~7)
for all n. We denote this behavior by o(y~*). Other-
wise it is said to contribute asymptotically and is
called a critical point for the integral (2. 1).

The method of van der Corput's neutralizers for deri-
ving an asymptotic expansion for an integral of the
type (2. 1) consists essentially of two steps: In the
first step one determines which points contribute
asymptotically and which do not.

We consider only the simple case where the totality
of critical points is a finite set. In the second step,
the contributions of the critical points are expanded
into asymptotic series, the sum of which is an asymp-
totic expansion for the integral considered.

We begin with the case s(x) = §(x). Let us assume at
first that 0 < x,. Then it is always possible to choose
a neutralizer Nj(x), the support of which is contained
in the interval 0 < x = «. So the contribution I; can
be written

+00 ) x;+8 .
L= [ dceoNE) i) = [ dr eimN)f(x).
i (2.5)
Integrating N times by parts, we get

_ _i_N x; 46 ixy QN
zi_<y> 5, @ et o (NG )]

because the integrated terms are zero as a conse-
quence of the properties of the neutralizer Nj(x). The
integral at the right-hand side of Eq. (2. 6) tends to
zero for y — o by the Riemann—-Lebesgue lemma (see
Ref. 26, p. 312, Theorem 9. 1), N is an arbitrary inte-
ger and so we have I, = o(y™®) if the point x, lies in
the interval 0 < x; = . This result could have been
arrived at easier because it follows immediately
from Ref. 28, p. 249, Theorem XII. We derived it

(2.6)

explicitly because it will become clearer in this way
why some points do contribute asymptotically and
others do not. The former case occurs if x; = 0. The
contribution I, of the origin can be written as

8 )
Iy = fo dx eimNy(x) f(x). (2.7)
Integrating again N times by parts, we get now
N-1 72\ wsel gu
Iy=2, <i> T v Ry (2.8)
v=l\y dx? x=0
with
i\N (8 . 4N
R, = (= dx e’ —— [Ny(x)f(x)] = o(y¥). (2.9)
y 0 de

Equation (2. 8) is an asymptotic power series for the
contribution of the origin to the integral (2. 1) if

s(x) = 6(x) and |y |— «. Because the origin is the
only critical point, it is at the same time an asympto-
tic expansion for the integral (2. 1). The whole dis-
cussion is nearly literally the same if s(x) = €(x),
and, therefore, this case is included without further
discussion in Table I. If one separates the real and
imaginary part in Eq. (2. 8), one gets an asymptotic
expansion for the Fourier cosine and Fourier sine
transform, respectively, which are included in Table
I,too. Now we come to the case s(x) = 6(x) logx. It
is immediately clear from the preceding discussion
that the only point which contributes asymptotically
in this case is again the origin. We have

Iy = fo‘5 dx ei® logx No(x)f(x). (2. 10)

Integrating this equation N times by parts leads to

/, =N21 (f) vil [(eixy logx +:Z§1l E(— ixy))

v=0

av x=6
X e (No(x)f(x))] o Ry, (2.11)

with
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I\N 8 ) N ay
Ry=—[— dxfeixy 4+ —ixy) 2
N < > A x(e logx pzlE“( ixy) =

x (No(x)f(x))>. (2. 12)

The functions E,(z) are’the exponential integrals as
defined in Ref. 29,p. 228, Eq. (5. 1. 4). The logarith-
mic singularity at the lower integration limit of the
first term in the square bracket in Eq. (2. 11) cancels
with the corresponding one in the exponential integ-
ral E;( — ixy), which is most easily seen from Eq.

(5. 1. 11) on p. 229 in Ref. 29. Using Egs. (5. 1. 12) and
(5. 1. 23) of the same reference and the definition of
the functions En(z), one gets after some simple
manipulations

N s\ iT\ dUf(x)

== — 1) — YEYNSL SN

Iy UE:0<y> (d/(v+ ) logy+2> |y
+ 0(y¥).

(2. 13)

For the same reason as Eq. (2. 8) this is an asympto-~
tic expansion of the integral (2. 1) with s(x) = 6(x) x
logx.

Finally, we consider another integral transform an
asymptotic expansion of which will be needed in Sec.
4:

+00
L= [ dvE;(—ixy)6( £ x)f (x). (2. 14)
The function E,( — ixy) is again the exponential integ-
ral as defined in Ref. 29, and f(x) belongs to 8. Simi-
lar as in the preceding discussions, an asymptotic
expansion is derived by integrating N times by parts
where the relation

J ax E (ax) = — (1/a)E, ,(ax) (2. 15)
is used. This leads to
N-1 - 1
I, =t2, £>U+ _ 1 adf(x) + O(y~M). (2. 16)
v=0\y v+1 dx? |,

This and all other results of this Section are collec-
ted in Table 1.

3. ASYMPTOTIC EXPANSIONS OF A CERTAIN
TYPE OF TWO-DIMENSIONAL FOURIER
TRANSFORM

To determine an asymptotic expansion for a multi-
dimensional Fourier transform is much more comp-
licated than in the case of a single variable. There
are several reasons for this complication. At first,
there are much more possibilities for the variables
of the transformed function to approach a certain
point. If this point lies at infinity, for example, one
can approach it on an arbitrary radius or even along
an arbitrary straight line, which does not necessarily
go through the origin. For all these possibilities the
asymptotic behavior has to be determined separately.
A second source of complication is the fact that the
region of integration may have a complicated shape.
In analogy to the one-dimensional case, it might be
suggested that the main contribution to a Fourier
transform in several dimensions at a point far away
from the origin comes from those parts of the inte-
gration region which are close to the boundary. It
will turn out, however, that this is true only with
some restrictions.
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As already mentioned in the Introduction, the Fourier
transforms in Minkowski space, which will be con-
sidered in Sec. 5, can be reduced to certain types of
two- or three-dimensional Fourier transforms. In
this section we determine, therefore, asymptotic ex-
pansions for the two-dimensional transform
o~ 00 +X .
F) = J) ey [ drg e e r2dfm) (3.1)
1
and leave the three-dimensional case to Sec. 4. In
Eq.(3.1) we introduced the notation x and y for a
point in the x, — x, plane or y, — y, plane, respec-
tively. In the mathematical literature the behavior
of multidimensional integrals of the type

gl) = [ oo [ax, dx, AT ), (3.2)

if the parameter % goes to infinity, have been treated
by several authors (see Refs.13-23), If we specify in
Eq.(3.1) a straight line in the y, — y, plane, along
which we go to infinity, it has the form (3. 2) with
F(xq+++x,) = F(x{,%,), a linear function of the variab-
les xy and x,. Therefore, we can use the methods of
the quoted papers to determine asymptotic expan-
sions for the integral (3. 1). The most suitable re-
sults for our purpose are given in the paper by
Focke, Ref. 23. Focke treats only the casen = 2.
However, it is possible to generalize his results to
the case » = 3 for Fourier integrals. This will be
done in the next section when we consider the integ-
ral (4.1).

From now on, if we talk about the asymptotic be-
havior of the integral (3. 1), we always mean the be-
havior for large distances of the point y from the
origin, The procedure of determining asymptotic
expansions for (3. 1) is completely analogous to Sec.
2. At first we determine the set of critical points,
which does not necessarily consist of isolated points
now, but may be a critical line also. It will turn out
that the set of critical points depends on the limit
considered. Then the contributions of these different
critical regions will be expanded into asymptotic
series.

Let the integration region of the integral (3. 1) be R,
ie.,R={x:0=x;<®, —x;<x,< +x,}. Let P,
be an arbitrary point from R. We construct a neut-
ralizer N(x) for the point P, in the following way:

N@) = 11, NAx,), (3.3)
where the N;*(x,) are neutralizers of the type (2. 2).
N;(x) is assumed to be partially differentiable an ar-
bitrary number of times with respect to the variables
x3 and x,. Then we have

a m+nN‘ X
Sl (5.9
X4 0x g
if x does not lie in the difference set of the two
squares |x,— xi|= 6 and |x, — x/| = €. If one takes
for Nj(x) the example given in Ref. 23, p. 28, the sup-
port of the neutralizer (3. 3) is AR;, where AR, = {x:
|x, —xil =6, k= 1,2}. The intersection of AR; with
R is called AS;,i.e., AS;= AR, N R, In analogy to the
one-dimensional case, the contribution /; of a point
P, to the integral (3. 1) is defined to be

1=, [ dx dxy e F 2N (x)f (x). (3.5)
AV
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We want to determine now the conditions for a point
P; not to contribute to the integral (3. 1) if one goes
to infinity in the y, — y, plane along a radius,i.e.,
if y; =my, with m a fixed real number and y, =+ ,
In this limit the integral (3. 5) reads

I, = fAS S dxydx, et gy £(x), (3. 6)

i
We consider at first a point P, which does not lie on
the boundary of R. Then it is always possible to
choose ¢ and 6 in Eq. (3. 3) so that AR, is completely
contained in R. Therefore, the contribution of an
inner point P, is
x1+5 "'12 +b
I = fi s dx, ei=s

x-o

dx, ezyz(’“l“‘z)Ni(x)f(x). (3.7
By applying again Theorem XII from Ref. 28, p. 249, it
follows immediately that I, = o(y3®) without any res-
trictions for m. Next cons1der the case where P, lies
on the boundary of R but xj # 0 (k =1, 2). Assume at
first that xf = x5, Then the contribution of P, is

x b+ : - Xy
Il:le dxl elemyzji
xy=b xg =

N e 22N(x) f(x) (3. 8)
Integrating N times by parts with respect to x, leads
to

N-1 i\ v+l axBas ; v
i 1+ 0
ek <_ f,,iié dxy e Lo
v=0 Yo 1 axz
X @] -

+ o(yg).
If m=— 1 it follows from Theorem XII of Ref, 28
that P, does not contribute asymptotically to the integ-
ral (3. 1). Similarly it can be shown that P, does not
contribute asymptotically if it lies on the line x, =
—- x, and does not coincide with the origin and
m =+ 1.

[N(x)

(3.9)

Now we consider the origin x; = x, = 0. We intro-
duce a neutralizer Ny(x;) through

1 for x;=c¢
Nolxy) = {0 for 6=, (e < o).
0=Nylx)=1 for e=x;=<298
(3.10)

In addition it has the usual differentiability proper-
ties. By using this neutralizer the contribution /; of
the origin can be written as
8 . |t .
Iy = fo dxy e M2N (1) f_xl dx ye* 272 f(x).
1 (3.11)
At first we integrate N times by parts with respect
to x5 and get
X2 ”‘J

s N1/
Iy =J dxye™™Ny(xy) 1; (E

X [e”ixlyz a”f(x) ixlyz auf(x)
Then Wg‘integr.ate this equatidn N times by parts with
respect to x; with the result (m # + 1)

— €
axy Xy
.- u+u§/—2 1_> pav2 1 i <a ’f(x) )
0= 55 <y2 (m — D+l odxy \ oxy |,
(3.13)

v+l

X2=7Xx

+o(y3N). (3.12)

2774

)] to(yz")-
Xo=x3/ =0

1 @ <B"f(X)

(m + 1) s\ axy
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So we have the following result for the integral (3. 1):
If one goes to infinity in the y plane along a straight
line y; = my, and m + + 1, only the origin is a criti-
cal point, If m = %+ 1, also the points of the boundary
of R may contribute. More precisely, if m = & 1, the
line x, = —x; (0 =< x;) is a critical line, and if m =
— 1 the same is true for the line x, = x; (0 =< x,).

We want to determine now asymptotic expansions for
the integral (3. 1) for various limits. To perform
this, we have to expand the contributions of the criti-
cal regions into asymptotic series. Let us assume at
first m + + 1. Then only the origin contributes and
Eq. (3. 13) is an asymptotic expansion for the integ-
ral (3. 1). By changing the summation indices, it can
be written more economically as

N-2 w N M
=222<-y:> 1 &

v=0 p=0 + (m £ 1)us1 dx‘i

fy)

ovrf(x
x[ f(x) ] +o(yz). (3.14)
ax{“ xgtx;~ X=0
Separating the real and imaginary part gives
- g + (— 1) 1 ar
Refly) =25 Z) 2 —
a v=0p=0 + Y5+2  (m = 1)L dyl
02V HA(X —oN-
><< : Z{H) > +oyRNl), (3. 152)
X5 xg=tx1/ % =0
1 2v41
— 1)¥ 1 ar
mfy)=2 »n nE=l <
v=0 p=0 <+ YZVe3 (m = 1)u+l dxl)
32+l
( e 1f(x) ) + o(y2¥1). (3. 15b)
ax velp xp=22/%=0

Now let m be + 1. To separate off the contribution of
the line x5, = — x,, we construct a neutralizer N,(x)
with the properties
(1 inthe strip—x;=x,=—x; t €
N, (x) =10
0=NXx=1

(3. 16)

for —x; tesxy=<—2xy +0

for —x,; + 6= x4

The partial derivatives of N(x) with respect to x, and
x4 are supposed to exist up to arbitrary order and to
obey

3N (X)

TR

(3.17)
axl 0X o

outside the strip —x; + € <x, <—x; + 6. By using
this neutralizer the contribution of the line x, = —x;
to the integral (3. 1) in the limit y; =y, can be
written as

oC .
=) dxy [ dv, e TON (Rf(x). (3.18)
1
By introducing new variables u and v through
u=2VY2x; +xy)
1oTen (3. 19)
v = 2__1/2(961 -xz), )
the integral (3. 18) reads
- 8 : 0
Foy = [ du e ) [ dvgu,v).  (3.20)
Evidently, g(u,v) and M _(u) are the pictures of f(x)

and N,(x), respectively, under the mapping (3. 19), and
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T = V216, The fact that M, () depends only on u is
the consequence of a special choice of N,(X) which is
always possible. With the results of Sec. 2 we get
from (3. 20) the asymptotic expansion

- Nl oia\mlys1yvl 0 Y
) =% <-’—> (7_—> S v —g(ﬁuzi’l + o(yzM).
v=0 Yo 2 ou u=0
(3.21)
Returning to the old variables x; and x, gives
N1,
-~ A | e 0 3\
fin = (4 4 7 an (0 2)
v=0 \y, 2v 70 dxy  Bxy
X f®), -, +olz).  (3.22)

For the real and imaginary part it follows from Eq.
(3.22) that

-~ N-1 —_ U+t 00 v+
R =5 Lo [ ey (e + )

v=0 22"+1y%l/+2 0 ax, %,
Xf(R) |y, T olyEN)  (3.232)
N-1
~ — 1)u+1 o0 d 3 2y
Imj(y) = oy L (% gy (24 2
sy v=0 22vygvil fo 1 ax, 0%,
X f(X)|,=-s, + 0(ys2N).  (3.23b)
In the limit y; = — y,, the contribution of the line x, =

%, is separated off with the help of the neutralizer

‘1 inthe stripx; — € < x5 < %4
0 forxy=x,;—208 (3.24)
0=NX=1

inthe stripx; —0 = x5 =% — €

All partial derivatives of N_(x) vanish outside the
strip x;, — 8 < x5 < x; — €. Instead of Eq. (3. 18) we
have now

For=f dey [ ey e TINE@ W, (3.25)

By changing again the variables with Eqgs. (3. 19) it
follows that

- 3 _; 00

Figy = [y dv e BT du glu,0). (3.26)

From this equation we get the asymptotic expansion

- _N‘l A u+1—Lu+1 eod a”g(u v)
f(Y)—’Z% ( yz) (&') fo U Voo
+olyaN). (3.27)

The equivalent of Eq. (3. 22) is

- _N'l i wl_l ) A
I
X f(®) |y, t005Y), (3.28)

and instead of Eq. (3. 23) we have now

N1 o s % 2041
Ref(y) = &, A= f dx1(3—~i)

v=022v+1ygv+270 9x, 8x,

X f(x)

— + o(yz2¥), (3.29a)
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N-1

Imf(y) = o 2 1% gy

S L
=0 g2uyge10 gy ax,
X f(®)| %y = %1 + oy2¥). (3. 29D)

The asymptotic expansions (3. 14), (3. 15), (3. 22),
(3. 23), and (3. 28),(3.29) give a complete solution to
the problem of determining the asymptotic behavior
of the Fourier transform (3. 1) if one goes to infinity
in y space along an arbitrary radius. A more general
problem is to determine asymptotic expansions for
(3. 1) if one goes to infinity in the y plane along an
arbitrary straight line which does not necessarily
pass through the origin,i.e., if
y1=myy TR, (3.30)
where ]yzl — o and m and k are fixed real numbers.
Because this limit is interesting for physical appli-
cations, we will determine asymptotic expansions of
(3. 1) for this possibility too. In the limit (3. 30) the
transform (3. 1) can be written

f_‘(y) - f;:o dxl f-+xl dxz eiyz(mx1+x2)eikxv'(x)- (3- 31)
1

This is an integral of the same type as it occured in
the limit y; = my,, except that the original function

f (%) is multiplied by the factor e’*, This factor does
not change the properties of the function f(x) con~
cerning its differentiability and the fact that it falls
off asymptotically together with all its derivatives
faster than any power. So we have essentially the
same problem, only the separation into the real and
the imaginary part is a little more complicated now.
By Defining

fi® = g;’::;; ), (3. 32)
it follows that

Ref(y) = Ref,(y) — Imf,(y), (3.332)

Imf(y) = Imf,(y) + Ref(y). (3. 33b)

The asymptotic expansions for the transforms at the
right-hand side have already been determined, and so
this problem is also solved.

Finally, we have to consider a certain variation of the
transform (3. 1) which is defined through

z 0 x .
fly) = foo dxq f ' dx, e""wﬁxzyz)f(x)_
g "

The whole discussion is very similar to the previous
case, and we do not repeat it here, but give only the
results. In the limit y, = my, with m # £ 1, only the
origin contributes and this contribution is given by
the right-hand side of Eq. (3. 11); only the integration
regions are different now. For x, itis—0=x; =0
and for x, we have now x; < X3 = —x;. The same
partial integrations are performed, and it turns out
that the asymptotic expansion is exactly the same,
i.e.,

(3.34)

) =7

ify, =my,, m ++ 1and ly,|>w. If m =+ 1,0ne
gets for f(y) an equation which differs from (3. 20) by
the integration regions for » and v. They are now

(3.35)
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—0=u=< 0and — x = v =< 0, respectively. Clearly,
also the neutralizer M, (4) has to be redefined appro-
priately. Similarly for the limit y; = —y,, the integ-
ration regions in Eq. (3. 26) have to be changed to

— 5 = v < 0,respectively. Then one gets the asymp-
totic expansions

fy)=— % <i)”*1 L0 dx1<——a— : i) )

v=0 \y, 2v 0xy 09Xy

x2=1x1
+o(yzN). (3.36)

For the real and imaginary part, it follows that

Ref(y)z—NZ—‘j (— 1)l fO dx _@_,i_é’.. 2u41
10 220y2um2 o Nax oy,

X R |y o(y2¥)  (3.37a)
N-1
7 (= 1wt (0 2 ) >2u
Im = —— dx[— + —
w=2 22vy3ea L 1<8x1 0x,
X f(R) |z = sx, + 0(y2N). (3. 37b)

The + signs refer to the limits y; =+ y,. The limits
¥, = myy +k are again determined through Egs.
(3. 33), where at the right-hand side the respective

asymptotic expansions for the transforms f(y) instead
of f(y) have to be inserted.

So we solved the problem of determining the asymp-

totic behavior of the integral transforms fly) and
f(y), if one goes to infinity in the y plane along an ar-
bitrary straight line, completely. In Sec. 5 it will
turn out that with these results it is easy to deter-
mine the asymptotic behavior of Fourier transforms
in Minkowski space which contain singularities of

the form 8(x2) or 6(x2) on the light cone.

4. ASYMPTOTIC EXPANSIONS OF A CERTAIN
TYPE OF THREE-DIMENSIONAL FOURIER
TRANSFORM

In the next Section it will turn out that a certain type

of Fourier transform in Minkowski space, which

depends on two 4-vectors, can be reduced to a three-

dimensional Fourier transform of the following type:

- o0 o0 .

f(Y) - f dxl f gﬁ f+x2 de et(xly1+x2yz+x3ya)f(x).
0 0 X5 Yx, (4. 1)

Now x and y are 3-vectors (x1,%x5,%3) and (¥,%5,93),
respectively. The function f(X) is an element of the
space 8. If we talk about the asymptotic behavior of
this integral we mean again the behavior if the point
y is far away from the origin. The method to be used
is the same as in the previous case. At first we
determine the critical regions for the integral (4. 1).
It will turn out that they depend on the respective
limit and might consist of a single point, a half line or
part of a plane. Then their contributions are expan-
ded into asymptotic series.

In this section, R denotes the integration region for
the integral (4. 1),i.e., R ={x:0= x; = 0,0 =< x, < ®,
— Xy = X5 = x,}. For each point P, from R a neutral-
izer N;(x) is defined through

N® = T Nx,), (4. 2)
k=1,2,3
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where the N(x,) are neutralizers of the type (2. 2).
All partial derivatives with respect to the variables
Xxq1,%Xq9,and x5 are assumed to exist, and we have again
al+m+nA7i(x) _
axllaxg’ ox%
if x does not lie in the difference set of the two cubes
|x, — x| =€ and |x, —x}| < 6. If one takes for the
Nj(x,) the example given in Ref. 23, the support of the
neutralizer N;(x) is the small cube R; = {x:|x, — xj| =
5, k =1,2,3}. Analogously to Sec.3 we define AS, =
AR; N R. We want to go to infinity iny space along a
radius. This radius is specified as the intersection of
the two planesy, =my; andy,; = ny,, where m and n
are fixed real numbers and |y, | — + . In this limit
the contribution I; of a point P, = (xi,x5) to the inte-
gral (4.1) is

0 (4. 3)

I; = fafs S dxqdxgdx, e TR Ny Fx)xL, (4. 4)
i

If P, does not lie on the boundary of R, the correspon-
ding neutralizer Ny(x) may be chosen so that its sup-
port is completely contained in R,i.e., AS; = AR, in
Eq. (4. 4). It follows by the above quoted Theorem XII
from Ref. 28 that I, = o(y7™) for arbitrary m and n.

Next assume that P, lies in that part of the plane

x4 = 0 which belongs to the boundary of R, but x} =+

+ x}. The contribution of such a point may be written
as

0 ; 246 . x5+8 :
— ixyy) 2 ixgmy 3 ixgny;
I = fo dx, e fi_ dxy e f,-_ dxq e
xg-6 %378

X N(x) f(x)x5t. (4. 5)

If n % 0, Theorem XII of Ref. 28 is applied to the x4
integration. It follows that I, = o(y{) for n + 0. If
n = 0, the last exponential equals one and the same

reasoning is applied to the x, integration,i.e.,I; =

oyi®)ifn=0andm + 0. f m =n =0, Eq. (4.5) is
N times integrated by parts with respect to x, with
the result

N1

7 \vl v xb+8 x§+6
Iizlg(*—) ‘—‘<f2 ey [P dxg

i i
y 1 axi xlz ] %3~6

N®I@E) o). (4.0
We see from this equation that the leading term at the
right-hand side is ;1. To include the possibility that
the radius along which we go to infinity lies in the
plane x4y = 0 or x, = 0, the parametrization of the
intersecting planes has to be changed. It turns out
that we have considered already all characteristically
different possibilities, i.e., a point on the boundary
plane x; = 0 is critical only if one goes to infinity
along the y, axis. Now we consider the case that P,
lies in that part of the plane x; = x, which belongs to
the boundary, but x§,x4 # 0. It is more appropriate
now to specify the radius as the intersection of the
two planes y3 = ny, and y; = my,. With this para-
metrization the contribution of the point P, can be
written in the form

xbs ; 2t +5 . P i
I =‘£’i:i5 dxg gixam2 f’: 2 dx, PREPE j,;iié dx, ey
3 3 i

X N{x)f(xx3l. (4.7)

If m #+ 0, it follows from Theorem XII of Ref. 28 that
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I, = o(y3®). If m =0, we integrate N times by parts
and get

xi+6 . N-1 7\ v+l v

I e i xq( n4+1), 1 0
Ii—fi_édxsexsn 225 (—

*3 =0 \y, oxy

x <f11: dic N,(%) f(x)x;). (4. 8)

If n + — 1, Theorem XII from Ref. 28 gives again the
result I; = o(y3°). If n = — 1, the leading term at the
right-hand side is y3!. It follows that a point P, on
the boundary plane x, = x, is critical only if one goes
to infinity in y space along the line y; = —y, in the
plane y; = 0. Similarly it follows that a point on the
boundary plane x; = — x, is critical only if one goes
to infinity along the line y; =y, in the plane y; = 0.

Up to now we considered the possijbilities that P, lies
inside R or in a plane which belongs to the boundary
of R; but it was excluded that P, lies on the intersec-
tion of two boundary planes. These cases will be dis-
cussed now., We begin with the possibility that P, lies
on one of the two edges which are specified as the
intersection of the planes x; = 0 and x5 = £ x,. Our
discussion will be for the case x5 = + x,. The origin
is again excluded. The contribution of a point on this
edge can be written in the form

) . xi+6 . x .
- ixymyg 2 ixay2 2 ixgnyy
Ii—fo dxq e™ fi_ dxy e fi_ dx 5e
x5-5 x3-6

X N(x)f(x)x3l. (4.9)
Here and in the remaining cases, the radius in y
space is always specified as the intersection of the
two planes y; = my, and y; = ny,. If n & 0, this
equation is N times integrated by parts with respect
to the variable x5 with the result

<} . i+5 . N-1 . v+l
Ii — f dx1 einmyz fle_ dxz ez(ml)yz E 1 +1 gv
0 x378 v=0 \ny, dx4

X (N(®) f(®R)x51) - + 003" (4.10)

If n &+ — 1, it follows again from Theorem XII of Ref.
28 that I, = o(y3®). If n = — 1,it is immediately clear
that the leading term at the right-hand side of Eq.
(4.10) is ;1 because the lower limit of the x, inte-
gration is not determined by the neutralizer. If n =0,
the partial integrations with respect to x, are super-
fluous. So we have the result that, for a point 7, on
the edge x, = 0, x5 = x, to be critical, it is necessary
and sufficient that one goes to infinity in y space
along a radius which is contained in the plane y, =
—¥,. It is easy to see that a point on the edge x, = 0,
X3 = — X, is critical if the radius in y space lies in
the plane y, = y,.

Now let P; be on the positive x; axis,but x{ & 0. The
contribution of such a point to the integral (4. 1) is

<] dxz . Xo ; xi+5 .
_ tx3y2 txgnyg 1 ixymya
.= —= : e
I; fo P e f_xz dxg e fx;"5 dxq

X N®)f(x).  (4.11)

If m =+ 0, Theorem XII from Ref. 28 gives again I, =
o(yy®). If m = 0, it is immediately clear from Eq.

(4. 11) that the point P, is critical. The integration
over x, cannot give enough powers of y3! because the
integration region is not limited by the neutralizer.
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The x, integration is of the form (2. 1) with s(x) =
6(x), the leading term of which in the asymptotic
expansion is y5'. So it is necessary and sufficient for
a point on the positive x, axis to be critical that m =
0.

Finally, we have to determine the contribution I of
the origin. It can be written in the form

sdxg . & , +x, .
— e 2¥2 ixymyg ixgnyp
I fo P e fo dx, e f’xz dxs e
X No(x)f(x). (4.12)
If m,n + 0, this equation is N times integrated by

parts with respect to the variables x; and x;. This
leads to

10 _ “+U§V_2 _1_ U2 1 & d_xz-
4,v=0 Vo mitlyvel 70 Xq
y <eix2(1-n)y2 3HUN (%) f(x) o —eiTatlm,
| x-
axt oxy Xy=- 7,
9Ny (X) f(x)
0 .
X —————— | x=0 + o(vsN). .
ax' ax sy x3=x2> 0z) (4.13)

If m or n are zero the respective integrations by
parts are omitted. There is no trouble concerning
the existence of the x, integral in Eq. (4. 13) because
the square bracket has a first-order zero for x, = 0.
By using the relation

fab %ﬁ eiof(x) = — [Ey( — ixy) f(x)] 1o + fab dx

X E{(—ixy)f(D(x) (4.14)

and the results from Sec. 2, it follows from Eq. (4. 13)
after some simple manipulations that

4o PPEENZ o pn2 v
Iy = gt 2y (YT 12 f(]? %0
1—7n pr=0 \Yy mbrlnvel 9xh3x
A+U=N-3 s \A+u+v+3
+ E L wry 1 1 1
Av=0 \Yy milgl A+ 1] (1 — mi+l
L (] 1
dxj*t\ oxydx |2, se0 (1 + )M dxyet
x (a‘”ﬁ 2 o) ]+ ola (4.15)
ax13x3 X375/ %2=0

So we have determined all the critical regions for the
integral (4. 1). We distinguish the following cases:

(a) If one goes to infinity along the y, axis, the set
C,=1{x:x, =0, x5] = x,} is critical.

(b) If one goes to infinity along the line y; = 0,y, =
+y,,theset Gt ={x:0=<x,,0=<x5,x5 =7 x;} is
critical.

(¢) If one goes to infinity along a radius which is
contained in the plane y; = £ y,, the set C} =
{x:ix; =0,0= x,,x; = F x,} is critical.

(d) If one goes to infinity in the plane y; = 0, the set
C, =1{x:0=< x,,x, = x5 = 0} is critical.

If the radius in y space is such that it does not coin-
cide with one of the possibilities (a)—~(d), the origin is
the only critical point for the integral (4. 1).
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Now we have to expand the contributions of the vari-
ous critical regions into asymptotic series. H we
have none of the possibilities (a)—(d), only the origin
contributes and Eq. (4. 11) is an asymptotic expansion
for the integral (4. 1), i.e., we have in this case

f(Y) = I.

Next we consider case (a). To separate off the con-
tribution of the critical region C, we define the neut-
ralizer N(x,) through

1 forxy=ce
N(xy) =140
0= Nx;)=1

for 6 < x, (4. 16)

foresx, <6

and get in this limit

y)———f dxle“‘”wu)f dxzf dxaf(®).  (4.17)

With the results of Sec. 2 it follows 1mmed1ate1y

) :1?2: (i)"” = (f <Ly p dxaﬂx)) fe0

; axy N0 x,
o(yi™).

In case {b) our discussion will be for the limit y; = 0,
¥3 = + y,. The discussion for the limity; =0, y; =
~— ¥g is nearly literally the same;there are only some
changes. To separate off the contribution of the plane
x5 = — x5, we define the following two neutralizers:

(4.18)

1 forx,=c¢

Ny(xy) =<0 for 6= x, , (4.19)
0=N{x,)=s1 fore<xy,=<26
1 forxg=-—x, te
0 for—=x, +3=xy (4.20)

Nolxo,x5) =
B 0= Ny(xy,x3) = 1

= Xg= —xg + 0

for —x, t €

These neutralizers are assumed to have the usual
differentiability properties. Using them, the Fourier
transform f(y) can be written in the limit under con~
sideration as

fy) = f

de ; RPN
+ fe _x_z_ewm%{l“ Ny(x5)] [xz dxy

X Nylrg,xg) [ dx  f(x).

5 d ,
22 giravay (xy) f dxg e [7 dxy f(x)
Xa

et¥3rz
(4.21)

At first we integrate this equation N times by parts
with respect to the variable x4 and get

- N-1 oo il s dx
=2 () e T )
v=0 X

0

Vo 2
x (aV,Z (x) e2ixaya (%) )
N 16x§ ¥3="% J 8x§ F3=¥g
- ; 1 o0 00
x z)(i B A P - S VAT
u= O\Y Y € X,
Cd (4.22)
x4 vy,
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The cancellation of the singularities in the x, integ-
rations under the first integral is most easily achie-
ved through one partial integration with respect to
X5. The logarithmic singularity cancels with the
corresponding one of the exponential integral. Using
then the results of Sec. 2 leads after a few steps to

Fy :%(L)“ <log(— 2iCy,) f dx, 3vf(x)

v=0 \¥5 oxg

Xg=x%g=0
ax3 X3==Xy
p+U=N-2

; 2 1
S G 1 fco dx, oH+
=0 Vo 2u+l p,+ 170 ax*é*l

al/
x ( % ) + o(y3). (4. 23)
8xS x3=x2/ %2=0
Here C = logy, and y is Eulers constant {see Ref, 29,

p. 229). In case (c¢) we assume that the radius iny
space, along which infinity is approached, lies in the
plane y; = + y,. It is specified as the intersection of
this plane with y, = my, (m # 0). Using the neutra-
lizers (4. 16), (4. 19}, and (4. 20}, the contribution of
the corresponding edge to the integral (4. 1) is

- 8 dxg +x ; 8
F(y) ».:fo };ze”‘zyle(xz) f_x; dx g e“‘syzfo dxy
R o dx ,
X e 1mI2N(x, ) f(x) +[ __x,;zezxzn[l_Nl(xz)]
- & : & :
X fxw dx 4 e“‘”zNZ(xz,xg)f0 dxq e'™2
s

X N(xq) f(x).

Integrating by parts N times with respect to the
variable x4 leads to

(4. 24)

-+ g

o =3 ()" L (2

1x2y2N X ) f
=0 \y mitt 2
2

i o f(x) o dxXy 4. .

X ell(gyz + X2¥2 1—N
o’ fi Xy € [ 1(x5)]
%=0

—Xotd )

X [ e dxg e"™72N, (%9, x4) /=) ix)
axl x=0

+ o(y). (4. 25)

The expression in the square bracket is of the same
form as Eq. (4. 21), and so we get without further cal-
culation

- HHEN-2 o e Sl Al
= 2 (-—’—) (log(— 2iCy ) ——ﬂ—
wv=0 \¥a mt 0x18x3 x-0
+uﬂx)
— f dx ., logx2 Y l5=0
1a 3 ‘xg=-x,
M’-‘*gN 3 M++3 1 aml
M v=0 (y2> 2)\+1mp+1(A + 1) ax%+1
x (Q‘%,L(’-‘l )T (4.26)
8x18x3 PENER xZ:O

Finally, we come to case (d). Using the neutralizer
(4. 19) we have now

- 5 d : +X N 00
Ay) = fg _.;fl e 2N, (x5) [ dig e fo dx , f(x).
2 Xz

(4.27)
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N partial integrations with respect to x5 lead to

(n * 0)

- N-1 /- \vil 5 d o0
A 0

=2 ()" -5 [ T2 ma) [ an

x (eixz(l'n)yz Vf(x) |
axh

_ eixz(l-m)yz

‘n:"xz

3Vf(x) > _
+ o(yz).
axy o (4. 28)

If n = 0, the partial integrations with respect to x4
are superfluous, With Eq. (4. 14) and the results of
Sec. 2, we get finally

-~ N-1 ;o\ v+l oo
7o) =102 B (L) o [7 e, LE
1—n w=0\y, nv1 70 8xy
piv=N-2

j \ Hv+2 1 o0 1
T A dry[ —L
u,v=0 <y2> ptl f" 1[(1 — n)#+d

%y x3=0

o ot (av x) > 1w
+ +. 1
AN 1 N P P O T O 2
x (a—ﬂi’ ) ]+ olyM). (4. 29)
0%5 lyg=xy/ x50

So we have finished our discussion of the asymptotic
behavior of the integral (4. 1) if one approaches infin-
ity along a radius. Similarly as in Sec. 3 we consider
now the possibility that one goes to infinity in y space
along an arbitrary straight line which is not neces-
sarily a radius. Such a straight line may be speci-
fied as the intersection of two planes, for example,

(4. 30a)
(4. 30b)

¥y =my, ta,
y3=nyy +b,

where a and b are fixed real numbers and |y, |- .

In this limit the exponential in the integral (4. 1) reads
expliyqa(mx, + x4 + nx3)] X expliaxy + ibx3z). This
factor does not change the properties which we assu-
med for f(X). So we have again essentially the same
problem. The asymptotic behavior is qualitatively the
same if one goes to infinity along a radius or on a
straight line parallel to it. The asymptotic expan-
sions in the limit (4. 30) are derived from those for

a = b = 0 by replacing the function f(x) through
exp[iax, + ibx3)f(x). We do not give them explicitly
here because it would mean repeating the complicated
formulas for the asymptotic expansions with a few
changes. However, the first few terms for these
limits are also given in Table IV.

At the end of this section let us make some remarks
on the results which we have found. It has become
clear what the relevant points in discussing the asym-
ptotic behavior of Fourier transforms in several
dimensions are. The asymptotic behavior is deter-
mined by the shape of the integration region and the
singularities of the integrand. The effect of the shape
of the integration region can be described as follows:
The asymptotic behavior which is due to the shape of
the integration region is different from o(r-=), where
7 is the distance of a point in the space of the trans-
formed variables from the origin, in those directions
in which the planes of constant phase are tangent to
the boundary of the integration region. I the integra-
tion region is limited by planes only, there are the
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following possibilities (in three dimensions): A plane
of constant phase coincides with a boundary plane, or
an edge, which is the intersection of two boundary
planes, lies in a plane of constant phase. In these two
cases the Fourier transform falls off slowly for large
¥, and in the former case it is slower than in the
latter. A corner contributes always asymptotically.
However, the corresponding contribution has a higher
power of -1, This behavior can be nicely seen from
the results of this section and Sec. 3 (see also the
Tables). The Fourier transform (4.1) is more com-
plicated because of the singularity x5!, which is inte-
grable as a consequence of the shape of the integra-
tion region. It gives rise to the logarithmic terms in
Egs.(4.23) and (4. 26).

5. ASYMPTOTIC EXPANSIONS OF SINGULAR
FOURIER INTEGRALS IN MINKOWSKI SPACE

In this section we come to our main task—to deter-
mine the asymptotic behavior of Fourier integrals in
Minkowski space, if the original functions contains
certain types of singularities on the light cone. We
begin with the following integral

80 = [ dx e 6(x 5) 6(x2) (x). (5.1)
Here x and y are 4-vector variables in Minkowski
space. The function ¢(x) is assumed to be continuous-
ly differentiable an arbitrary number of times and to
fall off at infinity together with all its derivatives
faster than any power, i.e., ¢(x) belongs again to the
space 8. We choose a special Lorentz frame such
that y has only two nonzero components y, and y 5.
Then the integral (5. 1) can be written as

B0 = [ dxg 6(xg)e 0% [ dxg e 3 [ dx

= =
x 8(x§ — 1% 12 — x3)p(xg, x5, ¥)  (5.2)

We introduced the notation % for a vector in the two-
dimensional subspace of the 1- and 2-components, i.e.,
=
we have x = (x,,X) = (xo,x,x32>= (*9,%1,%9,%3). In-
troducing polar coordinates |x | and ¢ in this two-

dimensional subspace, Eq. (5. 2) takes the form

(B(y) = fdxo g(xo)eixoyo fde e i%3y3 fdl?l l?l

where we have defined

= 27 =
(xo, x5, |1 = [ dy 0(xg, x5, %) (5.4)
Now we use the 0 functions to perform the integration
over |%| with the result

~ ©0 ; +X .
$(») = [ dxg e“‘oyof_xo" dxy e ™% f(xy,x5).  (5.5)

The function f(x,,x3) is connected with ¢(x) through

oy __ 1 [271 4 = 2 2)1/2
f(x()”‘:;)—'z‘fo ady ¢(xy,— %a, lx] = (xo_xa) »¥)
(5.6)

The integral (5. 5) is of the type (3. 1), and so we can
apply the results of Sec. 3 to determine asymptotic
expansions for ¢(y). It is easy to see that Eqns.
(3.15), (3. 22), and (3. 28) are asymptotic expansions
for (5.5) for the respective limits if y, is replaced
by v,. These expansions look somehow complicated.
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TABLE II. The leading terms of the asymptotic expansions of ¢(y fdx ei539(xy)s(x2)¢(x). If the singular factor s(x2) = 6(x2), the func-
tion f(xo,xs) is defined through Eq. (5.6). If s(x2) = 8(x2) it is defmed through Eq. (5. 8). The constants m and 2 are fixed real numbers and
lysl =

Limit Leading Terms of the Asymptotic Expansions of $(y) = fdx € ¥8(x)s(x2)¢(x)

2f(0 0) 1 2 < 92f(xg, x3) 32f(xg,%3) . Bzf(xmxs)> -4
= = 3)-——273 +
yo=myzm+x1l Red(y) = > y§ 1 —m2) § (3m2 + 1) o3 2xg0%, + (m2 + 3) 53 —_— o(y3%)
. B 4 1 af(xg, x3) Bf(xo,x3)> N 8 1 ( 241 33f(xg,x5)
mé(y) =~ (1 —m2)2 yg( ax, * 9%4 P (1~ m2)4 g tm ym ax3
3 ]
+ (5m2 + I)M_}.m(”ﬂ.;. 5)L°’x3)+(mz+ I)M) +0(}'§5)
xgoxy 8xo0x3 3x3 77570
_ sy L (o (2,8 1 mdx<a_ a_)3 t o(yed
Yo =12 Y3 Red¢(y) = 27 fo dx (ax + axs)]‘(xo,;vcs)l)(37”0 + o fo g + oy J‘(x(,,xa)\xa:w0 o(y;%)
b (3) = [ drotro, 7 50) — g oo * o) Feomal| otz
y3 0 a"3 X3=F g
- 21(0,0) 1 4mkf(0 01 2 2 2 2 32f(xq,%3)
fno::imfa + &, Red(y) = L —m? yz (1 e —g + i m2)3 y4(k (3m2 + 1)f(0,0) — (3m?2 + 1)7325‘2)
2 2
_ 3MM_(",2 + 3)%) +o(y;4)
CEPCL N 8x§ £0=%=0
- 4m af(xo,xs) af(xo,x3)) 4% (3 8f(xg,x3)
Tmé(%) (1 —m?2)2 y3< axg xg 5,70 T (1—m2)3y 4 (3m b 9%,
P
ax3 xo=x3=0
-~ L a9 0
= = dxo(—= + 2\ cosk ,
Yo=tyy +k Red(y) = 3’3 f dx sinkxo f(xg, F xg) — 292 fo (ax + ax3> coskxyf(xg x3)‘ -
1 3 \2 . -
4y3 f (axo + 5;—3—) smkxof(;x(,,xa)\xS= - + o(y33)
= 1 %> 1 © [ a
Imd(y) = y_afo dxg coskxg f(x, ¥ %0) — ﬁgfo dx (Ef s a;) smkxof(xo,x3)|x3_”0
1 o d 2 \? -
R L et R R

It seems desirable to have more explicit expressions
for the lower terms., They are given therefore in
Table II.

Another type of singularity on the light cone is the
unit step function 6(x2). Let us defined ¢(y) now
through

é(y) =

If we go to the same Lorentz system as in the former
case it follows easily that Eq. (5. 7) can be brought
into the form (5. 5). However, instead of (5.6) we
have in this case

Y —
g xg) = [ ¥ S Tralra
JET Ay oo, — Xgy %)

[ dx ei%8(x)8(x2) (x). (5.7)

(5.8)

So the asymptotic expansions of (5.7) are given by
the same formulas as for the transform (5.1). The
only difference is that f(x, x3) is defined through Eq.
(5. 8) instead of Eq.(5.6). That does not mean, how-
ever, that the leading terms must be the same for
the transforms (5.1) and (5.7) if the function ¢ (x) is
given. This is easily seen by putting the respective
definitions for f(x,, x3) into the expressions for the
coefficients in Table II or III.

Next we consider the transforms

= [dx eimve(xy)s(x2)p(x), (5.9)

where s(x2) = 6(x2) or 6(x2). Because €(x,) = 6(x,)
— 8(— x), this problem is equivalent to knowing the
asymptotic expansions of (5.1) and (5.7) with 6(x,)
changed to 8(— x,). Then it is easily seen that these
integrals can be brought into the form
$(3) = O dxq e™o% f;xo dxze ™ f(xg,x5)  (5.10)
Yo o
with f(x,, ¥3) given again by Egs. (5.6) or (5.8). This
transform is of the type (3. 34). So the solution of
this problem is also included in the results of Sec. 3.
The lower terms of the asymptotic expansions for
the transform (5.9) are given in Table III.

To make the meaning of our results clearer, let us
illustrate them by an example. For ¢(x) we take the
function

O(x) = e % (5.11)
where p is a fixed timelike 4-vector, and for the sing-
ular part s(x) = 6(x,)6(x2). This function does not
belong to the space 8 in the variable x because px =
const for x on a certain spacelike hyperplane. How-
ever, the integration regions of the Fourier trans-
forms considered in this section are the inside or the
surface of the light cone, and so this does not affect
our discussion. Going to the rest frame of p we get
from (5.6)

F(Xg, %g) = € P75, (5.12)
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TABLE IIl. The leading terms of the asymptotic expansions of ¢(y) =
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fdx e‘*ye(xo)s(x2)¢(x) The function f(x,,x;) is defined in the same

way as in Table II. The constants m and k are again fixed real numbers and |y,| ~ «.

Limit

Leading Terms of the Asymptotic Expansions of ¢(y) =

Jdx eixve(xy)s(x2)p(x)

Yo=mys,m++1l Red(y)= 0(y5°°), Im$(y) = o( y3°)

Yo =% Y3 Red(y

L f*°° (—i—Q~>f(x0,x3)|

Zyz -0 oxy 0xg

mf) = - [ 7 do S Fxq) = 43f*°°dxo(a—i—) Fros%3)|

=F
*3= T %y

+o(y3%)
RAE)

8)} ‘[ dx0<ata—> f(xo,x3)|
8 + o(y3%)

x3= T2y

dxg @

Vo =Mmys + k,

"kt 1 Red(y) =o(y5<),  Imd =o(y;°)
Vo=tys+k Re&)(y):—l— "% dx, sinkx, flxg, F % )~—Lf+°°dx (L:ti> coskx, f(xg, * )’
P o o/ V¥os T %o 2y2 o bx, 9%, 0/ %01 %3 i
1 e 3 \2
—— dxg — t — -2
Yy s °(axo : axs) smk%ﬂx"’x"‘)‘ . o3
== dxo coskx, flxg, F xg) — %f (E(;i %3) s1nkxof(ac0,x:,)|x3 .
- ;Lf <§i i-)z coskxof(xo,xs)l + 0(y52)
0 3 =%x,
Via the relation and
’ o(y> form £z 1
dkg-ax? 0 for k& odd Imd _S (75) *
dx* = L akpy(— 1)k , (5.13)  Ime(3) = T JRRG 4 o yo) £ —:1
x=0 = -2~ for keven 2p0y3e o(yze) form =+
Gk ‘ (5. 15b)
one gets easily from Table II for the limits y, = my;,  Alternatively, for the simple example (5. 11) the
|y3| - ®, Fourier transform (5. 1) can also be calculated
a1 1 14 3m2 p3 exactly. The result is, for y, = my,,
— — + dg———— — +o(y3Y)
1—m2 y2 1 —m2)3 y4 ~
N R " Re¢(y):—"§<m+1)1F1( —~y%’”+”)
ed(y) = form + ¢ 1 (5. 14a) 293 4p2
m b3 _
—+—+o(y ) form==1 —(m—1) 1F1<1,3 _yg(ﬂ_._>’ (5.16a)
22 4v§ 4p3
and - 3/2 —_ 12
So(y form++1 Im¢(y)=27r—— [xp( yg(ln‘l—z—lz—)
mf(s) = m2 . (5. 14b) Y3 g
= orm = =
(21103)3 _ exp( yz(-”—’i;l)—ﬂ . (5.16b)
Similarly it follows for the limit y, = my3 + &, |y3]
— « that Via the asymptotic expansion for the confluent hyper-
k an(3m? + 1 i
2m + dmm m(3m ) geometric function | F(1, 3;x) for |x]| — «, Ref. 29,
(1 —m2)p% (1 —m2)2y} (1 —m2)3 p.508,Eq.(13.5.1)
L2
(1 pa>+o(y3) form 4+ 1 1F1<1,i;x>:ﬂﬁ__1_L
Red(y) = 2% 2 2 Vx 2Vrx
N-1 1
™ (1 i._’f_)_ Tk Xy S0 3) 4 o()x)-va),  (5.17)
21721 T\7274p2/ v, 2% w3 n=0 x
+ o(y3%) form =+ 1 (5.15a)  one gets from Eq.(5.16)
|
4 J— N-1 T(n + 1)227p2n 1
—WZ) (n + 3) pﬁ[ — } O(y32%-2) form =1
- y% =0 y§n (m + 1)2n+1 (m — 1)2n+1
Red(y) = _ ) (5.18)
Va %1 Tn + )08
— ) —————+ O(y£"2) form==1
2y% »n-0 yir
-
and Eq. (5. 15b) for the imaginary part. It is easy to Red(y) = — 7 NZ';1 22”"!P2"L(_1/2) <— k2>
see that the leading terms of this equation agree with n=0  pgn+2 " 4p2
Eq.(5.152). Similarly, one can derive asymptotic 1 1 Tk
expansions for the limit yo = myz + & with the result X <(m Ty + m T 1)2’”1) + E%:
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TABLE IV. The leading terms in the asymptotic expansions of the integral transform (5. 20) for various limits. The function flxy,x5,x5) is
defined through Eqs, (5. 22) and (5. 25). The constants m, n, a,and b are fixed real numbers,

Limit Leading Terms of the Asymptotic Expansions of the Fourier Transform ¢(y,,¥,)
1+ 2 £(0,0,0 i 1 1+n/1 3 1 3
M___.__[l ( + )f("v"zrxs)

~ 1
Y10 = MY30s Y23 = Mg ¢(y1,y2)=~y—lo

1—n mn 3 mn 1—n\mox, ndx

2
20 Y20

{950l = @ #7550
Excluded are those values of + i(f(o,xz,- *3) — f(O’XZ’xz)) ] +0(y33)
m and n which match any dx, 1—-n 1+n 50
other case in this table. j
- i dx, .+x, 1 odx, .4z, 0f(xy,x0,%3) ]
Y30 = Vg3 = 0 B(yy,v,) = f0°° 2] dxy f(0, %5, %) — v ) —2 [ gy, Ty +o(y;2)
Iy | 10 0 Xz 7 Yo Xy Th axy %20
le — 0
~ i . o 3 © 00
V10 =0,¥23 = ¥ ¢(y1,y2)=;—log(—- Zlcyzo)fo dx1f(x1,0,0)*yi_ '[0 dx1f0 dxy logxy flxy,x5,— x5) + 0(y3h)
[yl = 20 20
* 11 . 1 1 bl -
Yio = MYgosm ¥ 0 $(y1,55) == = — log(— 2iCypo)f(0,0,0) + —— = [ dr, 10gx,f(0, x5, x,) + 0(%;3)
Y23 = Y20 V20" V2o
[¥50l =
. i 1+72 e 1 /1 1+2 8f(xq,0,x3)!
=0 R = — — lo| x,OO——~<——lo dx
Y10 " Byya) = 0By fy S, 0,00 = (o e Jo o
Va3 = Wao, ¥ %
1 f (x,x0,— % 1 f (X1, %9,%5)
[0l = N [ ax, f (X1, %9y~ %) B fow dx, f (X1, %p, %5 >+0(y§3)
1—n"0 9xg 50 L+m ax, 2,20
a & ) 1 101~nf(0,0,0) i 1 [log1~n(1 2 1 a>f(x i x),
=m yVo)=—— —— — = ) X2,
Y10 y20+ b Y1z ¥3, 1+ n mn y8, mn 1+n\max, nox vz sl .
Vo3 = Wao
[yg0l = 0, and # so that P —)7(0,0,0) + — SO~ 2a) f(0,x2,x2)> - R 0)} + o(y,3
they do not match any other gl — n\m ,, dxz 1—n 1+ n 2,0 1— 52 20)
case
i dx 1 dx, + of (X, %,,x
Y30 =G Yag =0 Flypy9) = — [7 T2t ! de 5 5 f (0, x5, x5) — — [7 2ot [ ot T2 %s)
|y, = © Y170 %2 Yo *2 2 0%, %70
10 + o(y;8)
ia iax ibx
Y10 =& Y23 =Yoo + 0 (Y1, ¥9) = o— log(— 21Cy20)f dx,e™ M1 (x,, 0,0 ——f dx e lj dxge "2 logxy flxy, xg,— X5)
1920l = +o(y;0)
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Y9pg=MYgo t @ ¢(y1,y2):‘%ll g(— Zlezo)f(O 00)+_kf dx etxa Ingzf(o KXoy~ )+0(yi(%
Vo3 = Yo + b Y30 M 3o m
=Y2
[yzol - w
- 1 ¢ 1+7 .o o 171 1+n . (.
Yio=%Ya3 =MWy + 0 ¢(y1,y2)=y—; logr‘—nfo dxlewlf(xl,0,0)——zvlin— g f dx e’ (lbf(xl,O,O)
20 - Y20
nfxl
of (x4, 0,x 2ib 1 f(xy, %5, — x5)!
|y20’ S o " f( 12 % 3) ) 2/‘ dx lawx‘f(xl,o 0) + f dx iax, ( f( 1172 2 '
0xg =0 1—=n 1—-n x, £=0

1 3f(xy,x5,%,)

x2=0)] +o(y5%)

1+n 9xy
N1 22n(n — 1)1 pgn — k2 ing terms of Eq. (5. 19) are easily seen to agree with
x 2 TLQ-/%) (ﬁ > the corresponding expansions (5. 11) which were de-
n=l Y b rived with the help of Table II. So we have a nice
1 1 oNo1 check of our results from Sec. 3.
+ + O(yz=~
% ((m ~ 122 (m+ 1)2"> (¥3 ) Finally, we come to the following integral transform,
for m 4 + 1 and (5.192)  which depends on two 4-vectors %, and x,:
Red(y) = L F (1 e ) 1 %3 $(91,95) = [y [dny e™7162%20(x 1 )6(x50)0(x3)
2pgys T \'2°4p2) 2 %0 x 6(x3)8[(x, — x)2]$(x1,%,). (5.20)

pgrnl k2 kY We go to a special Lorentz frame. It is defined
% —— Ln(—l/z) ( 41) — :1— E through the conditions that the vectors y, and y, have
3 the form y, = (¥,4,0) and ¥, = (954, 0, 0,¥,5). This
P27 2(m — 1)! k2 aN-1 is always possible if y, is timelike. It is not difficult
x —“—W L3 (‘ 4p2> + O(yz2N°1) to see the changes which have to be made in the fol-
0

(5. 19b)
for m = + 1. For the imaginary part we get again
(5.15b). The functions L{*)x) are the generalized
Laguerre polynomials, Ref 29, p. 774. Again, the lead-

lowing discussion if both 4-vectors ¥, and y, are
spacelike. We choose the direction of y, as polar
axis and call the polar and azimuthal angles of the
vectors x, and x,, £, = (6,,¢,) and Q, = (8,5, ¥,),
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respectively. Then the integral (5. 1) reads

&(y1,92) = fow dx eixmymfow dx g€
x [ dlx,| Ix,/2fde; [ dlx,| Ix,)2
% fdﬂz e-illeIyzlcosezé(x%)c(x%)

X 6[("1 — %2)2]0(% 105 %20, |X4l, Ix,l, 24, 2,).

(5.21)

Using the § functions to perform some of the integra-
tions and defining

i"zoyzo

— T 27
@(%x10s %50, COSO,) = ffo dyd(x,, Ix;] = x4, 84, 2,),

5.
We get from Eq. (5. 21) (5.22)

-~ 0 i °0
(91,95 =fo 10 elxmymfo %30

—ix40ly,lcoso

; 1
iX0Y50 [T
e f_l d cosb,,

Xe 20(% 10, X90s €OS0,).

(5.23)

FRITZ SCHWARZ

With the substitutions x,, = %, %55 = %,,and x,, X
cosd, = x5, it follows that

& thed ; o dx .
¢(y1’y2)= fo dx e“‘lymfo x_zgezx2y20
+x .
X f_xzzdxae 1x33’23f(x1,x2,x3), (5.24)
where
f(xlsxzy x3) = (xlo,xzo, 00892) (525)

The integral transform (5. 24) is of the same type as
Eq.(4.1). By using the results of Sec. 4 the lower
terms of the asymptotic expansions of ¢(y1,y2) are
given in Table IV.
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We construct a realization of the U,

1 and /U, groups as multiplier representations of the space of functions

on the U, group manifold. Making use of the orthogonallty and completeness of the U, unitary irreducible re-

presentanon matrix elements (UIRME's), w

we are able to express the U, ; boost and IU translation matrix

elements (the generalized Wigner d—functmns) of the principal series 'of UIR's as an mtegra.l over a compact
domain (unit disc) of two U, d-functions, phases, and the multiplier. This is an extension to the unitary groups
of a method previously used [d. Math. Phys 12, 197 (1971)] to find the SO,, SO, ;,and ISO, UIRME's in a re-
cursive fashion. We establish a number of symmetry properties, the asymtotlc (Regge- hke) and contraction

(U, 1~ IU,) behavior of these functions.

1. INTRODUCTION

The unitary and pseudo-unitary groups in nuclear
and elementary-particle physics have been used
mainly through the associated Lie algebra.l The
states of a system are identified with the components
of the bases for unitary irreducible representations
(UIR's) classified in some mathematically conven-
ient or physically relevant chain of subalgebras. In~
teractions are then represented by operators with
either irreducible tensor properties under the group
or constructible in some simple fashion out of the
universal enveloping algebra. Thus, the Wigner coef-
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ficients and the matrix elements of the generators of
the Lie algebra2 have played the main role in the ap-
plications of unitary groups.

The orthogonal, pseudo-, and inhomogeneous-ortho-
gonal groups, on the other hand, have been widely used
in connection with their finite transformations, either
as a geometry group or in harmonic analysis on the
S0, 4 and SO; , groups, whose UIR matrix elements
(ME"s) constitute a “best set” of functions in which

to expand high-energy scattering data.3 Also, a num-
ber of field theories have made use of the Poincaré
group (ISO3 ;) manifold.4
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the Lie algebra2 have played the main role in the ap-
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group (ISO3 ;) manifold.4



THE U, , AND IU,
There has been a corresponding increase of interest
in considering the UIRME's—the generalized D and
d-functions—as “special functions,”® that is, as or-
thogonal and complete® sets of functions in terms of
which one can expand any well-behaved function on
the group manifold which, furthermore, due to the
group properties, exhibit summation and recursion
formulae, the emphasis being placed not so much in
their explicit expressions which, like the series ex-
pansion of a Bessel function, provides at best a limit-
ed insight into the aforementioned properties, but in
the relations between functions whichthese properties
imply.

It was in this spirit that we treated in Ref. 7 the
generalized Wigner d-functions for the SO,, SO, 1,
and ISO,, groups.8 In the present paper we apply "the
techmques developed in Ref. 7 to the unitary (U,),
pseudo-unitary (U, ), and inhomogeneous umtary
(IU ) groups. As the method is essentially parallel,
we shall skip most of the introductory material on
multipliers as well as the detailed description of the
U, manifold and representation theory. In these, we
use the concepts introduced in Ref. 9, giving a sum-
mary of notation in Sec. 2.

The U, UIRME's are essentially the classical Wigner
d-functions. Bég and Ruegg!© and T.J.Nelson! stud-
ied the U; harmonic functions, the analog of the SO,
spherical harmonics on the (five-dimensional) mani-
fold of the complex 3-sphere C; = U,\Uj, the eigen-
functions of the Laplace-Beltrami operators of the
manifold. Usingthese techniques, Fischer and Raczkal?
gave explicit expressions for the U and U , har-
monic functions, These can be used in order to find
the UIRME's themselves, as was done by Holland!3
for SU, and by Delbourgo, Koller, and Williams!4 for
SU, . This technique, however, can only give the
[J1J: - +d J,] UIR's of the general U, (n> 3)  groups
since? only these can be realized on the C,=U, \\
U, homogeneous space.

A different line of approach was followed by Chacén
and Moshinsky,15 who expressed the general U trans-
formation as a product of several U, transformations
and transpositions. This method was extended to U,
by Flores and Niederle.16 Taking these d- functlons
as known, our approach hinges in defining the action
of a U, ; group as a group of transformations of the
U, mamfold such that, while the canonical U, sub-
group of U, 1 produces “rigid” mappings (1eav1ng

the Haar measure invariant), the boosts of U, ,1 bro-
duce “deformations” of the manifold. This 1s "detailed
in Sec. 3. By considering those transformations
which commute with the canonical U, _; subgroup,

it is sufficient to define the “deformation” on the

C, = U, 1\ U, manifold. This leads to a multiplier
representation and to the expression, in Sec. 4, of

the U, ; d-functions of the principal series of
UIR's17.18 in terms of an integral over a compact
domain of two U, d-functions, phases, and a multiplier.
Some propertles of the d- functlons are exhibited in
Sec.5. In Sec. 6, a similar procedure gives the 1,
d-functions. These are checked to correspond to
contractionsl?® of the U, ; d-functions.

The formalism works best when we use the unitary
analog of the Euler angles,15:20 the “last latitude”
angle in U, ; being a boost and, in /U, a real trans-
lation. As for the orthogonal groups,? we want to
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emphasize that our procedure gives the U, ; princi-
pal series of UIRME's classified by the canonical
chain of subgroups. Several properties are apparent
from the integral form. This method seems to be ex-
tendable to other groups and manifolds in essentially
the same form.

2. THE UNITARY GROUP MANIFOLDS AND REPRE-
SENTATIONS

The Euler-angle parametrization5.20 of U, can be
defined, enclosing collective variables in curly brac-
kets:

u, o, 6}(»)) =u,_, o, 6} (n- D) c, p (), 6(m)1),

(2.1a)

Cn({(,‘b(n) (ﬂ)}
= 3,68 1 68D e o 6, (2. 1h)
ul({¢:'}(1)): Cl({¢(1),'}) = ¢1(¢1(1)), (2- 10)

where 7, (6) are rotations by 6 in the p-g plane of an
n-dlmensmnal complex coordinate space Z» > 2z, and

®,(¢) are phase rotations by ¢ in the kth coordmate
Defmmg

z({ ¢, 6}) = ¢, ({e, 611z,

for a fixed z, € Z*, we introduce complex-spherical
coordinates in Z” as

z{9, 0 = r({pD e Pe=re 1Onteeron)

X sin6, - --sing, cost, ;, (2.2a)
for k=2,...,n— 1. For k= 1 we can put formally
6o = 0, while for k= #

z,(o,60) =7, {6he" =re "% cosp,_,. (2.2b)
Choosing the ranges!56, ¢ [0, n/2] i=1,. — 1),
o, €[0,2n)(G=1,..., n), we give to rk({e} the mean-

ing of the modulus of z and ¢/, as its phase.

For fixed » we have the (2n — 1)-dimensional mani-
fold of the complex n-sphere C, = U, _;\ U, with

de, (o, 61) = du,(¢,,6,.1)dc, (e, 8D,  (2.3a)
A ¢y, 05 1) = sin?#730,  cosb,_,d¢,d6,_;, (2.3b)
dei({p, P =duq (b, ) = doq, (2.3c)

and through (1.1) we construct the Haar measure for
U,. Integrating (2. 3) over C, we find its area to be
IC, | = 277/T(n). The volume of U, is,from (2.1),
volU =volU, 4-1C, |, volU; = 2m.

For the U, _, ; group, the rotation angle in the

(n— 1)-n plane in (1. 1b) is replaced by a boost

b,-1, ,(8), ¢ € [0, ) in that plane, while for the I,
group, it is replaced by a real translation t, . 148,

¢ = [0,%) in the (# — 1)th direction,

The U, Gel'fand kets2,21 will be abbreviated7
|J,,J, 1), where J, = [J, 1,J,,,. ..) 1abels the

U,UIR and J__; its row index: J,_; = {Jﬂ 12

J,}, where J, denotes the UIR of the canonical
U subgroup of U The individual labels J,,, obey
the known “zig—zag” inequalities

J. Math. Phys., Vol. 13, No. 10, October 1972
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Jom-1 291 m-12d 4y m=hkzm =2 (2.4)

The U, representation D-matrices are thus labeled
as

dn
DJ .91

[u, o, 6}(m)]
=(J,J, 1w, (o, 65N 1T T 1), (2.5)

and can be decomposed through (1. 1) into sums of
products of the phase functions

PyE (@)= Ty 118 4) I, T 1), (2.6)
which are diagonal and independent of the U, (m > &
and m < k— 1) labels, and the generalized Wigner d-
functions

Jp
dJk 19p-29 k- 1(6)

= JpJe1p-2 |7’k—1,k(9) T4 - 1T 2)s (2.7
diagonal in the U, and U ,_, UIR labels and indepen-
dent of the U_{(m > k and m < k — 2) labels. The U,
D-functions (ﬂ 2.5) are orthogonal and complete on the
U, manifold with the U, Haar measure and the Plan-
cherel weight dimJ, /volU

For the U,_, ; and IU,_, groups,the Gel'fand pat-
terns17.18 are similar to the U, ones, except for the
labels J, , and J,, which are,in general, complex and
do not abide (1.4). The representations are thus in-
finite~-dimensional. The d-functions we want to cal-
culate,which we shall denote by #d and d for the
pseudo- and inhomogeneous-unitary groups, are the
matrix elements respectively, of the boost b({) and
the real translation #(§) in the corresponding Euler-
angle parametrization.

3. THE U, ; ALGEBRA AND MULTIPLIER REPRE-
SENTATION

The set of operators on the complex n-space Z*#

4 (3.1)

_, 2
(o’k o ZkazJ

i3z,
with z, = 2z* (complex conjugation), have the well-
known commutation relations of the generators of the
u, algebra.?! They leave the n-sphere C, = U, _\U,
invariant. If we add the z,and z* (k=1,..,,n) to
the set (3. 1), we have the generators of an i, alge-
bra. Using the second-order Casimir operator

g (n)= @jk@kf' (8.2)
(sum over repeated indices, unless otherwise indicat-
ed), we can construct, out of the universal enveloping
algebra of iu,, the operators

(o)ep+t = JW(n) 2,14 0z, =2,C4 + (3n +0)z,
(3.3a)

(o) k| = J{W(m), 2¥] + 0 2k = 2l @ f + (—3n + 0)z*
(3.3b)

(g} = [(DRf,,, (De4 1] — € =2,27C + (o +7)
(3.3¢c)

(no sum over k), where ¢ is an (as yet) arbitrary com-
plex number. As the notation suggests, (3. 3) together
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with (3. 1) generate a u, 1 algebra which leaves C,
invariant with » = 1. Each value of ¢ gives a dlfferent
set of generators which will produce a corresponding-
ly distinct UIR, as can be seen from the u, ; Casimir
operator

T(n,1)(g) = ¥(n.1)0) + 02 + 02 (3.4a)
and the unitary invariant
n
Q("-l)slgle’g—%i}:—o—o. (3. 4b)

We can build an so, ; C u, ; subalgebra generated

by
Mp=e,k—ekr (1sj<ks n) (3.5a)
and
(O)M,”Hl = (o)Cr+l — tolek, (k=1,.,.,n),
(3.5b)
anti-Hermitean under the measure (2.3). The opera-

tors (3. 5a) will generate boosts in the kth direction.

Now, since (o3M, , ., commutes with the genera-

tors of u,_q,its actlon on U, can be fully studied as

the actionon C, = U, _\U,. It is sufficient, there-

fore, to construct (oM, ,.; intermsof the complex-

spherical coordinates (2 2) Direct calculation through

(2.2),(3.1),(3.3), and (3. 5b) yields

(o) . 0

M, .1 =sinf, _4 cos¢ ﬁ;—l

+ (sec6, ; + cosb,_,)sing, ——aa
Py

sing

— secq, + €086, 4

_@
"3, 1
[(n + 2 Imo)cos¢,, — 2i Reo sing, ].

-1
(3.6)

The exponentiation of (3. 6), for ¢ = 0 yields the action
of b, ,.1(8) on C, and can be found from the action

of Un 1 on itself (in the Iwasawa decomposition

U,y =0, A N) modulo N, in the same fashion as

was done in Ref. 7, generating the following trans-
formation of z € C,: the unit disc |z,| < 1

z, cosh{ — sinh{ (3.72)
.Ta

z, >z, = ,
* ™  cosht — 2, sinh{

which defines ¢, = ¢, and ¢, — 6, and

¢n-l - d);,—l
=¢,-1 + arg(cosf,_, cosh{ — expi¢, sinhl)
Eq)n—l + X(¢n’6n—1’ §)’ (3.7b)

all other coordinates of z remaining unaffected. This
can be seen as the “complexification” of the more
familiar transformation tanz6 — tanz0’ = e? tan36
which appears in connection with the pseudo-ortho-
gonal groups3.7-8.22, The Jacobian of the transforma-
tion (3.7) is

de,{o’, 6}
dc,{s, 61
We have thus, for ¢ = i1 (7 real), a unitary multiplier

representation?3 of b . +1(&) on the space of func-
tions fon C, (and therefore on U,) as

d“‘n((b;z) l) <Sin€;_1)2" (3. 8)

T dp(e,, 6, )

sinf, |



THE U, , AND U,

T(a)(bn,n+1(§))f(z) :exp[c(o)Mn,rH»l]f(z)

Lo flz). (8.9)

=[sind,_,/sinf,_

4. THE U, , MATRIX ELEMENTS

The phase functions (2, 6) are the matrix elements of
transformatlons generated by C ,*(no sum) As?l
Cp IJn+1J >_wk1Jn+1J ) with ‘Uk~th 19p —

Z l:l1 Jk—l.l
J

bk (0) = expliv,0),

(4.1)
b

k=j s+ 1.

The eigenvalue of the unitary invariant (3. 4b) is
wy +wy +°- +w, —w,, . For o pure imaginary,
(3.4b) is zero and hence w, 1 =) k.14

The calculation of the U, ; Pd-functions, however,
will require the multlpher representation (3, 9).
Given a set {(p(k“) } B € N(N an index set determined
by p) of orthogonal functions on a manifold M, a
representation of a group of transformations G > g
of M can be constructed as?

D () = [wikw(r)]”

(¢(H) ()\)(g)qb:i))M’ (4.2)

where w is the Plancherel weight of N. Using for M

the U, manifold and D 1> 577 as the set of ortho-

gonal functlons we proceed to prove that, in close
analogy with the orthogonal groups?, the Pd-functions
can be found as

Pd‘fn'j 3:11;]?1} (¢) = [dimJ, dimJ’)?/2/volU, ]

J Jr
X <DJ_Z__1:Jn_1’ ° n"Hl(C))Di-l’jn—l), (43)

where the connection between a,J; _;,8,and the U, ,
UIR labels J, ,; will be clar1f1ed below.

At £ = 0, the orthogonality of the D's insures that
Pgdna — ; -

R (0) 8, 1 (the Kronecker § in the col
lective indices J, and J; stands for a product of 6's
in the individual indices J ppand d;, k=1,..., 7).
The completeness of the D's gives the addition for-
mula

Zpdn}

IaJrHl
& RTASUR S S

J(62) =,
(4.4)

hence (4. 3) together with (4.1) and (4.2) for g ¢ U,
provide us with a representation U, ;. There is no
invariant subspace. This construction gives us the
classification through the Gel'fand patterns of the
U,1 UIRJ, s = {a,Jn _1,B} s1nce the individual in-
dicesJ, 1,1 =@, J,,1 4,1 = RB=1,...,n),
doeinsl =B restricted through the z1g zag 1nequal1-
ties (2.4) for U, D U, _;, when taken as the U, 1 UIR's
restrict in turn the UIR labels of U, € U, ;. The
‘“‘end point” labels a and § will now be related too
when we identify them as the continuation of the values
of J, .11 andd 4, entering into the expressions
for m the umtary invariant (3. 4b) eigenvalue

0=20d, 1 =0 +B8 +22d, 44 (4. 5a)

(the sum extending over the allowed values of the free
index) and (ii) the second-order Casimir operator

REPRESENTATION MATRIX ELEMENTS

_IJ;L(Cl + Cz))
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(3. 4a) eigenvalue

Z‘/;l.1,k(Jn,1,k”2k+”+2):0‘(0+n)+3(ﬁ—n)

+ 2000, 1,y ,— 2k + m),  (4.5b)
which, if the representation is to be unitary, (iii) has
to be real. Lastly, (iv) the dependence of {4.5b) on

o = i7 must be that given by (3.4a).

All four conditions (i)—(iv) can be satisfied by the
choice @ = — 3(n +23J, 1) + 47 and B = 3(n—
22J%_1 ) — iT. The parameter 7 can be identified
W1th Chakrabart1 s17 parameter €, and seen to label
the continuum of principal series UTR's of U, 0l
Values of r and — 7 give equivalent UIR's.

The integral over U, in (4.3) can be simplified when
the D's are written in terms of p's,d's,and the U, _,
D's as in (2. 1). Orthogonality relatlons can be used
to yield Kronecker 6's in the corresponding labels,
and the multiple integral reduces to an integral over
the unit disc:

(dimJ, dimdJ/)V2
dimJn_l dlmJ;l‘l

{(volU, )2
Pd{a,J,’z_l.l?} (¢) =
dd 19 volU, volU, _o

1(¢) ar oy g (6

Jp-1Yn-2n-1

Y, dimd,_, [du,(¢, 6) DI"_

In-2
x <ziﬁgl>n+” exp[}<ZJn—1_EJn—2> X((p’ 6, C):lpj,é:-l (d),)
xdgh o (8), (4.6)

nlnznl

where the primed variables are related to the un-
primed one through the transformation (3. 7).

5. SOME PROPERTIES OF THE 7d-FUNCTIONS

We will not attempt here the explicit evaluation of
(4.6), Several properties are apparent, however, from
the integral form (4. 3)-(4. 6):

(i) the group property yields the addition formula (4. 4);
{i1) unitarity of the representation gives

PdJn oo, (— C) = dez (5.1)

n n-1l"n

(iii) invariance of the scalar product (4. 3) under the
involution #, ¢ u;! and the unitary of the U, D's
imply

{o,J B}
d I nn 11‘] (C)’

Pl Tho g () =

n n-1

(5.2)

(iv) the asymptotic behavior ({ — ®) is similar to the

Regge behavior of the SO, ; d-functiond*.7:8: 1t is

exponentialy decreasing 1n £. As the disc (3. 7a)

streches towards the point z, =-— 1, sin6’/sin ~ e-¢

and

Pd{lXJ’ 1 B} (c) 3 6 7 A?,JhJ_,lﬁ e‘[n+iT]§’
n n -1'"n-1 n°n

(5.3)

where A° J J, 1® are constants obtainable from (4.6).

6. THE /U MATRIX ELEMENTS

We consider now the finite translations generated by
z, and z* as a multiplier representation on the space
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of functions f on C,. The real translation 7,(£) €
ISO,, C IU, [taking the place of », ; ,(6) in (2.1b)] is
generated by x, = 3(z, + 2%) =7 cosf,_, cos¢, and
has the action

T, (8)) f(z) = explitx,) f(z),

which is unitary for real », but produces no deforma-
tion of the C, manifold, Agam as x, commutes with
the generators of u,_,,the action (6. 1) of x, on C,
can be used fo construct the /U, UIR's through (4. 2)
and, analogously to (4. 3} and . 6), we find the IU,
Id-functions as

6.1)

(dimJ, dimJ})2

volU,
I
Jn-19n-1

_ [dimJ, dimJ;]V2  (volU, _,)?
dimJ, _, dimJ,_, volU, volU, _,
2, dimd,_, fdu ($,6)

Jn-2

Id{Jr. 7 ls) (£) =
n n- 1

n
Tp1 9

R IO AN
(¢)d"’ 9 Jn_l(e).

exp|ir§ cosé COS¢]P§, n-2
(6.2)

The iu, second-order Casimir operator z,z! has

KURT BERNARDO WOLF

eigenvalues 72, and thus 7 (real) labels the /U, UIR's
corresponding to Chakrabarti'sl7 parameter k. The
Id-functions (6.2) are independent of the label s. This
label enters into the picture when we consider the
phase of the translation & ,(¢). Its matrix elements
follow from (4. 1) and w111 not be considered again.
Properties analogous to those presented in the last
section follow.

As was the case for the orthogonal groups?, the U,
group can be defomed in the Indnli—Wigner sense19
into the IU, group when we consider UIR's with

T = « while keeping 7 = ¢, The multiplier (3. 9)
becomes then

(sing’/sing)n+i7 —=> expirt cosf cos¢]

while, as §{ — 0, there is no deformation of the group
manifold. Comparing (4.6) and (6.2) we see that

pd{oc(r) I -1 .B(T)}(C) N Id(r.:’]’ —_11»3};1 (&),

In-19 = o
(T =E7r

thus, characterizing the value of the last /U, label

when we maintain the eigenvalue of the unitary in-

variant (3. 4b) as zero.
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An explicit classification of the semisimple complex Lie subalgebras of the simple complex Lie algebras is
given for algebras up to rank 6. The notion of defining vector, introduced by Dynkin and valid for subalgebras
of rank 1, has been extended to the notion of defining matrix, valid for any semisimple subalgebra. All defining
matrices have been determined explicitly, which is equivalent to the determination of the embeddings of the
generators of the Cartan subalgebra of a semisimple subalgebra in the Cartan subalgebra K of the simple alge-
bra containing this subalgebra. Moreover, the embedding of the root system of the subalgebras in the dual
space K* of an algebra is given for all subalgebras. For the S-subalgebras of the simple algebras (up to rank
6), the embedding of the whole subalgebra in an algebra is given explicitly. In addition, the decomposition
(branching) of the defining (fundamental) and adjoint representations of an algebra with respect to the restric-
tion to its S-subalgebras has been determined. In the first part of this article a brief review of Dynkin's theory
of the classification of the semisimple Lie subalgebras of the simple Lie algebras is given. No proofs are re-
peated, and at places where concepts have been extended and new results derived, merely an indication for their
proof is given. This part of the article will serve as a prescription for a classification of semisimple subalge-
bras of the simple Lie algebras of rank exceeding 6. Later inthe article, explicit expressions are given for the
index of an embedding of a simple Lie subalgebra in a simple Lie algebra. These expressions are valid for the

classical Lie algebras of arbitrary rank as well as for the exceptional Lie algebras.

1. INTRODUCTION

The semisimple Lie algebras and their linear repre-
sentations play an important role in many branches
of physics. The states of a physical system may be
classifiable as states of some reducible or irreduc-
ible representation of a simple or semisimple Lie
algebra. This happens in the case of the familiar
angular momentum group SO(3), as a consequence of
the invariance of a physical system under rotations
in ordinary 3-space, as well as for many other groups,
which may leave invariant only part of the Hamil-
tonian of the system. Examples of groups of this type
can be found, for instance, in nuclear physics,1~3
atomic spectroscopy,4 and elementary particle phy-
sics.9.6

If a particular Lie algebra is utilized in some model,
two things may happen. On the one hand, it may be-
come essential to know the Lie subalgebras of this
Lie algebra (for example, in order to obtain physi-
cally meaningful labels for the states, as it happens
in nuclear and atomic physics). On the other hand,

it may become of interest to extend the symmetry to
larger symmetries (as in the example of the exten-
sion of isotopic spin to unitary spin in particle phy-
sics), in which case the original Lie algebra becomes
a subalgebra.

In recent years more and more Lie algebras and, for
a given Lie algebra, various chains of subalgebras,
have come into use in atomic and nuclear physics.2~4
Moreover, the embedding of Lie algebras in the alge-
i

simple algebra G

regular subalgebras G’
(simple, nonsimple,
maximal, nonmaximal) (6)

maximal S-subalgebras of G

bras of higher rank is of importance for both the
search of larger symmetriesS as well as for the
(mathematical) state labeling problem.7 It seems,
therefore, to be justified to give an explicif classifi-
cation of the semisimple Lie subalgebras of the sim-
ple Lie algebras, up to some reasonable rank (< 6),
serving as a sort of catalog of all semisimple Lie
subalgebras of a simple Lie algebra. Apart from a
mere classification of the Lie subalgebras, their
embedding in the Lie algebra is given explicitly,
which should make this classification even more valu-
able. In view of Lie subalgebras of simple Lie alge-
bras of rank > 6, a brief resumé of Dynkin's theory is
given, supplemented with some extensions of his con-
cepts (the introduction of the defining matrix), in
order to serve as a prescription for the classification
of the semisimple Lie subalgebras of those simple
Lie algebras not considered in this article,

The tables contained in this article are arranged in
such a manner that the information they contain is
given in “building blocks.” That is, whenever the sub-
algebras of some simple algebra are to be classified,
this classification can be achieved by putting together
the various subalgebras obtained from the tables
according to the rules given below. This has the ad-
vantage that the same tables can also be used (to-
gether with additional information) for the classifica-
tion of the subalgebras of simple algebras with rank
> 8.

Below a scheme is given (with the definitions to

S-subalgebras of G
(nonregular)

nonmaximal S-subalgebras

of G
simple maximal S- nonsimple maximal nonmaximal nonmaximal
subalgebra of G (9) S-subalgebras of G simple nonsimple
(10) S-subalgebras S-subalge-
of G (11) bras of G (11)
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follow later) for the determination of all the semi-
simple subalgebras of a simple algebra. The numbers
refer to the sections which treat the particular kind
of subalgebra.

The scheme indicates that, in the first step, the sub-
algebras are separated into regular subalgebras and
S-subalgebras of G. The part to the right then gives
a classification of all S-subalgebras of G. This same
classification has to be applied to each one of the
regular subalgebras G’ (in fact,G itself is a trivial
case of a regular subalgebra). That is, for given regu-
lar subalgebra G’, all subalgebras of G’ have to be
found which are S-subalgebras with respect to G’, and
this has to be done for every regular subalgebra G'.
Proceeding in this manner all semisimple subalge-
bras of G are obtained. The S-subalgebras of a
proper regular subalgebra G’ of G are called R -sub-
algebras of G.

Some work previously done and related to ours can
be found in Refs,8-12,
2. SEMISIMPLE LIE ALGEBRAS

Let G be a semisimple complex Lie algebra. For
every Cartan subalgebra K of the algebra G there is
a canonical decomposition

G=K+ 2, G,

o€l

(2.1)

where Z is the system of roots of the algebra G and
G, a one-dimensijonal root subspace. Every element
X of the algebra G can be expressed in terms of the

generators H; of the Cartan subalgebra K and of the

roots vectors E ,

EbH+Z} c . Ey

a€l

b,c,cC. (2.2)
In a semisimple algebra G, a scalar product can be
introduced by

(X,Y) = Tr[ad(X)ad(Y)], X,Y €G, (2.3)
where ad(X) is the adjoint representation of the ele-

ment X. This scalar product is invariant with res-

M. LORENTE AND B. GRUBER

pect to all automorphisms of G. Similarly, for any
representation ¢ of G a scalar product can be defined
by

X,Y); = Tr{op(X)o(Y)], X,Y €G. (2.4)
Both scalar products are related by a numerical fac-

tor

(X: Y)l = (X7 Y)l¢,, (2.5)

where l; is independent of the elements X and Y and
is called the index of the linear representation ¢ of G.
Its value is given by13

1y = [N(9)/NG)](M, M + 2R,), (2.6)
where N(¢) is the dimension of the representation
¢, N(G) the dimension of the algebra G, M the highest
weight of the representation ¢, and 2R the sum of
all positive roots of G. The indices of the fundamen-

tal representations of the simple algebras are given
in Ref. 14,

Given a Cartan subalgebra K of G there exists its
dual space K*, consisting of all linear forms p(H),
H ¢ K. There is a one-to-one correspondence be-
tween the elements H and p(H) of the two spaces K
and K* defined by
(HP:H):p(H)» H)HPEKy p(H)EK*-
From this isomorphism it follows that a scalar pro-
duct can be defined in K* by setting
(o), o)) = (H,,H,), 2.7
where H ,H  are the elements of K which correspond
to the elements p(H),o(H) of K*. From the automor-
phism of the spaces K and K* it also follows that we
may regard an element p(H) ¢ K* as an element p of
the space K by means of the formula

p(H) = (p:H);

which expresses the linear form p(H) as scalar pro-

TABLE I. Simple systems of roots.
A, B, C, D,
oy =€) — ey a, =e¢; —e, a, =e; — a; =e, —e,
a, = ey —eg a, =e, — ey Ay = €5 — a, =&, —éy
a,=€3— €, ) Oy =€g—e, cx3-es——e4 Q Gg=e3—ey
¢' 0, =€, — €, QO =€, =€, ’ X =87 G ¢‘ ak—eh €pe1
b o, 1 =€_, 86 ﬂ a,_, =€, ,—86 D C/xj €,
(La_e-e a, =e, @, =2 ,,1« 1—2
G F4 E6 E7 Eg
mulAel—eZ alzez—es alzel—ez 01=81~€2 C!liel—-'ez
a, =€;5—e, a, =e, — €3 a, =¢e, — €, gy = e, — €5
1
a, =3(—e; +2e;, —¢ _ _ _ - _ — _
3( 1 2 3) ay =€, oy =€y €y o, = €, ag €y €y

o o

3 = -

/ a,=e,—e;
[Xs:es—es\/

e; te, teg+egte, —eg)

o, =3le; —ey —e5—ey)
@y =3(—e —ey —
a,=4(—e —ey;—eytey testegt e, —eg)

1
ag =3{—e; —e; —e;

10 a, =e, —eg

(15:85—26 o

G‘s:es—e7/

— e, —eg + 2q + 2, t 25 — &)

a,=e;—é€;5
015'—’65—26
a6:66—87
017297—68
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duct between the elements p, H € K. Subsequently
p(H) will be considered both as an element of K* as
well as an element p € K.

The roots and weights belong to the space K* and can
be expanded with respect to some basis (for example,
a m-system of simple rootsl5). Having chosen some
basis, an ordering of the elements of K* can be intro-
duced with respect to this basis. If {ay,ay,...,0,}
represents the basis chosen, the vector

p =7,

is called positive, and we write p > 0, if the first non-
vanishing component 7; is positive. In particular the
elements of the basis are positive. [With this defini-
tion one of the following alternatives holds for any
element p of K*: Either p is positive or (—p) is posi-
tive or p is zero.] We say the element ¢ is higher
than the element p, and write ¢ > p,if 0 —p > 0. The
element p is then said to be lower than the element o.

The scalar product in K is defined up to an arbitrary
constant. Generally this constant is fixed with the
condition that the square of the length of the maximal
root be equal to 2. With this normalization and using
an orthonormal basis for K and K*, we have

(p,O) = (leHg) :Z_i Y8 (2-8)

where 7, and s; are the cartesian components of p, ¢
and Hp, H , respectively. For the algebra C , the
scalar product is defined as (the square of the length
of a maximal root for C, is 4)

(p,U)Z(Hp,Hc):% Qrisi' (2-9)

Throughout this article we use cartesian coordinates
for the roots and weights. In Table I a representation
is given for the systems of simple roots.

3. EMBEDDING OF A SUBALGEBRA

A faithful embedding f of an algebra G in an algebra
G is defined by an isomorphic mapping f of G into G,

X-5X eq,
such that

for every X e G,

The image of X can be expressed in terms of the
generators of G

f()?) = kZ}l b);Hk + Z; CaEa, (3.2)

a€L
where the H, denote an orthonormal basis in the Car-
tan subspace of G and E_ the root vectors of the sub-
spaces G<.

Two embeddings f, and f, of the algebra G in G are
called equivalent if there is an inner automorphism
U of the algebra G such that

&) =Uur,(X), Xed. (3.3)
In order to classify the semisimple Lie subalgebras
of the simple Lie algebras, all the (inequivalent) _
classes of faithful embeddings of the subalgebras G
into the algebra G have to be found.
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Given some embedding f of G in G, both simple alge-
bras, the relation

(f()?), f(?)) :jf(}‘zf 17):

determines a scalar factor j, independent of X, Y.
Under an inner automorphism of G this factor is in-
variant, and thus is the same for all the equivalent
embeddings of the algebra G in G. For this reason
this factor can be used to label the different classes
of inequivalent embeddings. The factor j,is called
the index of the simple subalgebra G in ffhe simple
algebra G. Some of the properties of this index arei6

X,Y @G, (3.4)

(i) j;is an integer number.

(i) ¥ G, £ G, & G, are simple algebras, the index
of G, in G4 is the product of the indices of G, in
G, and G, in G 5.

(1i1) I f1,f 5 - -«
bra G in the simple algebra G and if

,f; are embeddings of a simple alge-

[f,-()z'),];(f')] =0 for i=#j, X,¥Yeg,

then fy +f, + -+ +f, is again an embedding and
Jp=dg tig, te +jfs.

(iv) Given some embedding f of the algebra G in G,
some linear representation ¢ of the algebra G
and the representation ¢ = ¢f of ¢ which is in-
duced by ¢ on the subalgebra G, the index is

i=lg /e (3.5)

where [0, are the indices of the representa-
tion ¢f, ¢, respectively,

From a theorem by Gantmacherl? it follows that for
any embedding of G in G it is always possible to find
a Cartan subalgebra K of G such that f(K) C K, where
K is a Cartan subalgebra of G. In particular

n
f(Hi)ZE_fikay i:]-yz,---,n’, k=1,2,...,n,
k=1 (3.6)

where A, and H, are a basis for K and K. Since this
basis is orthonormal, we have

n
kzl fikfmk :jféim' (3'7)

If G is restricted to a subalgebra G, the elements of
the space K will be mapped through an orthogonal
projection onto elements of the subspace K,

H- f*(H) € K.

For two arbitrary elements H € K and H € K, it
holds that18

H=, f(H)) = (f*(H), 7),
with

f*(Hi) = E fkiﬁk .
k=1

(3.8)

(3.9)

From the isomorphism between the Cartan space and
its dual space it follows that
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(0, F(p")) = (f*(p)yp")

for two arbitrary elements p € K* and p’ € K*. If p
and p’ are expressed in Cartesian coordinates, (3. 10)
reads

Z) 7, fp)
ik

(3.10)

= Z; (fikyk)'rilr (3. 11)
where f, is given by (3.6). A similar expression has
been obtained in Ref. 19 for the relationship of the
parameters of the toroid of G and its subalgebra G.

From a theorem by Dynkin20 it follows that if I‘a, is
the set of roots of G which project onto a root a’ of
G, the embedding of the elements Ea, of G in G is
given as

FEN = 2 cu E E €G_.

a’a™a? a a
OLEF(X/

(3.12)

Thereby the following properties hold:

(i) For two roots a’,8’ of G,T', N T'y, = 0.

(ii) For a root @’ and its negative — &’ we have

F_u/ - Fal

(iii) € o = €_4s -, for arbitrary a’, a, where T is the
complex conjugate of c.

(iv) f(a,) :Eaera, ‘Calalza-
) ) = Daery, 1€au!?

Collecting the coefficients f;, and ¢, in a matrix U
representing the embedding of G in G, it holds

Uut=j f1.
]
simple
regular {
nonsimple
semisimple
subalgebras
of simple simple
algebras
nonregular
nonsimple

(b) Let G be a semisimple algebra and let

G=G; +G, + -+ +G;
be a decomposition of G into a direct sum of simple
ideals. Suppose we know already all maximal semi-
simple subalgebras—regular as well as nonregular—
of each simple algebra G,,# =1,2,...,s. Then all
maximal semisimple subalgebras of the semisimple
algebra G can be found following rules given in See.
11. Now let G be one of these maximal semisimple
subalgebras of the algebra G. In general G will not
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4. CONDITIONS FOR A SUBALGEBRA

Let G be a semisimple algebra with Cartan subspace
K, and let H ,,Hgy,...,Hg, be a set of linearly inde-
pendent elements of K. Suppose that some elements
E,,E ,s...,Es, E_g, of the algebra G exist which
satisfy the relations

() [Ho,H,) =0,
(ii) [H,,E, 5] =+ (a
(iil) [y By, ] = Hy,,
(iv) [Eqry Eg] =0, @’ ="

Then the minimal subalgebra G of G which contains
these elements is semisimple and the set of roots
a’yB's...,08" forms a possible system of simple roots
for G withE ,,E 1, ..., E ,E_;, as the correspond-
ing root vectors.2!

76,)Ei3/ 2 for all
a8, ...,5".

The conditions for a subalgebra as given above are
equivalent to:

(i) There exists at least one representation ¢ of G
whose weights project onto the weights of some
representation ¢ of G.

(ii} For each simple root o’ of G there exists one or
several roots @ of G which project onto a’.

(iii) The root @’ must be expressible as a linear com-
bination of those roots @ which project onto a’.
The commutator [E,, E_ ] must belong to the

Cartan space K for all o’

5. CLASSIFICATION OF SUBALGEBRAS

(a) Let G be a simple algebra. According to Dynkin's
theory,22 all the semisimple subalgebras of G belong
to one of the following types of subalgebras:

principal
S-subalgebras {
rank 1 { nonprincipal
R -subalgebras
maximal
S-subalgebras {
rank > 1 { nonmaximal
R -subalgebras

maximal

S-subalgebras {
nonmaximal

R -subalgebras

be simple and in turn its semisimple maximal sub-
algebras will be found by following the rules given_in
Sec.11, Obviously, these maximal subalgebras of G
are subalgebras of G, though not maximal subalge-
bras. Following this procedure all semisimple sub-
algebras of G will be obtained.

From the above it follows that all semisimple sub-
algebras of a semisimple algebra can be determined
once all semisimple subalgebras of the simple alge-~
bras are known. Therefore, this article is limited to
the determination of all semisimple subalgebras of
the simple algebras.
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TABLE II. Extension of the simple systems of roots.

A B C D,

n n n

— e,

o . :
Tt A
G, Fy Eq E,
?62—21+e3 ;G—el——ez 6 = ; teg
{5:——e7+eS

6. REGULAR SUBALGEBRAS

Let G be a semisimple algebra. A subalgebra G of
the algebra G is called regular if there is a Cartan
subspace K of G, such that for

G-R+ % G
o’€L

the relations £ € K and & C T hold.

o

The subalgebra G is semisimple if the following con-
ditions are satisfied:

(i) HacZthen—acf;
(ii) K is the linear closure of Z.

In order to construct the regular semisimple sub-
algebras it is more convenient to work with the sys-
tems of simple rootsl5 (7-systems) due to the follow-
ing theorem:23

Leta,,a,,...,q, beam-subsystem of roots of a
semisimple algebra G. Let G be the minimal sub-
algebra of G which contains the root vectors E o’

E,,...,E, ,E .»E_, . Then the subalgebra G

a, oy Tyt
is a regular semisimple subalgebra and the system
g, %2, ...,0, is a possible system of simple roots
for G.

In order to find all the possible subsystems of Z
which are m-systems the following method can be
used 24;

(1) Let G be a simple algebra of rank #; its system
of simple roots will be equivalent to one of the dia-
grams of Table I. Let us adjoin the lowest root (with
respect to the ordering in K*, Sec, 2) to this system.
If the representation of the simple roots is that of
Table I, the coordinates of the lowest root 6 will be
those given in Table II.

(2) Remove arbitrarily one of the roots o (i =1, 2,

n) from an extended diagram. We will obtain at
most # different diagrams corresponding to 7-sys-
tems, which may split into mutually orthogonal sub-
systems.

(3) For eachof the diagrams obtained in (2) apply step
(1) to its nonsplitting subsystems of systems of sim-
ple roots. Repeat the same process until no new 7-
systems of » elements are obtained. The 7-systems
obtained in this manner are called maximal 7-sys-
tems.

(4) From each maximal m-system remove arbitrarily
m < n roots in order to obtain 7-systems of n —m
elements. All the possible 7-systems which are sub-
systems of the system of roots Z of G are exhausted
by this method. Among the 7-systems obtained in
this manner there may be some which are trans-
formed into each other by the Weyl group; in this case
the corresponding subalgebras will be conjugate.

The maximal v-systems for the classical algebras up
to rank 6 obtained in the manner described above are
given in Table III. The maximal 7-systems for the

exceptional algebras are given in Table 10 of Ref. 13,

All the regular semisimple subalgebras for the clas-
sical algebras up to rank 6 are obtained by applying
step (4) to the maximal 7-systems. The result is
listed in Table IV. To each type of subalgebra listed
in this table corresponds one class of conjugate regu-
lar subalgebra, except in the case of D, and for the
case of subalgebras of the type 24, and A5 in D ;
3A,,A; +Ag,and Ag in Dg: To every such type
correspond two classes of conjugate subalgebras,
transformable into each other by an outer automor-
phism of D,. For the exceptional algebras, the regu-
lar subalgebras are given in Table 11 of Ref.13. (In
Table 4 we use the notation 24, for A, + 4, 3A

for A, +A, + A ,etc. The mdex of the regular sub-
algebra is g1ven ]for each simple ideal with respect
to the simple algebra; this index is always 1, except
when indicated explicitely in the form of a raised
index, for example A%).

The embeddings of the regular subalgebras G in a
simple algebra G are given in Table V. Also in Table
V are listed the mappings f* of the weights m of the
algebras G onto weights m’ of their regular subalge-
bras G.
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TABLE XI. Maximal 7-systems of simple algebras. TABLE IV.

Regular semisimple subalgebras of

A, A, B,~C, A, B, c, classical algebras up to rank 6.
. '—"T) ‘ N . A, By ~C, Ay~D; By C,
i ﬂ o E E % o 5 o Ay 4 ’ 24, A, Ag C, +4,
. B o E |4, 24, 24, + A} 34,
4z Ay Ay 43
A, B, c, D, By Ce
P A ~ A N\ —— 24, 24,
° ° ° D ° ° A, +42 A, +A2
§ Y o B o o Y o 1 1 1 1
IR S
L o] fo) [o) i 1
4 B4 C4 D4
45 fé 3 D, | €34, 44,
d o DS A, +Ay Ay + A2 2C, A,y
o § Y o Ay By + 24, C, +24, 34,
o 24, 44, 44, A,
% % o Ay | Ay Az 24,
a * o} & B3 C3 Al
A, + A2 AR+ 4,
c, D, B, +4, C, + A,
SE— P W 34 €2 43
u 24, + A2 34,
é © i 0 i E 4, 24, + A3
‘ o o By Ag
5 6 g Q < o 24, Cs
A, +A2 24,
A, 2, A; A, +A2
P PN N A2 242
o] o © Ay
CIYYY LY.
] o}
1 o] ? o] o o) Ay By
ﬂ E D E ° ° ﬂ ° A, D, A, +A2 A, +A2
® * © © A, +A, D, + Az B, +4, B, +4A,
c 24, Az +B, A, +B, 34,
P A, Ay + 24, A, +24, 24, + A2
¢ o g o o o g o o o Ay, +A, B, + 24, B, +24, A,
o 6 D o o o] o] 34, 44, + A} 44, B,
°© g g °© © A, A, 3A, +A2 24,
g °© ° 24, B, Aq Ay + A3
N P 12 S
° Ay + Ay Ay + Ay A3
D, Cs DS
—
Cy+4, AZ + 24, 34, A, + 24,
Y E Cy+0C,y 2C, 2A, +A3 A,
C, + 24, C, + 24, A, + 247 D,
o 20, + 4, C,+A; +A? | A3 A, +4y
© % C, +34, 44, c, Ay +24,
54, 3A, + A2 24, 44,
A% A} A, +A2 A,
c, C, 243 A, + 4,
AZ +A, AZ + A, A, 34,
C, +A, A2 + A2 A2 A,
C, +A3 C, +A, 24,
A3 +C, C, + A} Ay
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TABLE IV contd

AG B6
Ag Dy A, +B, Ay +A; +A%
A+ A, Dy + A% Ay +24, B, + 24,
A, +A4, By + 24, Ay + A +A2 | 44,
A, D, +B, By +A, 34, + A2
A, +A( D, + 24, B, + 24, A,
24, 24, A, +2A, +A2 | B,
A, +24, Ay + B, B, + 34, A, + A,
A, Aj +2A, +AZ| 44, + A3 A, + A2
A, +A, B, + 44, 54, B, +A4,
34, 64, A, 34,
A, Ag B, 24, + A2
24, By D, A,
A, Dy Ay + A B,
A, + A2 Aj + A2 24,
B, +4, B, +A, A, + A%
D, +4, 24, A,
D, + A% A, +B, A2
Ay + A, A, +24,
Ce Dg
Cy tA, AZ+Cy +A; | C, +2A2 D, + 24,
C,+C, Ag +3A, 44, 24, '
C, +24, 2C, + A, 34, +A2 A
2C, 2C, + A% 24, + 243 Dy
C,a+C, +A | C,+34, A2 D, +A, 1
Cy +34; C, +2A, +A2]| C4 Az + A, |
3C, 54, AZ+ A, Ay + 24, }
2C, + 24, 4A; + A2 AZ + A2 54,
C, +44, A2 C, +4, A,
| 64, C, C, +A2 D,
| A% AZ+ A 34, Ay + A,
l ¢y A + A2 24, + A2 24,
AZ +A, C,+4, Ay + 242 A, + 24,
‘ C, +4, C, + A 3A% 44,
C, + A2 2A3 AZ A,
]A§+c2 Az +c, Cy A, +A,
AZ +24, A + 24, 24, 34,
.CS+A§ Ag +A; +Af | A, + A2 A,
C,+C, 2C, 242 24,
L Cy + 24, C,+24, A, A,
i C,+A, +A2]| C, fiﬁif A3 ]
TABLE Va.

Embeddings f of the regular subalgebras
in a simple algebra.

AE) = Ej,ack
F@) = H,i=1,2,..

!

i) =

&)

i

withn’' =n.

G =
H— {1/ + O]H, +Hy + -+ H,,,.),i=1,2,...,n" +1,
forG =B,,C,,D,;G =4,

H +[t/ (0 +D)H, 1y tHyzt+ o +H,)i=1,2...,
n' +1,for G =A,;G =4,

on'yfor G =

B,,C,, D,
B, Cp Dy

't opts
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TABLE Vb. Mappings f*(m) = m' for subalgebras of Table Va.

G =B,C,D,;G=8B,,CnD,:

’
I

G=8B,C,D,; nt
m;=m, — {1/ +1)]my+my + 0 +my,1),i=1,2,...,n"+1
G:A”;f}zAn,‘
m) =m, +[1/0 +D]0m,,,, T, 5t +m ),
i=1,2,...,n" +1,
withn’ < n.

7. THREE-DIMENSIONAL SUBALGEBRAS

The three algebras A,, B,,and C; are isomorphic.
Their generators H,E,, and E_ satisfy the following
commutation relations:

[,E,] = 2E

(B, E]=A4.

(7.1)
We assume the algebra G, given by these commuta-
tion relations, to be a subalgebra of a semisimple
algebra G._Let f denote the embedding of G in G.
Then, if f(H) € K,

[H,E]=~2E,

+3

f(ﬁ)zgkak) erKy

where the n elements H, are assumed to form a basis
for the vector space K. The vector

= (f1:f27 ---yfn);

is called the defining vector of the three-dimensional
(3d-) subalgebra G. Considering the linear forms of
the dual space K* as elements of the space K (Sec. 2),
the only positive root @ of the 3d-subalgebra is in the
space K given as

feK,

a = [2f/(f.1)] (7.2)
and vice versa
f=[20/(a, )] (7.3)

The name defining vector stems from the following
property25: Let G,, G, be 3d-subalgebras of a semi-
simple algebra G, and let f,, f, be the corresponding
defining vectors. A necessary and sufficient condi-
tion that there exists an inner automorphism of G
transforming G, into G, is that there exists an inner
automorphism of G transforming f, into f,. Thus
the problem of finding all classes of conjugate 3d-
algebras is equivalent to finding all defining vectors
which are inequivalent with respect to the Weyl group.

Let us consider the Dynkin diagram (Table I) for the
simple roots ¢; of an algebra G and attach to each dot
of the diagram (representing one of the simple roots)
the value ( f, @,), where fis the highes! defining vector
with respect to some ordering in the Cartan subspace
K of G. The resulting diagram (with numbers attach-
ed) is called the characteristic diagram of the 3d-
subalgebra corresponding to f. A necessary and suffi-
cient condition that two 3d-subalgebras of a semi-
simple algebra are conjugate is that their character-
istic diagrams coincide.26

The defining vector fyields the following information:

(i) The embedding of the generator H of G in G:
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F(H) =]§ fH, H,eG. (7.4)

(ii) The mapping of the weights of a representation ¢
of G into the Cartan subspace K of the 3d-sub-

algebra G:

1 n

f*(m):“szmk (7.5)
243

(iii) The index j, of the algebra G in G:
1 n
Jr = b ;Z:)l fkfk’
zkzl fkfk, if G :Cn- (76)

(iv) The embedding of the positive root o’ of G in G:
fla’) = f.

(v) The characteristic diagram of G with respect to
some ordering in G.

In deriving the properties listed above the fact has
been used that (a’,a’) = (H,H) = 2. Moreover, the
factor 3 arising for the case G = C, due to Eq.(2.9),
has been absorbed into the defining vector f.

For the classification of the nonregular semisimple
subalgebras it is necessary to define the R-subalge-
bras and S-subalgebras. Let G be a semisimple alge-
bra. An R-system is a subset of the elements of G
such that these elements are contained in a proper
regular subalgebra of G, that is in a regular subalge-
bra which is neither the entire algebra nor the null
algebra. An S-system is a subset of the elements of
G which is not a R-system. An R-subalgebra is an
algebra which is an R-system. An S-subalgebra is an
algebra which is an S-system. Every semisimple R -
subalgebra is contained in some semisimple proper
regular subalgebra G’ of the algebra G.

Three-Dimensional S-Subalgebras2?

(a) Principal: The highest defining vector satisfies
(f,a;) = 2 for all simple roots a; of G. If f is ex-
pressed in terms of the simple roots of G,

r= 3 leda, (2.7

oET

the embedding of the generators of G in G is given by

f(il) = Z) lca|2Has f(E) = Z; Cana

a€En aEm

fE) = 25 TLE_ (7.8)

oET

The elements f{#), f(E,), f(E.) as given above satisty
the commutation relations (7.1).

(b) Nomprincipal: For the algebra D, ,besides the
principal 3d-subalgebras, there are [(x — 2)/2] pair-
wise nonconjugate 3d-S-subalgebras; their character-
istic diagram has the form

2.2 2 2 2020 20 2

O0—0—00—O0—0—0—0
D, —_— r=12,...,[3=—-2).
n—1-2» 2
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For the exceptional algebras there are,besides the
principal S-subalgebras, the following S-subalgebras,
given by the characteristics

Eg 220 2 2
2

E;i 2.2 20 2 2

%wo—i—o—Oy @o—o—r&@,
2 2

Eg: 2 22 2 0 2 2 2 20202 2

o—o— ~O—0 1 0—0—0—0—0—0—0 -
i2 5

2

2020 2 2

In order to find the embedding of the nonprincipal 3d-
subalgebras, we express the defining vector f in
terms of the roots o of G which project onto the posi-
tive root a’ of G. The set of roots o for which f*(a) =
o’ is denoted by I' ;. Then

f=rfle)= Zr) le ) 2a (7.9)
and
f(ﬁ) = E ica] 2Ha’ f(~+) = E CaEa:

ocel"a, ael

fE)= 3 ¢.EL.

a€ly,

Three-Dimensional R-Subalgebras
Let G be a simple algebra and

G'=G, +Gy+ + +G!

a proper regular subalgebra of G, with G, & =

1,2,...,s,simple ideals. For each simple ideal G,
(¢ =1,2,...,s), we take one 3d-S-subalgebra G,.
Then

G=G, +Gy+-++G,

is a 3d-R-subalgebra with respect to G. If f, is the
defining vector of the subalgebra G,, the sum

Sl Syt A,

is the defining vector of the subalgebra G.

This construction yields all the 3d-subalgebras of the
simple algebras, because we know all the regular
subalgebras as well as the 3d-S-subalgebras. Every
3d-subalgebra of a simple algebra G is either a regu-
lar subalgebra of G, an S-subalgebra of G, or an S-
subalgebra of one of its proper regular subalgebras
(an R -algebra of G).

Table VI gives all the 3d-subalgebras of the classical
algebras up to rank 6. The 3d-subalgebras of the
exceptional algebras are given in Tables 16-20 of
Ref.13.
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TABLE VI. Three-dimensional subalgebras of classical algebras up to rank 6. The second column shows the minimal including regular sub-
algebra; when the S-subalgebra is not principal the symbol (a,) is written after the regular subalgebra,r being the number of zeros in the
characteristic diagram. The third column gives the index of the 3d-subalgebra; if there are several subalgebras with the same index, the first
will be distinguished with one prime, the second one with two primes, and so on, corresponding to the order of the defining vectors f1<f2 <
f3 +++. The fourth column gives the defining vector in cartesian coordinates. For the algebras B, ~ C, and A; ~ D, two sets of defining vec-

tors are given corresponding to two different representations of these algebras.

Algebra Regular subalgebra Index Defining vector Algebra Regular subalgebra Index Defining vector

Ay Ay 1 @,0,-1) D, A, 1 (1,1,0,0
A, 4 (20,2 24, 2 (1,1,1,:1)

B,~C, A 1Ly 1,0 24, 2" (2,0,0,0)
24,;A% 2 (2,00 (1, 1) 34, 3 (2,1,1,0)

B, 10 (4,2) (3,1) 44,;4, 4 (2,2,0,0)

A,~D, A, 1 (1,0,0,-1) (1,1,0) A, 100 (3,3,1,41)

24, 2 (1,1,-1,-1) (2,0,0) A, 10" (4,2,0,0)
- o e @a0 5w
s by Ty ™ ) &y

5 Af R D, 28 (6,4,2,0)
24,;A% 2 (2,0,0 As 4, 1 (1,0,0,0,0,-1)
A, + A2 3 @11 24, 2 (1,1,0,0,—1,—1)
Ay 24, + A% 4 (2,2,0) 34, 3 L4141,
Ay B, 10 (4,2,0) 4, 4 (2,0,0,0,0,-2)
B, 8 (6,4,2) A, +A, 5 (2,1,0,0,—1,—2)

c3 Al 1 (1,0,0) 2A2 8 (2,2,0,0,-2,-2)
24,;A2 9 (1,1,0) A, 10 (3,1,0,0,—-1,-3)
3A5;A, + A2 3 1,1,1) A+ A, 11 (3,1,1,~1,—-1,-3)
Ag 8 (2,2,0) Ay 20 4,2,0,0,~2,—4)
C, 10 (3,1,0) Ay 35 (5,3,1,~1,—-3,-5)
C, +4, i1 3,41 By Ay 1 (1,1,0,0,0)
Cy 35 (53,1 24, 2 (1,1,1,1,0)

Ay Ay 1 (1,0,0,0,-1) 24,;A2 27 (2,0,0,0,0)
24, 2 (1,10,-1,-1) 34,34, + A2 3 (2,1,1,0,0)
Ap 4  (2,0,0,0,—-2) 24, + A2 4 (2,1,1,1,1)
A +4, 5 (21,0,-1,-2) A 24, +A2;44, 4" (2,2,0,0,0)
Ay 10 (1,0-1,-3 A, +A 534, + A2 5 (2,2,1,1,0)
A, 20 (4,2,0,—2,—4) Ay, + 2444, + A3

B, A, 1 (1,1,0,0) 44, + A3 6 (22200
24, ¢ 4,411 A,y 100 (3,3,1,1,0)
24,48 2" (2,0,0,0) Ay B, 10" (4,2,0,0,0)
34,54, +Af 3 21,10 Ay +Ag;B, + A, 11 (4,2,1,1,0)

Ay 44,524, + A4S 4 (22,0,0 Ay + A2 12 (3,3,2,1,1)
4, + A% 6 (2,220 Ay + 244, + A2 1 -

A3 10 (3,3,41) B, + 24,;D(ay) “,2,2,0,0)
AgiBy 10" (4,2,0,0 A, + By;D,la;) + A2 14 (4,2,2,2,0
By t4, 11 424D AjA, + B, 20 (4,4,2,2,0)
By + 241545 + A} Dyla;) 12 (4,2,2,0) DBy 28 (6,4,2,0,0
By Dy 28 (6,4,2,0) By +A, 29 (6,4,2,1,1)
B, 60 (8,6,4,2) D, +A%;By + 245D (a) 30 (6,4,2,2,0)

Cy Ay 1 @000 Dg;B, 60  (8,6,4,2,0)
24,;4% 2 (1,1,0,0) By 110 (10,8,6,4,2)
3A5;A, + A2 3 (1,1,1,0)

44,24, + AZ;2A2 4 (1,1,1,1) Cs A 1 100,00
A3 8 (2,2,0,0) 24,;A2 2 (1,1,0,0,0)
AZ +4, 9 (2,2,1,0) 3A5;A; + AR 3 (1,1,1,0,0)
c, 10 (3,1,0,0) 4A,;24, + A3;2A2 4 (1,1,1,1,0)
C, +4, 11 (3,1,1,0) 5A4,;3A; + AL A, + 243 5 (1,1,1,1,1)
C, +24,;C, + A2 12 (3,1,1,1) A2 8 (2,2,0,0,0)
2C,; A% 20 3,3L1 A + A, 9 (2,2,1,0,0)
Cy 35 (5,3,1,0 A3 + 243 A3 + A} 100 (2,2,1,1,0)
C, +A, 36 (53,11 c, 10" (3.1,0,0,0)
c, 84 (7,5,3,1)

C, +4, 11 (3,1,1,0,0)
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TABLE VI contd
Algebra Regular subalgebra Index Defining vector
Cy C, +2A,;C, + A2 12 (3,1,1,1,0)
C, +34,;C, + A + A} 13 (3,1,1,1,1)
AZ +C, 18 (3,2,2,1,0)
Ag;2C, 20 (3,3,1,1,0)
AZ+A;2C, +A 21 3,3,1,1,1)
C, 35 (5,3,1,0,0)
Cy+A4A, 36 (5,3,1,1,0)
Cy+2A,;C, +A2 37 (5,3,1,1,1)
A% 40 (4,4,2,2,0)
Cy; +C,y 45 (5,3,3,1,1)
Cy 84 (7,5,3,1,0)
C, TA; 85 (17,5,3,1,1)
Cy 165 (9,7,5,3,1)
Dy Ay 1 1,1,0,0,0)
24, 20 (1,1,1,1,0)
24, 2" (2,0,0,0,0)
34, 3 (2,1,1,0,0)
Ay 44, 4 2,2,0,0,0)
A, +A, 5 2,2,1,1,0)
A, + 24, 6 2,2,2,0,0)
Ag 100 (3,3,1,1,0)
Ag 107 (4,2,0,0,0)
A, +A, 11 4,2,1,1,0)
Ag + 2A,;D,(a,) 12 4,2,2,0,0)
A, 20 (4,4,2,2,0)
D, 28 (6,4,2,0,0)
Dyla,) 30 (6,4,2,2,0)
Dy 60 (8,6,4,2,0)
Ag A, 1 (1,0,0,0,0,0,—1)
24, 2 (1,1,0,0,0,—-1,-1)
34, 3 a,1,1,0,-1,-1,-1)
A, 4 (2,0,0,0,0,0,—2)
A, + A 5 (2,1,0,0,0,—1,—-2)
Ay + 24, 6 (2,1,1,0,-1,-1,-2)
24, 8 2,2,0,0,0,—2,—2)
Ag 10 (3,1,0,0,0,—1,-3)
Ag + A 11 (3,1,1,0,—1,-1,-3)
Az +A, 14 (3,2,1,0,-1,—2,--3)
A, 20 (4,2,0,0,0,—2,-4)
Ay A 21 (4,2,1,0,—1,-2,—4)
Ag 35 (5,3,1,0,—1,-3,-5)
Ag 56 (6,4,2,0,—2,—4,—6)
By A 1 (1,1,0,0,0,0)
24, 2’ (1,1,1,1,0,0)
2A;A2 2" (2,0,0,0,0,0)
3A, 3 (1,1,1,1,1,1)
3A;;A, + AR 37 (2,1,1,0,0,0)
4A,;2A, + A2 4 (2,1,1,1,1,0)
4A,;2A, + A%A, 47 (2,2,0,0,0,0)
5A,;3A, +A%;A, + Ay 5 (2,2,1,1,0,0)
SAX:f;; A4z 245 o (50,2,0,0,0
A, + Ay +AZ 7 2,2,2,1,1,0)
8 (2,2,2,2,0,0)

A, + 24, + A3 24,
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B Aq 100 (3,3,1,1,0,0)
Ay B, 10”7 (4,2,0,0,0,0)
Ay +A, 117 (3,3,1,1,1,1)
Az +A;B, T4, 117 (4,2,1,1,0,0)
Ag +2A5;A, + A2 12 (3,3,2,1,1,0)
B, + 24, 127 (4,2,1,1,1,1)
B, +2A ;A5 + A%

Ay +24,;D,@,) E 127 (4,2,2,0,0,0)
Ay + A, + A3 B, + 34,;

D, + A a,) 13 (4,2,2,1,1,0)
Ay +2A, + A3 B, +4A5; 3

D, + 24, (ay);

Dy + A%ay);A, + Ay; \ 14 (4,2,2,2,0,0)

A, +B,

A, +B, 200 (4,3,3,2,1,1)
Ag + Byi24554A, 20" (4,4,2,2,0,0)
Dy +Bylay)iA, + A%

Ay, + B, +A2 22 (4,4,2,2,2,0)
DB, 28 (6,4,2,0,0,0)
Dy+A;;By+A 29 (6,4,2,1,1,0)
D, + 2A,;Dg(a,);D, + A%

B, + 2A15 T 300 (6,4,2,2,0,0)
Dg + A%(a)); B, + A, 32 (6,4,2,2,2,0)
Ay 35 (5,5,3,3,1,1)
Dglay);Dy + By;Ag + By 38 (6,4,4,2,2,0)
Dg;B, 60 (8,6,4,2,0,0)
B, + A, 61  (8,6,4,2,1,1)
Dyla,); Dy + A% B, + 24, 62  (8,6,4,2,2,0)
Dy B, 110 (10,8,6,4,2,0)
By 182 (12,10,8,6,4,2)

Cq Ay 1 (1,0,0,0,0,0)
2A,;A2 2 (1,1,0,0,0,0)
3A;;A, + A2 3 (1,1,1,0,0,0)
4A,;24, +A%;2A2 4 (1,1,1,1,0,0)
54,;3A, + AL A, + 242 5 (1,1,1,1,1,0
64,544, +A324, +2A%; 6 (1,1,1,1,1,1)

3A2
A2 8 (2,2,0,0,0,0)
A + A, 9 (2,2,1,0,0,0)
A2 +24,;A% + A2 10° (2,2,1,1,0,0)
c, 10" (3,1,0,0,0,0)
A3 +3A ;A% + A, + A} 117 (2,2,1,1,1,0)
C, +4, 11 (3,1,1,0,0,0)
Cy+ 24,;C, + A3 12 (3,1,1,1,0,0)
Cy+3A,;Cy + A, +AZ 13 (3,1,1,1,1,0)
C, +4A4,;C, + 24, + AZ; M GLLLLY

C, + 242
2A2 16 (2,2,2,2,0,0)
AZ+C, 18 (3,2,2,1,0,0)
A +Cy+ A 19 (3,2,2,1,1,0)
Ag; 20, 20 (3,3,1,1,0,0)
A% +A;;2C, + A, 21 (3,3,1,1,1,0)
A3 +24,;A% + A2
2C, + 24,;2C, + A} 22 (3,31,1,1,1)
A% +C,;3C, 30" (3,3,3,1,1,1)
AR +C, 30" (4,3,2,1,0,0)
C, 35 (53,1,0,0,0)
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TABLE VI contd

Algebra Regular subalgebra Index Defining vector

Cg C,+4, 36 (5,3,1,1,0,0)
C, +2A,;C, + A2 37 5,3,1,1,1,0)
C, +3A4,;Cy +A; + A% 38 (5,3,1,1,1,1)
Ag 40 (4,4,2,2,0,0)
A% + Ay 41 (4,4,2,2,1,0)
Cy + A% 43 (5,3,2,2,1,0)
Cy +Cy 45 (5,3,3,1,1,0)
C,+Cy + Ay 46 5,3,3,1,1,1)
AZ;2C, 70 (5,5,3,3,1,1)
C, 84 (1,5,3,1,0,0)
C,+A, 85 (7,5,3,1,1,0)
C,+24,;C, + A3 86 (1,5,3,1,1,1)
Cyt+Cy 94 (7,5,3,3,1,1)
Cs 165 9,7,5,3,1,0)
Cs+4, 166 9,7,5,3,1,1)
c 286 (11,9,17,5,3,1)

6

D, A, 1 (1,1,0,0,0,0)

24, 2’ (1,41,1,0,0)

24, 2" (2,0,0,0,0,0)
34, 3 (1,1,1,1,1,1)
34, 3" (2,1,1,0,0,0)
44, 4 (2,1,1,1,1,0)
44,;4, 4" (2,2,0,0,0,0)
5AA, + A4, 5 (2,21,1,0,0)
A, + 24, 6 (2,2,2,0,0,0)
24, 8 (222,200
A, 10 (3,3,1,1,0,0)
A, 10" (4,2,0,0,0,0)
Ay +A, 11’ (3,3,1,1,1,11)
A, + A 11" (4,2,1,1,0,0)
Ay +24, 12 (3,3,2,1,1,0)
Ag +2A,;D,(a;) 12" (4,2,2,0,0,0)
D,la)) + A, 13 (4,2,2,1,1,0)
D,a,)) + 2A;A, + A, 14 (4,2,2,2,0,0)
Ag2A, 20 (4,4,2,2,0,0)
D, 28 (6,4,2,0,0,0)
D, +A4, 29 (6,4,2,1,1,0)
D, + 2A,;Dylay) 30 (6,4,2,2,0,0)
A 35  (55,3,3,1,1)
Dglay) 38 (6,4,4,2,2,0
Dy 60  (8,6,4,2,0,0)
Dglay) 62 (8,6,4,2,2,0)
D, 110 (10,8,6,4,2,0)

8. THE DEFINING MATRIX

Let G be a semisimple subalgebra of a simple alge-
bra G. Let us choose an embedding f of G in G such
that the corresponding Cartan spaces satisfy K C K,
Then the embedding f is given as

n
FE) :kz,i faHp i=1,2,...,n" =n, (8.1)
where » and n’_are the dimension of the Cartan sub-
spaces K and K, respectively. We call the set of num-
bers f,, the defining mairix of the embedding of G in
G. The defining matrix is a natural generalization of

1649

the defining vector. Since the f(H,) are elements of
the Cartan space K of G, an inner automorphism of
the group G will relate a given defining matrix (1)
into a defining matrix of a conjugate subalgebra. Two
defining matrices related by an inner automorphism
of the algebra G are called equivalent.

As in the case of 3d-subalgebras, the defining matrix
characterizes the embedding of the algebra G in G,
because two semisimple subalgebras of G are conju-
gate if and only if the corresponding defining mat-
rices are equivalent.

From the defining matrix of a subalgebra G in G the
following information can be obtained:

(i) Embedding of the generators i, of G in G as
given by Eq. (8.1).

(ii) Mapping of the weights m of any representation
¢ of G:

()], =m) =25 fyum, m'e K,
i=1,2,...,m"=n, 2=n’,

(iii) Embedding of the roots a’ of G in G:

[fle)], =27 &) f-

i

(iv) Index j, of embedding of G in G:

n

kz:i Jinlin = %35

where for

(@) G=A,,B,,D,,Gy,F,,Eg E,, Eg,
G =8B,,D,,F, (2=n'=<n),and for
G=¢,,G=cC, @2=n<n),

(b) G :An)Bn,Dn;GZ,F4;E5,E7’ E8’

G=C, 2=n =n),
a;; =20,;;
() G=¢C,,
G=B8B,,D,,F, (2=n'<n),
@ =205

(@ G =A,,;Bn:Dn9GzaF4’ EG’ E7; Eg)
G=A,,Gy,Eg,El, Eg (20" <n),

aij:n’/(n’ +1), fori=j,
aij:——l/(n’ +1), fori #j;
(e) G=C,,
G=A4,,GEHE L Eg (2=<n' =n),
o= [n'/2(r' +1)], fori=j,
o = [—1/2(n" +1)], fori =j.

(v) The defining matrix satisfies the following rela-
tions: For

J. Math. Phys., Vol. 13, No. 10, October 1972
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(a) G =Bn’cn’Dan4:

G=A4,,G,EgE, Eg(2=n'<n),
n'+1
Z) fik =0;
i=1

(® G :An’szEG)E'y;Eg;
G=A,,Gy,Es,E,,Eg (20 <n),

n+l

2 fa=c
PE

ni+l

Z; fik=C,
=1

n+1
n +1°

where the constant ¢ has been set equal to zero.

() G =A4,,G,,E, E,,Ey,

GBCDF

nt? oty Yprs
n
kzji J = 0.

The various values of ;. arise from Eq. (2.8) and
Eq.(2.9) as well as from the fact that the Cartan
subspace of the algebras A ,G,, E E., Eg has been
embedded into a space with one more dimension.
(Thus the base is not orthonormal, but satisfies

(H, H)_[n/(n+1)] for ¢ =j,and (H,, H;) =(-1( +1)],
for i #], Syl i1 H, = 0,n the rank of the’ algebra).

(vi) If Gy, € G, € G4 are three semisimple algebras,
then the defining matrix of G, in G is the (matrix)
product of the defining matrices of G, in G, and of
G, in G,.

@

(vii) If fl(l) e

subalgebra G with respect to different ideals of G,
then

1
Fu = f() + fz(z)
is the defining matrix of G with respect to G.

9. SIMPLE MAXIMAL S-SUBALGEBRAS

Let SL(N) be the group of unimodular matrices of
dimension N, O{(N) the group of orthogonal matrices
of dimension N, and Sp(N) the group of symplectic
matrices of dimension N. The algebra A, is obtained
from the group SL(z + 1), the algebra B, from the
group O(27n + 1), the algebra C, from the group Sp(2n),
and the algebra D, from the group O(2x).

A simple subalgebra G of a simple algebra G is
called maximal if for every subalgebra G’ of G satis-~
fying the inclusion G € G’ C G holds that either G’ ~
GorG ~G.

The problem of finding all maximal subalgebras of
the classical algebras was solved by Dynkin.28 This
problem is equivalent to the problem of finding all
maximal connected subgroups for the classical
groups § (i.e.,those connected subgroups of § which
are not contained in any connected proper subgroup
of §). Dynkin was able to demonstrate that the set of
all maximal subgroups of one of the classical groups
essentially coincides with the set of simple irredu-
cible subgroups. That is, with those simple transfor-
mation subgroups of a classical group, defined on an
N-dimensional complex space R ™), which leave no
subspace of R ™ invariant. The following theorem
holds29:

(s) are defining matrices of a

- fl(S)
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TABLE VII. Semisimple S- subalgebras of the classical algebras
which are maximal in G* instead of in G,

Irred. represent, Irred.represent.

GcG*cG of G of G*
Ar-l C 1 1 1
4 A(l/Z)(n-l)(n+2) n>3 0—0—0—0-0—-0 O0—0—0—0--0—u
. 2 1 1
AT CAa ey 1> 1 0700000 000000
n >0 k
B}, .1 €Dy, B> 1 0—0—0—0-aT B O0—0—0—0- o<j
k k
GiCBy k>1 = o—a®
A28 C G, C By o6 (El
ASCC,, CB b0 e-b
g 10 94 [ e S S8 o)
1 1
B% C D, C Dy, o—0—a—® o—o—o~00<z
2 1
C3CC,CDyy [ o) 9o o €0
1 2 1
C3CC,CCy,y [ el . oo oo -«
1 1
DY C A5 CAg5, o—0—a( 0—0—0—00—0
1
DEC CygC Byyy Hﬂl oo o o &«
8 1 1
DECCygC Aygyy 0—0—0— o o ¢ «
1 1
E§C Ay C Aygg o—o‘I—o—o 0—0—0—0---0—0
6 1 1
E§C Ay C A sag o—o—i—o—o O0—O0—O0—0---0—0
1
12 1 1
El2C Cog CB,gg O_Hj% -9 o €0
12 1 1
E7? C CygC Cr3g3 0—0—0 i 00 & e e+ €«
12 1 1
E2C Cyg CDygogrs o—o—o—i—o—o oo o o €0
12 1 1
E12C C,g CD1896048 o—o—o—I—o—o oo oo €D
1

<

L
L

B, t+B,,CD

1t nten el

nzn"=1
n +n"=z4

(=

1

Every irreducible group of unimodular linear trans-
formations of the N-dimensional complex space R "
(i.e., a group of transformations which does not leave
invariant a proper subspace of R ™) is maximal
either in SL(N) (if the group does not have a bilinear
invariant), or in Sp(N) (if it has a skew-symmetric
bilinear invariant), or in O(N) (if it has a symmetric
bilinear invariant), Exceptions to this rule are listed
in Table VII.

Below, rules will be given for obtaining all maximal
S-subalgebras of the classical algebras. These rules
have been deduced by utilizing the theorem quoted
above. In the first two steps a characterization for
the irreducible representations ¢ with dimensionality
N for a simple algebra G is given (we write ¢ and G,
because this algebra is going to be a subalgebra).

For given algebra G and given irreducible represen-
tation ¢ of this algebra, having dimensionality N,
steps (3)—(5) of the rules consist in finding out which
of the classical algebras G = A, ,N=n + 1,B,,N =
?_n + 1,C",N =2n,and D,, N = 2n admits the algebra
G as maximal subalgebra. This depends on whether
the representation ¢ of G admits a symmetric bi-
linear form, an antisymmetric bilinear form, or none.



CLASSIFICATION OF SEMISIMPLE SUBALGEBRAS

at all, as well as on the fact whether N is even or odd.
These conditions are mutually exclusive and follow
from the fact that R ¥ is the space on which both
groups § and § act,namely § (with algebra G) in its
representation ¢ and the group § (with algebra G) in
its fundamental (defining) representation.

The rules for obtaining all maximal S-subalgebras of
the classical algebras are:

(1) Given some irreducible representation $ of a
simple algebra G and the highest weight M of this
representation, attach to every simple root a of its
Dynkin diagram (to every dot of the Dynkin diagram)
the number

Me = [2(M,a)/(a, a)]. 9.1)
These numbers are always nonnegative integers and
are called the contravariant coordinates of M. All
the irreducible representations of the algebra G are
obtained if we attach arbitrarily nonnegative integers
to the Dynkin diagram of G. The dimension of the
irreducible representation characterized in this man-
ner is denoted by N.

(2) The bilinear invariant of an irreducible repre-
sentation ¢ of G is found, if it exists, from the Dynkin
diagram as prepared in (1), All the irreducible rep-
resentations of the simple algebras B,,C,, Dy, G,
F,, E 4, Eg have bilinear invariants. In order that a
representation of the algebras A ,D,, ,,E,; has a
bilinear invariant,the numbers M« attached to the
corresponding diagrams must be symmetrically
placed, as indicated in Table VIIIa.

Suppose an irreducible representation of the simple
algebra G has a bilinear invariant. We multiply each
number M2 by the corresponding coefficient indicated

TABLE VIIIa. a3 dy
Irreducible representations
with bilinear invariants.
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in Table VIIIb. We add all the products obtained.
Then the bilinear invariant is symmetric, if the sum
is even, and is antisymmetric, if the sum is odd.

(3) If some N-dimensional representation é of the
algebra G has a symmetric bilinear invariant, then
G is contained as maximal S- subalgebra in the alge-
braB, if N=2n +1orinD, if N = 2n. If some N-
d1mens1onal representation qb of G has an antisym-
metric bilinear invariant,then G is contained as
maximal S-subalgebra in the algebra C,, if N = 2z,
If some N-dimensional representation of the simple
algebra G does not have any bilinear invariant, then
G is contained as maximal S- subalgebra in the alge-
bra A, withN =n + 1.

(4) If for some algebra G and some representation
¢ of G, having dimensionality N, the algebra G ob-
tained by step (3) if G itself, then the algebra for
which G is a maximal S-subalgebra is A, with N =
n +1. (In all cases the algebra A , N = "n + 1, con-
tains G as a subalgebra. However only in these
exceptional cases and when the representation does
not have a bilinear invariant, are they maximal S-
subalgebra.)

(5) The subalgebras obtained in this manner which
are no! maximal S-subalgebras of the algebra G, as
defined in step (3), but are maximal S-subalgebras of
some subalgebra G* of G are listed in Table VII.
These algebras are irreducible in G but not maximal.
(For the case of these subalgebras exists a proper
subalgebra G* of G such that G € G* C G. All three
algebras G,G*,and G are listed in Table VII,except for
those algebras G for which the expression for their
rank is too bulky.)

(6) To each of the types of the simple subalgebras
described in (3), (4), and (5), there corresponds one

TABLE IX.
Defining Matrices for the maximal
simple S-subalgebras.

(a) ¢6=8,,C,D,:

fik:m(")k=12 Lon;i=1,2,.. .0
(b) G=A4, ;G = B,,,C,.D,, F 4
n n
fik~mi(k),k—l,2,...,n +1;i=1,2,...,n'

() G=A,;G=A4A,,G,E,E, Eg:

fp=m® + 1/ + 1], k=1,2,...,n+1;i=1,2,...,n" +1.

TABLE VIIIb. Coefficients for the calculation of the bilinear invariants of irreducible representations of the simple algebras.

An Bﬂ C’l Dﬂ
n.1 snlr + 1) n2zn(n — 1)

E (n —1)2 E n—1¥n +2) ? mn—1r+1)

? (n—2)3 ‘ n—2)n +3) n—2)n +3)

zne —1)
Y(n — 2)n + 1)
O (n—3)m + 2)

O r—k+t1E O -k +Nn k) ¢ -kt D tk—1) O (e—k+ 1) +k—2)
i 20 — 1) i 227 — 1) I 2(2n — 2) i 2(2n — 3)
1.1 1.2n 1.(2n —1) 1.(2n — 2)
G2 F4 EG E7 E8
10 22 16 34 92
m 6 42 4:230 926 2%(8)2
30 22 49 136
16 30 75 220
16 52 168
27 114
58
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TABLE X. Defining matrix of semisimple maximal S-subalgebras of Table VII.
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subalgebras conjugated by an outer automorphism of

D’l

type there corresponds two classes of nonequivalent

tation induced on the subalgebra by the fundamental

in the case of subalgebras of D,, when the represen-
representation of D, (1,0, ..., 0) does not split into

class of conjugate subalgebras. An exception occurs
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These nonequivalent but outer conjugate subalgebras
of D, will be linearly equivalent (L -equivalent) if and
only if the corresponding defining matrices are
equivalent.3! The necessary and sufficient condition
for that is the presence of the zero vector as a weight
in the representation induced on the subalgebra by
the fundamental representation of D, .

(7) Given a maximal S-subalgebra G of a classical
algebra G, the N weights M®, 2 =1,2,...,N of the
fundamental (defining) representation ¢ of G project
onto the N weights m®,k = 1,2,...,N of the repre-
sentation ¢ of G. We have (Sec. 3)

n
;/;11_(}?):Z]>~ fisMs(k)’ i=1,2,3,...,n,
5=

where n’ and 7 are the rank of G and G, respectively
Choosing from the set of weights M ® the n linearly
independent weights of the form

0,...,0,1,0,...,0),

we obtain the defining matrix, expressed in terms of
the Cartesian coordinates m,® (with a minor modifi-
cation for A_, due to the embedding of its subspace K
in R #*1) ag given in Table IX).

The defining matrices of the exceptional cases are
given in Table X.

The classification of the three-dimensional S-sub-
algebras of the classical algebras has been done pre-
viously in Sec. 7, using different theorems. The
method as described in this section can obviously
also be applied to classify them. It turns out that all
the three-dimensional S-subalgebras of the algebras
B, and C, are always maximal, except in the case
A%S C G% C Bg;all the three-dimensional S-subalge-
bras of the algebras A, and D, are always nonmaxi-
mal, except in the case A$ C A,

The simple maximal S-subalgebras of the exceptional
algebras are

G,: A28,

F,: A}56,

B4 A2,G3,CL, F},

E,: A231,A399, A21,

Eg: A§20,4760, 41240, B12,

To each type there corresponds one class of conju-
gate simple subalgebras, except in the cases A, and
G, in E4, to which there correspond two classes of
conjugate subalgebras, transformable one into the
other by an automorphism of E;. The embedding of
the simple roots and generators of all the maximal
S-subalgebras of the exceptional algebras are given
in Tables 14, 15, and 24 of Ref.13.

10. NONSIMPLE MAXIMAL S-SUBALGEBRAS

Let U’, U” be two irreducible groups of dimension
N’,N", respectively (i.e., defined and irreducible on
R @) and R "), respectively). By U’ X U” we denote
the direct product of these two groups. In the pro-
duct space R W x R @ the algebra of this group is
given by

Gl Xll/ +11 XGII,
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TABLE XI. Embedding of the Generators I; of the Cartan subspace
of a nonsimple maximal S-subalgebra in the Cartan subspace of a
simple algebra.

tS}:Jbatllgeb;‘as of I =H; +Hy +... +H .,
e type L: _
I =Hyuy *Houg+ .o +Hyo 0y
Ly =Hgogyerag T Y Hgngygoy
I =H, +Hupt oo ¥ Hyyrigya
14 =Hy +Houyt oot Hogngyeo

Lug =Hog tHopng ¥ oo Y Hpgymay

Subalgebras of I
the type II. a,

=H, +Hy, +... +H

2n"

10, IV, a: I, =Hy,u,y tHoypuig v oo THy 0
In” :HZn”(n’—l)fl ... +H2n’n”
i =Hy —Hyw ¥ Hypniy —Hypn + .00
+H2n”(n’—1)*1 _HZn’n"
15 =Hy,—Hy uy *Hy ng—Hypuy t...
*Hyynmr-1yvz —Haprmno
Lx”” = n”_Hn”fl +H3,,n—'H3n/u1+---
tH ygnr1) — Hynzar-1ye1
Subalgebras of Ij =H; +Hy+ ... +Hy,nq
the type
b, V. b: I, =Hy ng tHyyngt ... tHy no
I, =Her qyanm1ye T oo Y Hiaam)
1 =Hy —Hy g T Hypug —Hypug + ...
+H(n’—1)(2n"'1)+1 —H, (2n+1)
I3 =Hy —Hyyw T Hypuig —Hypug + o0

+ H(n’-l)(Zn”tl)*2 - Hn H(2n"+1)-1

Iy  =Hy—Ho,+H
+H

H +

3n7+1 T H3nne3

(n-1)(2n7+1)+n " _H(n’—l)(2n”*1)+n”

Subalgebras of I} =H,+H, +... +H

2n7+1
the type _
Ve Iy =Hyuuy +Hoguig * oo T Haprg
‘ —
Iﬂ’ _H(n"l)(Zn”*1)+1 ... +Hn’(2n”61)
17 =Hy—Hy oy Y Hypng —Hypnig + ...
+ H2n’n"¢n’-2n” _Hn’(2n”*1)
Ig :HZ_HZn”+H2n”¢3—_H4n”¢1+"'

+ H2n Trtent-2n a2 T HZn’n"m"l

U, =Hu—Houg v Hayny —Hapnug o o-
+H

aninronroms — Hontnnentonmes

where G’ and G” are the algebras of U’ and U”, and
1’ and 1” are unit matrices of dimension N’ and N”.

The corresponding nonsimple maximal S-subalgebras
with their indices are given by (with one exception)32

1.: An”+1 nt+1

w o t AT CAGLyray R ERTZL

’
2 4 4 !
M.a: C2 + D5 CCypinny n'=1,n"z3,
3 8n’
b: C;, +A]" CCg,, n'=2=1,
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2n7+1

4an’
C, +B,, C cn’(2n”+1)’ n'=1,n"= 2;

At +A3 +AtcCC,

" '
ml.: C,, +C;vCDyyryn, nzn"=1;
2n” 2n’
IV.a:Dn, +Dn” CD2n’n”’ n'=n"=> 3,
2n"+1 2n’
b: Dn, +Bn// CDn;(2n1/+1), n' = 3’n//> 2’

3 4n’
D, -i-A1 CDgy,y n'=z= 3,

. p3 2(@2n'+1)
c: B, +A] C By, WZ2

2n’+1

”n
BZn +1 +Bn”

! CB n'=n"= 2.

2n'n+n'+n’
The only exception is given at the end of Table VII.

The nonsimple maximal S-subalgebras of the excep-
tional algebras are

: G} + A8,

: G + Az,

: Gy + G, Fj + A3, G} + A, A34 + A5,
:G} + F}, A§ + AlS,

The embedding of these subalgebras is given in Table
35 of Ref. 13.

The defining matrices of the nonsimple maximal S-
subalgebras of the classical algebras can be obtained
by expressing the generators H' X 1”7 =1” and 1’ X
H" = 1" of the subalgebra G’ + G” in terms of the
generators H of G. This information is contained in
Table XI.33

11. SEMISIMPLE NONMAXIMAL S-SUBALGEBRAS

The construction of all the semisimple S-subalgebras
of a simple algebra is carried out by the following
method34:

Let G be a simple algebra. We find all its maximal
S-subalgebras (simple and nonsimple). These sub-
algebras are called subalgebras of the first slage.
For each of the subalgebras of the first stage we find
all the semisimple maximal subalgebras (regular as
well as nonregular) and eliminate those which are R-
subalgebras in G. The remaining set of algebras is
called the subalgebras of the second stage. In gene-
ral, if the subalgebras of the k’th stage have been
obtained, the subalgebras of the (k + 1)th stage are
obtained by determining all semisimple maximal
subalgebras in each subalgebra of the %2’th stage,
eliminating those subalgebras which are R-algebras
in G and keeping the rest. (The schemes, given in
Table XII, will serve to demonstrate the procedure.
The subgroups listed along a horizontal line are sub-
algebras of the same stage. It should be noted, how-
ever, that there are inclusion relations between the
subalgebras, i.e., a certain subalgebra may appear in
different stages. The inclusion relations between the
subalgebras are also given in Table XII.)

In order to carry out the construction described, it
is essential to be able to determine all maximal sub-
algebras of a semisimple algebra. The following
theorem of Dynkin solves this problem: Let
G=G,+G,+ '+ +G, (11.1)
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be a decomposition of a semisimple algebra G into a
direct sum of simple ideals. The collection of all
maximal subalgebras of G is given by the formulas

Gy +Gy+ - +G,+ - +G, (11.2)
and
s
2 Gy t16, + PG} <)) (11.3)
k*i,j

In Eq.(11.2) the index 7 runs through the values
1,2,...,s, while G; runs through all maximal sub-
algebras (regular and nonregular) of the subalgebra
G; of G. In formula (11. 3) the indices 4,j ( <j) run
through all possible pairs of indices for which G; and
G]. are isomorphic, P] denotes an arbitrary isomor-

phic mapping of G, on G, and{G, + P,G,} denotes the
collection of all elemerits of the form

X+PJ.X, X e G,

A necessary and sufficient condition that two alge-
bras of the form (11~. 2) are conjugate in G is that two
subalgebras G; and G; of the subalgebra G, of G are
conjugate in G,. A necessary and sufficient condition
that two subalgebras of the form (11. 3) are conjugate
is that i; =4, and j, =j, [the subindices 1, 2 refer
to the two subalgebras of form (11.3)] and that P,

and sz are transformed into each other by some ’

inner automorphism of G. The subalgebras (11.2)
and (11. 3) cannot be conjugate.

For subalgebras of the form (11. 3) the index and the
defining matrix of the algebra {G, + P,G,} is obtained
by adding the indices and defining ma{rices of the
two subalgebras G; and G;.

In Table XII all the semisimple S-subalgebras of the
classical algebras up to rank 6 are given, as well as
the inclusion relations among them. The theorem,
quoted above, has been used in the derivation of this
table. Thus, examples can be found in Table XII
which will help to illustrate the content of this theo-
rem. The semisimple S-subalgebras of the excep-
tional algebras and the inclusion relations among
them are given in Table 39 of Ref. 13.

Table XIII contains all simple S-algebras of rank
exceeding one for the classical algebras up to rank 6
(all rank 1 subalgebras, S-algebras, and non-S-alge-
bras, are given in Table VI). In this table the embed-
ding of the generators of the simple subalgebra G in
the algebra G is given explicitly, as well as the em-
bedding of the simple roots of G in G. Moreover the
decomposition (branching) of the fundamental (defin-
ing) and adjoint representation of the simple algebra
G into irreducible representations of its subalgebra
G is given. The notation used to denote an irreducible
representation is DN ), where m is the highest
weight of the representation and N its dimension. The
symbol E,, E,, ..., etc. denote the root vectors cor-
responding to the simple roots o4, @, - -+ according
to the canonical ordering of Table I. The definition

= [Ekl’ Elez]’ Eks]’ P Eks]

is used, where E, , . ., is the root vector corres-
172 s

E
kykyoe s kg

ponding to the root ¢, + @, + -+ + a , with @, simple
roots.
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TABLE XII. Semisimple S-subalgebras of the classical algebras up to rank 6.

Lfgo-+A%lEA§+A§+Aﬂ[A§+Ag+A§

Ag2 A8 + A%

[ A35 + A3

To each of the types of simple subalgebras given in
Table XIII, there corresponds one class of conjugate
subalgebras, except in the cases A3 C D, where there
are six classes of nonequivalent subalgebras conju-
gate by an outer automorphism of D ;B3 C Dg, where
there are two classes of nonequivalent subalgebras
conjugate by an automorphism of Dg;and B; C Dy,

where there are three classes of nonequivalent sub-
algebras conjugate by an outer automorphism of D,.
In Table XIV all nonsimple S-subalgebras of the
classical algebras up to rank 6 are listed. The defin-
ing matrices of the subalgebras with respect to the
algebra containing them, is given explicitly. A hori-
zontal line in a defining matrix is used to distinguish
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TABLE XII.
Simple S-subalgebras of the classical algebras up to rank 6.

fAH) =H, +H,

flHy) =—Hy + Hy
f(ﬁ3):—H1 —H,
f(El) =Ejp T Eyy T Eyy

A3c D, [fE)=E, +31%&3)E, +31+i3)E,
f(1)_17 0) = (1, 0’_170) + (0,1,0,—1) + (0) 1) 0: 1)
f(oy 1’_1) = (1’_1) 0, 0) + (07 0, 1;_1) + (0; 0, 1, 1)
D28(1,1,0,0) > D8(1,0,—1) + D10{2,—1,—1)
+ D10{(1,1,-2)
Ds(lx 0: 01 O) —)Da(l,o; _1)
FH)=H +Hy +Hy—Hg
Sl =H, —Hy +H, +Hg
Sl =—Hy +Hy +Hs +Hg
AE) =VI(E, +E,) + E,y,
AE) = E, +JZ (B, + Ey)
AgC Ay f(1,-1,0) = 2(1,-1,0,0,0,0) + 2(0,1,0,—1,0,0)
+1{0,0,1,0,-1)
f(o) lr—l) = (0; 1,-1,0, 0; 0) + 2(0, 0,0, 1,—1, 0)
+ 2(0,0,0,0,1,-1)
D35(1,0,0,0,0,-1) » D8(1,0,-1) + D27(2,0,~2)
DSG,—4,— 4~ — > — 5~ D8G5, D)
FHE)=4H, +Hy~Hy —H,)
Sy = 3H, —H, + Hy —H,)
fE) =E,
Blc A, f(E,)=(1/N2)(B, + Ey)
f(l’—l) = (0;1)_130)
f(O: 1) = %(11_1’ 0: 0) + %(0; Oy ly“'l)
D15(1,0,0,-1) - D10(1,1) + D5(1, 0)
DAG,—HL,—H— 1) DY, 3
f(ﬁl) =H, —H,
f(ﬁg) = Hg _H4
fE)=E, +E,
f(Ey) = E, + Eg
BzcA, f(1,-1)=(1,-10,0,0)+(0,0,0,1,-1)
f0,1) =(0,1,-1,0,0) + (0,0,1,-1,0)
D24(1,0,0,0,—1)—> D10(1,1) + D14(2,0)
DS(%,_ é!"' é’_ %;”’ é) - D5(17 0)
FA)=H, +H, +H,
) =H —H; +H,
fE)) = Egy + Egy + Egg
HAE)) = E; + B, + 3(1 £ 9E, + 3(1 7 )E,
BSCDs f(l,Al):(O,l,O,vl,O)+(0,0,1,0,—1)

+(0,0,1,0,1)
f0,1) =(1,-1,0,0,0) +(0,1,-1,0,0)
+ %(0, 0’ 0: 11_1) + %(0’ 0: 0: 1: 1)

D45(1,1,0,0,0) —» D10(1,1) + D35(2,1)
D19(1,0,0,0,0) — D10(1,1)

GlcB

JE,) = A/NDE, +2/3 B,

2 3

f(1,-1,0) = (0,1,—1)
fA=55—-9=%1,-1,0 + §0,0,1)
D21(1,1,0) » D14(1,0,~1) + D7(3,5,— %)
D7(1,0,0) - D7(3,5,— %)
S =3H, + 2Hy —Hy)
fly) =3Hy —Hy + 2Hy)
J#) =5(=2H, —H, —H,)
fE) = E,
fEy) = A/NVB)E, + E5 + E,)

Gi<p, f(1,-1,0)=(0,1,-1,0)
f=%,% -3 =31,-1,0,0) +4(0,0,1,-1)

+13(0,0,1,1)

D28(1,1,0,0) » D14(1,0,-1) + 2D7(3,5,— 2)
D8(1,0,0,0) — D7(3,%, — %) + D1(0,0,0)
fH) =3(2H, +3H, + Hy + 2H  —H)
fHy)) =3(Q2H, +3H, + Hy~Hg + 2H,)
flH) =3(—Hy +Hy +2Hg + 2H, + 3H,)
AE) =E, + Eg
f(Ey) = ANB)(E; + Eg) + V2/3(E, + E,)

GZcAy  f(1,-1,0)=(0,1,-1,0,0,0,0) +(0,0,0,0,1,—1,0)
f—4%,3,—-%)=1%Q1,-1,0,0,0,0,0) +%(0,0,0,0,0,1,—1)

+%(0,0,1,-1,0,0,0) + £(0,0,0,1,—1,0,0)
D48(1,0,0,0,0,0,—1) - D14(1,0,~1) + D7(},%,-2)
+D27(3,%, -9

DTG~ =5~ —5H—H =)D, 9)
FH) =3(3H, +3H, + 3H, —H, —H_ —H,)
fH) =5BH, —H,—H, +3H, + 3Hy —Hg)
SH) =3(—H, +3H, —~Hy + 3H, —Hy + 3Hy)
fH)=4—H, ~H, +3H, ~H, +3H, + 3H)
f(E1) = Ey3 + Byy
AE,) = E, +Eg

A3Cc A, FfE)=E,+E,
f,-1,0,0) = (0,1,0,-1,0,0) + (0,0,1,0,—1,0)
f0,1,-1,0) = (1,--1,0,0,0, 0) + (0,0,0,0,1,—1)
f,0,1,-1) =(0,1,-1,0,0,0) + (0,0,0,1,—1, 0)
D35(1,0,0,0,0,—-1) > D15(1,0,0,-1) + D20(1,1,—1,—1)
DSG,—t,—4,— 5, — 5, — D D83, 5,— 5,— 3)
fld)=H,
fl#y) =H,
Sy = Hy
f(El) = El
fE) =E,

By C D, f(E)=Q1/N2)NE; + Ey

f(1,-1,0) = (1,-1,0,0)
f0,1,-1) =(0,1,-1,0)
f(oy 0, 1) = %(01 0, 17‘1) + %(0; 0,1, 1)

D28(1,1,0,0) » D21(3,1,0) + D7(1,0,0)
D#(1,0,0,0) - D7(1,0,0) + D(0,0,0)

fH) =4H +2H, —H,)
fly) =3, ~Hy +2H3)
) =%(—2H, —H, —H,)
fE)) = E,
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fHE) =H, ~H,
f(ﬁz) =H, —Hg
f(ﬁs) =H;—Hy
fIE)) = By + Eg4
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TABLE XIII contd

f(E‘z) =E, +Eg

B3CAg  flEy) =E;+E,
fa,-1,0=1(1,-1,0,0,0,0,0) +(0,0,0,0,0,1,~1)
f(,1,-1)=(0,1,-1,0,0,0,0) + (0,0,0,0,1,—1,0)
f(0,0,1) = (0,0,1,-1,0,0,0) + (0,0,0,1,—-1,0,0)
D48(1,0,0,0,0,0,—1) - D21(1,1,0) + D27(2,0,0)
DU, ~4,— 1~} =} },~ D> D7L,0,0)
fH) =H —Hg
f(ﬁz):Hz_Hs
f(ﬁa):Hs_H4
fE) =E, + Eg

ClcAy, flE)=E,+ E,

f(Eg) = ‘/EE:;

f(I’ _1) 0) = (1r"1’ 0’ 0’ 0’ 0) + (Oy 0) 0: O: 1; _1)
0,1, -1 = (0,1,-1, 0,0,0) +(0,0,0, 1,-1, 0)
f(O) 0,2) = 2(0, 0,1,-1,0, 0)

D35(1’ 0, 0) 01 Or _1) - D21(21 0: 0) + D14(lr l: 0)
DG(%,_%’—l —é,——é,—:—;)—)Ds(l,0,0)

6?

f(ﬁl) =H1
flly) = H,
f(il;;) :H3
flH)=H,
fE) = Ey
fE,) = E,

f(E:;) = E3

AE,) = (I/V2NE, + Eg)
Bi<D, f(1,~1,0,0)=(1,-1,0,0,0)

f(oy 1, -1, 0) = (0’ 1, -1,0, 0)

f(oy 0, ly_]-) = (0, 0,1,~1, 0)

£(0,0,0,1) = %(0’ 0,0,1,-1) + %(0) 0,0,1,1)

D45(1,1,0,0,0) - D38(1,1,0,0,) + D%1,0,0,0)
D0(1,0,0,0,0)— D%(1,0,0,0) + D%0,0,0,0)
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FA#)=H,
Fl,) =H,
) =H,
f@)=H,
FE) =Hg
AE,) = E,
f(Ez) = Ez
FES) = E,
FE)=E,

AES) = ANZNE; + Ey)

cD f(ly—'er)O;O)=(1y—1,0,0,0,0)
f(o, 1;_1’ 0, 0) = (0’ 1,“1,0, 0, O)
f(oy 0,1,-1, 0) = (Or 0,1,-1,0, 0)

f(oy 0,0, 1,_1) = (07 0,0,1,-1, 0)

f(oy 0,0,0,1) = %(0; 0,0,0,1,-1) + %(oy 0,0,0,1,1)

D68(1,1,0,0,0,0) - D55(1,1,0,0,0) +D11(1,0,0,0,0)
D12(1,0,90,0,0,0) » D11(1,0,0,0,0) + D1(0,0,0,0,0)

TABLE XIV. Nonsimple S-subalgebras of the classical algebras up to rank 6.

1 1 -1 —
A3 +A2CA, 3 = 1 _)
1 0 -2
A$ +A3CCy 3 1 1)

Aj +At +Afcc,

A§ +A§C B,

1
1
2
1
1
1 g
i
11
1 0
Alo +AzC D, : 1=
1 (2 0 —2 2 o0 -2
Af+AYC A 3 \i— 1 1 1 1 1)
T e
1 (4 2 0 -2 —4
Afe +AFcC, 2 (1 T 1T 1 1)
1 1 1 0 o0
Af +AFC Dy <1 0 1 1 0>
Al0 + A0 C Dy ((2) (1) g g g)
apsapce, =)
L {20 -2 2 0 -
A$+A3+AgcD, o (T1 1T 1 -1 =
T 1 1 1 1 1
1 0 -1 1 o -1
Af +AFC Dg (1 T 1 0 0 0>
1 (5 3 1 -1 -3 -5
A3® + AT C Dg 2 (1 T 1 1 1 1)
3 2 1 0 0o 0
AZ® +AJ0C Dy (o o0 2 1 0
1 1 0 o o
0 0o 1 1 o
AZ + A C A 0 0 0 0 1
1 1 £ 1 L
2 2 2 2 2

1
—1
1

1
-1

|

| ]

RN
o | -
= < ,

B3] =
P e e e e ety

N - O S
e s

D4(%1" %,— %1_ %) - szz(é;%
D8(1,0,0) - D3%2(1; 3)
D8(1,0,0,0) » D2x2%2(}; ;1)

D9(1,0,0,0) > D3%3(1; 1)
D8(1,0,0,0) > D4*2(3;

Ds(gl_%r—%>_ ,_%,_%)_)DZBXZ(I;%)

o

D8(1,0,0,0) - D5%1(2;0) +\D1*3(0; 1)
D10(1,0,0,0,0) —» D5%2(3; 3)
D10(1,0,0,0,0) - D3%3(1;1) + D1¥1(0;0)
D10(1,0,0,0,0) -» D5*1(2;0) + D1*5(0; 2)

D'2(1,0,0,0,0,0) > D4*3(3;1)
D12(1,0,0,0,0,0) — D3*2%2(1; 3; 3)

D12(1,0,0,0,0,0) » D3*3(1;1) + D3*1(1; 0)
D12(1,0,0,0,0,0) » D6*2(3; &

D12(1,0,0,0,0,0) > D7*1(3; 0) + D1%5(0; 2)

2
De(g,—15',-—%,—%’——%,—%)—,D3x2(§,—%,—%;%)
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TABLE XIV contd

1 0 0
B} +A3CD, <o 1 ) D8(1,0,0,0) » D4%2(1,0; &)
A S
1 0 0
Bl +A?C D, 0 1 0 DB8(1, 0,0, 0) » D5*1(1, 0; 0) + D1*3(0,0;1)
0 [} 1
1 0 0 -1
B4 +A§C C4 (o 1 0 o) D10(1,0,0,0,0) = D5*2(1, 0; 5)
I | H
1 0 0 0
B} + Al0c D 0 1 0 0 D10(1,0,0,0,0) - D5*1(1, 0; 0) + D1*5(0, 0; 2)
0 0 2 0
1 1 1 0 0
B} +Al8cCC, 0 0 o0 11 D12(1,0,0,0,0,0,0) - D4*3(1, 0;1)
1 0 1 0 -1
1 0 0 0 0
B} +A38 C Dy 0 1 0 0 0 D12(1,0,0,0,0,0) - D5%1(1, 0; 0) + DI*7(0,0; 3)
0 0 3 1 0
1 0 0 0
1 0 1 0 0 10
B} +BlC Dy R T o D19(1,0,0,0,0) — D5%1(1,0; 0, 0) + D1*5(0, 0; 1, 0)
0 0 0 0
2 -1 0
1 -1 2 0
Gl +BlC Dy Fl=2_-1 -1 0 D12(1,0,0,0,0,0) - D1%5(0,0,0;1,0) + D7*1(3,3,—%;0,0)
0 0 0
\ 0 0 3
2 -1 0
1 -1
G} +A}°C Dg ile o 2 o D12(1,0,0,0,0,0) - D1*5(0,0,0;2) + D7*1(3,%,~ §;0)
3

[ =]
|

A% +4§CCq D12(1.0,0,0,0,0) > D6%2(1,0,0; 3)

Bl +BYC D D2(1,0,0,0,0,0) > D7*(1,0,0; 0, 0) + D1¥5(0,0,0;1,0)

QOCO, HFOOO NMlOHO HROOOO v~

Cy +A}C D D12(1,0,0,0,0,0) > D6*2(1, 0, 0; 3)

TN TN T

BY +A}0C D, D12(1,0,0,0,0,0) > D7*1(1,0, 0;0) + D1*5(0, 0, 0; 2)

D10(1,0,0,0,0) » D7*1(1, 0, 0; 0) + D1*3(0, 0, 0;1)

HNH OHOOC OHCOCO N-HROO OOMOO nrlroo O

QN = - OO0 OO OO CDOOO N-OOH OMNM KM O©OIN -

o

ok
+
'

[
N
=]

wn

TR

i
oo o~ OFrOOD o Wooo Hooo NOOO Mmoo oHooo ml»—r'—-oo olooco cowooo Roloo Moo o »—'oom..,'..o ooom-o-,-‘

OO OW OOCO O ON OFMFHN OOMMO OOMO M-lOMHO OO O MloOre O

— )
G} +42 D, ! o 0 D19(1,0,0,0,0) > D71¢, 4, — 3;0) + D1X3(0, 0, 0; 1)
0 0

A28 + A2 C D (g : g) D10(1,0,0,0,0) » D7¥1(3;0) + DI*3(0; 1)

1 0 0 0

0 0 0 0
B} + Az C D 0 1 0 0 D32(1,0,0,0,0,0) - D(1, 0, 0,0;0) + D1*3(0,0,0,0;1)

0 0 0 0

0 0 T 0

4 2 0 0 12 9x1(4- 1x3(Qg-
A80 + A2 C D, ) 0 i ) D12(1,0,0,0,0,0) — D91(4; 0) + D1¥3(0;1)

1 1 0 0
A$ + A§ + A2 C Dy 1 —1 0 0 D12(1,0,0,0,0,0) - D3x3%x1(1;1;0) + D1¥1X3(0; 0; 1)

0 0 1 0
the parts of a defining matrix referring to the various 12. SEMISIMPLE R -SUBALGEBRAS
simple ideals of a semisimple subalgebra. In addi-
tion, the decomposition of the fundamental represen- The R -subalgebras of the simple algebras are ob-
tation of the simple algebra into irreducible repre- tained in a way similar to the case of the 3d-subalge-
sentations of its semisimple subalgebra is listed. bras.
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TABLE XV. Simple subalgebras of the type A,.

Regular

Index Defining matrix

subalgebra

Algebra

)

0
0
0
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—1
2
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2
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N Nt [t N N =0 224 LR B ]
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D Y NI R N R NN
/._n\(/l\/.l\/l\/ln\ ~— T S
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— v O 1_;24 11?_~ 11_.0 117_~ lln;_u 11_.0
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NN N o~ « NN N <
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© b N « N
Q < Q Q Q
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—2

1
1
-2

2 2
~1 —4

2

—2 —4

2

1

2

—1

AZ
24,

Dg

24,
A5

Qoo

O

- O

— O -

n

Ay

1 1
1 71
—2 11

2
2

2
-1 —4
-1

2
2

4
2
2 4

&

e

b,

Simple subalgebras of the type B, ~ C,,.

TABLE XVI

Definin

Defining matrix

Regular

g matrix
(e — ey 2e,)

G =(e; —ey56,)

G =

Index

subalgebra

Algebra

Agi By

(=]

- O

I

A3z By

O o
OO Om
o O

1"

(= =]
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§
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2
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1

7

G

Gl
conjugate semisimple S-subalgebras. If G; is a semi-

In this subalgebra G’ we take a complete set of non-

regular subalgebra of G from each class of conjugate
regular subalgebras. Suppose such a regular sub-

Let G be an arbitrary simple algebra. We take a
algebra is the direct sum of simple ideals
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simple S-subalgebra of the algebra G/, then

Regular - - - -
Algebra subalgebra Index Defining matrix G=G, +Gy + " +G
B, B, 1 f1 21
gl 1 -1 2 is a semisimple S-subalgebra of the algebra G’ and,
2 1 1 therefore, is an R -subalgebra of the algebra G. If
By B3iD, 1 1 i f “‘; 8) £,%) is the defining matrix of the subalgebra G, with
3\ 4 1 o respect to G/, then
D D 1 1 2 -1 0 s
4 4 =~ ~
% 1 -1 2 °> fik:E Fin
2 -1 -1 0 r=1
By B3;D, 1 l< i _f ‘; g g is the defining matrix of G with respect to G’ and
S\2 -1 11 0 o n
Ds Ds ! 1 ; _f —;13 8 8 fim =23 JnS tms
3 k=1
-2 -1 -1 0 0
Ag Ag 2 (1 21 0 1 -2~ the defining matrix of G with respect to G, with f;,,
3 ; —i f g —f i - the defining matrix of G’ with respect to G. Applying
e - T the Weyl group of G simultaneously to the rows of the
Bg B3 Dy 1 1 i _f '; g 8 g g defining matrix,«all the equivalent defining matrices
3\ 11 0 o0 0 0 co.rresponding to all conjugate subalgebras are ob-
D, D, 1 1 2-1 0 0 0 0 tained.
Iy 2 0 0 0 o
3% 1 -1 0 0 0 o In Tables XV~XX all simple subalgebras of rank
exceeding 1 for the classical algebras up to rank 6
TABLE XVIIl. Simple subalgebras of the type A; ~ D.
Regular Defining matrix Defining matrix
Algebra Subalgebra Index G =(e, +e5,¢, —€y6y—€3) G=(e,—eg e, ~eze5~e,)
B, Ay 1 1 0 0 1 1 1
0 1 0 1 {1 -1t 4
0 0 1 2 |1 1
1 -1 1
Ay A, 1 1 1 1 0 -1 -1 3 -1 -1 -1 0
3 |1 -1 0 1 1 1 |- 3 1 4 0
1 ~1 0o -1 1 i {1 4 3 -1 0
-1 -1 -1 3 0
B A, 1 1 1 1 1 3 1 1 1
! : S CR T T 1 {1 1 1 -3
1 -1 1 1 7 \—1 1 -3 1
1 -3 1 1
Ay 1n 1 0 0 0 1 1 1 0
0 1 0 0 1 {1 1 4 0
0 0 1 0 7\ 1 -1 0
-1 -1 1 0
c AZ 2 1 1 1 1 3 1 1 1
: ° L CU U 1 {1 11 =
1 -1 1 -1 7 |1 1 1 =
-1 -3 1 1
D, A, 1 1 (1 1 1+l 3 1 1 xl
7 (1 1 1«1 1[4 1 1 =
1 -1 1 =1 4 \-1 1 -3 1
-1l -3 1 +1
A, in 1 0 0 0 1 1 1 0
0 1 0 0 1 S R | 0
0 0 1 0 7 |- 1 -1 0
1 -1 1 0
Ag A, 1 1 (1 1 0 0 -1 - 3 1 -1 -1 6 0
7 {r 1 0 0 1 = 1 {1 3 -1 0 0
1 -1 0 0 -1 1 7 {1 3 -1 0 0
-1 -1 1 3 0 0
Ag 2 1 0 0 0 0 -1 1 1 1 -1 -1 1
0 1 0 0 —1 0 1 1 1 4 1 1
0 o 1 -1 0 0 2 \ 1 -1 1 1
-1 -1 1 -1 1 1
By A, 1 1 ! 1 1 1 0 3 1 1 1 0
3 1 1 -1 -1 0 1 [ 1 1 -3 0
1 -1 1 -1 0 7 | 1 -3 1 0
—1 -3 1 1 0
A, 1n 1 0 0 0 0 1 1 1 0 0
0 1 0 0 0 1 1 1~ 0 0
0 0 1 0 0 2 \-1 1 - 0 0
- 1 o 0
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TABLE XIX. Simple subalgebras of type B;.

TABLE XX. Subalgebras of the type Ca.

Regular Regular
Algebra subalgebra Index Defining matrix Algebra subalgebra Index Defining matrix
B, B.;D, 1 1 0 0 0 c, Cq 1 1 0 0 0
0 1 0 O 0 1 0 0
o 0 1 0 0 0o 1 o0
D, D, 1 1 0 0 0 Ay Ag 1 1 0 0 0 0 -1
0o 1 0 © 0 1 0 0 -1 o0
0o 0 1 © 0 0 1 -1 0 o0
B, ByD, 1 1 o 0 0 0 Cs Cs 1 10 0 0 0 0
0 1 0 0 0 0 1 0 0 0 O
6 0 1 0 0 0 0 1 0 0 0
Dy D, 1 1 0 0 0 O Ag As 1 1 0 0 0 0 0-1
0 1 0 0 0 0 1 0 0 0 -1 0
0 0 1 0 0 0 o 1 0 -1 0 O
A, Ag 2 1 0 0 0 0 o0 -1 Be As 1 1 1.0 0 0 0
01 0 0 0 -1 0 ¢ o0 1 1 0 0
0 0 1 0 -1 0 0 0 0 ¢ 0 1 1
- c c 1 1 0 0 0 0 o0
B B4; D 1 1 0 0 O 0 0 6 3
8 e 0 1 0 0 0 o (0 1 0 0 © o>
o ¢ 1 © 0 0 0 0 1 o0 0 o0
AZ;2C 2 1
D, D, 1 1 0o 0o 0 0 o s 0 é (1) ? 8 g
0 1 0 0 0 0 0 0O 0 0 1 1
0 0 1 0 0 0
Dg Ag 1 1 1 0 0 0 o0
0 0o 1 1 0 o0
(except the trivial cases A, —D,, Ay — Dg) are given. 0 0 0 0 1 #l

These tables contain the minimal including regular
subalgebra, the index of the simple algebra with res-
pect to the simple algebra and the highest defining
matrix. If the same index corresponds to different
subalgebras B, ~ C, and A5 ~ D, two kinds of defin-
ing matrices are given according to the different

system of simple roots which can be used for the
simple subalgebras.

All the simple subalgebras of rank exceeding one of
the exceptional algebras are given in Table 25 of
Ref. 13.
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Errata: S Matrix in the Heisenberg Representation

[J. Math. Phys. 11, 3487 (1970)]

Edith Borie
Nulional Bureau of Slandavds, Washington, D.C.20234
(Received 15 May 1972)

Equation (2. 14) should read
fr=(1+ G*XH)(1 + Go*X¥) Yf* =/ "+ GUu.
Equation (3. 9) should read:
0, + |0, —o0) =C§ = eiWlol
Equation (3. 19) should read

. J
_ %(S’kzmnG(Jr)leU)mn),j
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_%z(s,lmn(cnps,pabc(ﬂma + Gﬂnps,pab
(+ b
X (GDma 4 GWamy) G ),j:
only the second term is affected.

The following changes should be made in Appendix A:
GC=G+—G =(1+GyX)Gy(1 +X7Gy7); (A8d)
GO =(1+ GuX)G* N1 + X*GyY); (A8e)

GWij = — gV, (A8j)
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